コード例 #1
0
ファイル: selection.cpp プロジェクト: thomalm/ntnu
void selection::sigmaScaling(vector<individual*> &adults, vector<individual*> &parents, int count){

	int i,
		size = adults.size();
	float std = 0,
		avg,
		sum = 0;
	vector<float> sigmaValues;
	vector<individual*> p;

	for(i = 0; i < size; i++){            //Calc total fitness
		sum += adults[i]->getFitness();
	}
	avg = sum / static_cast<float>(size);
	for(int i = 0; i < size; i++){		//Standard deviation
		std += pow(adults[i]->getFitness()-avg, 2);
	}
	std = sqrt(sum/size);	
	sum = 0;
	for(i = 0; i < size; i++){			//Calculate sigma values (unnormalized)
		sigmaValues.push_back(exp((1+( adults[i]->getFitness()-avg )/(2*std))));
		sum += sigmaValues[i];
	}
	for(i = 0; i < size; i++){         //Normalized probability
		sigmaValues[i] = sigmaValues[i]/sum;		
	}
	p = rouletteWheel(sigmaValues, adults, count);
	parents.insert(parents.end(), p.begin(), p.end());

}
コード例 #2
0
ファイル: selection.cpp プロジェクト: thomalm/ntnu
//Fitness Proportionate
void selection::fitnessProportionate(vector<individual*> &adults, vector<individual*> &parents, int count){

	int sum = 0,
		i;
	vector<float> fitnessValues;
	vector<individual*> p;
	
	for(i = 0; i < adults.size(); i++){  //Sum up fitness values
			fitnessValues.push_back(adults[i]->getFitness());
			sum += fitnessValues[i];
		}

	for(i = 0; i < fitnessValues.size(); i++){  //Calculate probabilities
			fitnessValues[i] = fitnessValues[i]/sum;
	}
	p = rouletteWheel(fitnessValues, adults, count);
	parents.insert(parents.end(), p.begin(), p.end());
	
}
コード例 #3
0
ファイル: selection.cpp プロジェクト: thomalm/ntnu
void selection::rankSelection(vector<individual*> &adults, vector<individual*> &parents, int count){
		
	vector<float> rankValues;
	int i,
		size = adults.size(),
		r = size;
	float num = r-1,
		sum = 0.0f;
	vector<individual*> p;
			
	sort(adults.begin(), adults.end(), fitnessSortFunc);
	for(i = 0; i < size; i++){                    //Calculate rank values
		rankValues.push_back(exp((MIN_RANKSELECT_VAL+(MAX_RANKSELECT_VAL-MIN_RANKSELECT_VAL)*(((r-1)/num)))));
		sum += rankValues[i];
		r--;
	}
	for(i = 0; i < size; i++){					 //Calculate normalized probabilities
		rankValues[i] = rankValues[i]/sum;
	}
	p = rouletteWheel(rankValues, adults, count);
	parents.insert(parents.end(), p.begin(), p.end());

}
コード例 #4
0
ファイル: GAFeedForwardNN.cpp プロジェクト: zubekj/libcudann
//run the genetic algorithm initialized before with some training parameters:
//training location, training algorithm, desired error, max_epochs, epochs_between_reports
//see "FeedForwardNNTrainer" class for more details
//printtype specifies how much verbose will be the execution (PRINT_ALL,PRINT_MIN,PRINT_OFF)
void GAFeedForwardNN::evolve(const int n, const float * params, const int printtype){

	if(n<5){printf("TOO FEW PARAMETERS FOR TRAINING\n");exit(1);}
	int layers[nhidlayers+2];
	int functs[nhidlayers+2];
	float learningRate;

	float fitnesses[popsize];
	float totfitness=0;
	float bestFitnessEver=0;
	FloatChromosome newpop[popsize];

	layers[0]=trainingSet->getNumOfInputsPerInstance();
	layers[nhidlayers+1]=trainingSet->getNumOfOutputsPerInstance();

	//for each generation
	for(int gen=0;gen<generations;gen++){
		float bestFitnessGeneration=0;
		int bestFitGenIndex=0;
		totfitness=0;

		printf("GENERATION NUMBER:\t%d\n\n",gen);

		//fitness evaluation of each individual
		for(int i=0;i<popsize;i++){

			printf("\nINDIVIDUAL N:\t%d\n",i);

			//decode the chromosome hidden layers sizes
			for(int j=0;j<nhidlayers;j++){
				layers[j+1]=chromosomes[i].getElement(j);
			}
			//decode the chromosome activation functions for each layer
			for(int j=0;j<nhidlayers+2;j++){
				functs[j]=chromosomes[i].getElement(j+nhidlayers);
			}
			//decode the chromosome learning rate
			learningRate=chromosomes[i].getElement(nhidlayers+nhidlayers+2);

			float medium=0;

			FeedForwardNN mseT;

			//do a number of evaluations with different weights and average the results
			for(int n=0;n<numberofevaluations;n++){

				//choose what to print based on user's choice
				int print=PRINT_ALL;
				if(printtype==PRINT_MIN){
					if(n==0)
						print=PRINT_MIN;
					else
						print=PRINT_OFF;
				}
				if(printtype==PRINT_OFF)
					print=PRINT_OFF;

				//decode the chromosome into a real network
				FeedForwardNN net(nhidlayers+2,layers,functs);

				FeedForwardNNTrainer trainer;
				trainer.selectTrainingSet(*trainingSet);
				if(testSet!=NULL){
					trainer.selectTestSet(*testSet);
				}
				trainer.selectNet(net);

				trainer.selectBestMSETestNet(mseT);

				float par[]={params[0],params[1],params[2],params[3],params[4],learningRate,0,SHUFFLE_ON,ERROR_LINEAR};

				//do the training of the net and evaluate is MSE error
				medium+=trainer.train(9,par,print)/float(numberofevaluations);
			}

			//the fitness is computed as the inverse of the MSE
			fitnesses[i]=1.0f/medium;

			printf("FITNESS:\t%.2f\n\n",fitnesses[i]);

			//updates the best individual of the generation
			if(fitnesses[i]>bestFitnessGeneration){bestFitnessGeneration=fitnesses[i];bestFitGenIndex=i;}

			//if this is the best fitness ever it store the network in bestNet
			if(bestNet!=NULL)
			if(fitnesses[i]>bestFitnessEver){*bestNet=mseT;bestFitnessEver=fitnesses[i];}

			totfitness+=fitnesses[i];
		}

		//the best individual is always carried to the next generation
		newpop[0]=chromosomes[bestFitGenIndex];

		//generate the new population
		for(int i=1;i<popsize;i++){
			//selection
			int firstmate=0,secondmate=0;

			//first mate
			switch(selectionalgorithm){
				case ROULETTE_WHEEL:		firstmate=rouletteWheel(popsize,fitnesses);					break;
				case TOURNAMENT_SELECTION:	firstmate=tournament(popsize,fitnesses,popsize/5+1);		break;
				default:					printf("SELECTION ALGORITHM NOT IMPLEMENTED YET\n");exit(1);break;
			}
			//second mate
			do{
				switch(selectionalgorithm){
					case ROULETTE_WHEEL:		secondmate=rouletteWheel(popsize,fitnesses);				break;
					case TOURNAMENT_SELECTION:	secondmate=tournament(popsize,fitnesses,popsize/5+1);		break;
					default:					printf("SELECTION ALGORITHM NOT IMPLEMENTED YET\n");exit(1);break;
				}
			}while(firstmate==secondmate);


			FloatChromosome child;
			//do the crossover
			child=crossover(chromosomes[firstmate],chromosomes[secondmate],pcross);
			//and the mutation
			child=mutation(child,pmut,maxdimhiddenlayers,nhidlayers);
			//and put the child in the new generation
			newpop[i]=child;
		}

		//copy the new generation over the older one, wich is the one we will still use
		for(int i=0;i<popsize;i++){
			chromosomes[i]=newpop[i];
		}
	}

}