コード例 #1
0
ファイル: sb_zbpci.c プロジェクト: 2asoft/freebsd
/*
 * This function is expected to be called in a critical section since it
 * changes the per-cpu pci config space va-to-pa mappings.
 */
static vm_offset_t
zbpci_config_space_va(int bus, int slot, int func, int reg, int bytes)
{
	int cpu;
	vm_offset_t va_page;
	vm_paddr_t pa, pa_page;

	if (bus <= PCI_BUSMAX && slot <= PCI_SLOTMAX && func <= PCI_FUNCMAX &&
	    reg <= PCI_REGMAX && (bytes == 1 || bytes == 2 || bytes == 4) &&
	    ((reg & (bytes - 1)) == 0)) {
		cpu = PCPU_GET(cpuid);
		va_page = zbpci_config_space[cpu].vaddr;
		pa = CFG_PADDR_BASE |
		     (bus << 16) | (slot << 11) | (func << 8) | reg;
#if _BYTE_ORDER == _BIG_ENDIAN
		pa = pa ^ (4 - bytes);
#endif
		pa_page = rounddown2(pa, PAGE_SIZE);
		if (zbpci_config_space[cpu].paddr != pa_page) {
			pmap_kremove(va_page);
			pmap_kenter_attr(va_page, pa_page, PTE_C_UNCACHED);
			zbpci_config_space[cpu].paddr = pa_page;
		}
		return (va_page + (pa - pa_page));
	} else {
		return (0);
	}
}
コード例 #2
0
ファイル: main.c プロジェクト: jaredmcneill/freebsd
static ssize_t
get_phys_buffer(vm_offset_t dest, const size_t len, void **buf)
{
	int i = 0;
	const size_t segsize = 2*1024*1024;

	for (i = 0; i < nkexec_segments; i++) {
		if (dest >= (vm_offset_t)loaded_segments[i].mem &&
		    dest < (vm_offset_t)loaded_segments[i].mem +
		    loaded_segments[i].memsz)
			goto out;
	}

	loaded_segments[nkexec_segments].buf = host_getmem(segsize);
	loaded_segments[nkexec_segments].bufsz = segsize;
	loaded_segments[nkexec_segments].mem = (void *)rounddown2(dest,segsize);
	loaded_segments[nkexec_segments].memsz = segsize;
	i = nkexec_segments;
	nkexec_segments++;

out:
	*buf = loaded_segments[i].buf + (dest -
	    (vm_offset_t)loaded_segments[i].mem);
	return (min(len,loaded_segments[i].bufsz - (dest -
	    (vm_offset_t)loaded_segments[i].mem)));
}
コード例 #3
0
ファイル: cheri.c プロジェクト: bkeepers/cheribsd
static void
cheri_capability_set_user_sigcode(struct chericap *cp, struct sysentvec *se)
{
	uintptr_t base;
	int szsigcode = *se->sv_szsigcode;

	/* XXX: true for mips64 and mip64-cheriabi... */
	base = (uintptr_t)se->sv_psstrings - szsigcode;
	base = rounddown2(base, sizeof(struct chericap));

	cheri_capability_set(cp, CHERI_CAP_USER_CODE_PERMS,
	    CHERI_CAP_USER_CODE_OTYPE, (void *)base, szsigcode, 0);
}
コード例 #4
0
register_t *
cloudabi64_copyout_strings(struct image_params *imgp)
{
	struct image_args *args;
	uintptr_t begin;
	size_t len;

	/* Copy out program arguments. */
	args = imgp->args;
	len = args->begin_envv - args->begin_argv;
	begin = rounddown2(imgp->sysent->sv_usrstack - len, sizeof(register_t));
	copyout(args->begin_argv, (void *)begin, len);
	return ((register_t *)begin);
}
コード例 #5
0
ファイル: dirs.c プロジェクト: mulichao/freebsd
/*
 * Seek to an entry in a directory.
 * Only values returned by rst_telldir should be passed to rst_seekdir.
 * This routine handles many directories in a single file.
 * It takes the base of the directory in the file, plus
 * the desired seek offset into it.
 */
static void
rst_seekdir(RST_DIR *dirp, long loc, long base)
{

	if (loc == rst_telldir(dirp))
		return;
	loc -= base;
	if (loc < 0)
		fprintf(stderr, "bad seek pointer to rst_seekdir %ld\n", loc);
	(void) lseek(dirp->dd_fd, base + rounddown2(loc, DIRBLKSIZ), SEEK_SET);
	dirp->dd_loc = loc & (DIRBLKSIZ - 1);
	if (dirp->dd_loc != 0)
		dirp->dd_size = read(dirp->dd_fd, dirp->dd_buf, DIRBLKSIZ);
}
コード例 #6
0
ファイル: cxgbei.c プロジェクト: 2trill2spill/freebsd
static void
read_pdu_limits(struct adapter *sc, uint32_t *max_tx_pdu_len,
    uint32_t *max_rx_pdu_len)
{
	uint32_t tx_len, rx_len, r, v;

	rx_len = t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE);
	tx_len = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);

	r = t4_read_reg(sc, A_TP_PARA_REG2);
	rx_len = min(rx_len, G_MAXRXDATA(r));
	tx_len = min(tx_len, G_MAXRXDATA(r));

	r = t4_read_reg(sc, A_TP_PARA_REG7);
	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
	rx_len = min(rx_len, v);
	tx_len = min(tx_len, v);

	/* Remove after FW_FLOWC_MNEM_TXDATAPLEN_MAX fix in firmware. */
	tx_len = min(tx_len, 3 * 4096);

	*max_tx_pdu_len = rounddown2(tx_len, 512);
	*max_rx_pdu_len = rounddown2(rx_len, 512);
}
コード例 #7
0
ファイル: gelidev.c プロジェクト: FreeBSDFoundation/freebsd
static int
geli_dev_strategy(void *devdata, int rw, daddr_t blk, size_t size, char *buf,
    size_t *rsize)
{
	struct geli_devdesc *gdesc;
	off_t alnend, alnstart, reqend, reqstart;
	size_t alnsize;
	char *iobuf;
	int rc;

	/* We only handle reading; no write support. */
	if ((rw & F_MASK) != F_READ)
		return (EOPNOTSUPP);

	gdesc = (struct geli_devdesc *)devdata;

	/*
	 * We can only decrypt full geli blocks.  The blk arg is expressed in
	 * units of DEV_BSIZE blocks, while size is in bytes.  Convert
	 * everything to bytes, and calculate the geli-blocksize-aligned start
	 * and end points.
	 *
	 * Note: md_sectorsize must be cast to a signed type for the round2
	 * macros to work correctly (otherwise they get zero-extended to 64 bits
	 * and mask off the high order 32 bits of the requested start/end).
	 */

	reqstart = blk * DEV_BSIZE;
	reqend   = reqstart + size;
	alnstart = rounddown2(reqstart, (int)gdesc->gdev->md.md_sectorsize);
	alnend   = roundup2(reqend, (int)gdesc->gdev->md.md_sectorsize);
	alnsize  = alnend - alnstart;

	/*
	 * If alignment requires us to read more than the size of the provided
	 * buffer, allocate a temporary buffer.
	 */
	if (alnsize <= size)
		iobuf = buf;
	else if ((iobuf = malloc(alnsize)) == NULL)
		return (ENOMEM);

	/*
	 * Read the encrypted data using the host provider, then decrypt it.
	 */
	rc = gdesc->hdesc->dd.d_dev->dv_strategy(gdesc->hdesc, rw,
	    alnstart / DEV_BSIZE, alnsize, iobuf, NULL);
	if (rc != 0)
		goto out;
	rc = geli_read(gdesc->gdev, alnstart, iobuf, alnsize);
	if (rc != 0)
		goto out;

	/*
	 * If we had to use a temporary buffer, copy the requested part of the
	 * data to the caller's buffer.
	 */
	if (iobuf != buf)
		memcpy(buf, iobuf + (reqstart - alnstart), size);

	if (rsize != NULL)
		*rsize = size;
out:
	if (iobuf != buf)
		free(iobuf);

	return (rc);
}
コード例 #8
0
ファイル: avila_machdep.c プロジェクト: LynYang/freebsd
void *
initarm(struct arm_boot_params *abp)
{
#define	next_chunk2(a,b)	(((a) + (b)) &~ ((b)-1))
#define	next_page(a)		next_chunk2(a,PAGE_SIZE)
	struct pv_addr  kernel_l1pt;
	struct pv_addr  dpcpu;
	int loop, i;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t freemem_pt;
	vm_offset_t afterkern;
	vm_offset_t freemem_after;
	vm_offset_t lastaddr;
	uint32_t memsize;

	/* kernel text starts where we were loaded at boot */
#define	KERNEL_TEXT_OFF		(abp->abp_physaddr  - PHYSADDR)
#define	KERNEL_TEXT_BASE	(KERNBASE + KERNEL_TEXT_OFF)
#define	KERNEL_TEXT_PHYS	(PHYSADDR + KERNEL_TEXT_OFF)

	lastaddr = parse_boot_param(abp);
	arm_physmem_kernaddr = abp->abp_physaddr;
	set_cpufuncs();		/* NB: sets cputype */
	pcpu_init(pcpup, 0, sizeof(struct pcpu));
	PCPU_SET(curthread, &thread0);

	init_static_kenv(NULL, 0);

	/* Do basic tuning, hz etc */
      	init_param1();
		
	/*
	 * We allocate memory downwards from where we were loaded
	 * by RedBoot; first the L1 page table, then NUM_KERNEL_PTS
	 * entries in the L2 page table.  Past that we re-align the
	 * allocation boundary so later data structures (stacks, etc)
	 * can be mapped with different attributes (write-back vs
	 * write-through).  Note this leaves a gap for expansion
	 * (or might be repurposed).
	 */
	freemempos = abp->abp_physaddr;

	/* macros to simplify initial memory allocation */
#define alloc_pages(var, np) do {					\
	freemempos -= (np * PAGE_SIZE);					\
	(var) = freemempos;						\
	/* NB: this works because locore maps PA=VA */			\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));			\
} while (0)
#define	valloc_pages(var, np) do {					\
	alloc_pages((var).pv_pa, (np));					\
	(var).pv_va = (var).pv_pa + (KERNVIRTADDR - abp->abp_physaddr);	\
} while (0)

	/* force L1 page table alignment */
	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos -= PAGE_SIZE;
	/* allocate contiguous L1 page table */
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	/* now allocate L2 page tables; they are linked to L1 below */
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_pa = freemempos +
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_va =
			    kernel_pt_table[loop].pv_pa +
				(KERNVIRTADDR - abp->abp_physaddr);
		}
	}
	freemem_pt = freemempos;		/* base of allocated pt's */

	/*
	 * Re-align allocation boundary so we can map the area
	 * write-back instead of write-through for the stacks and
	 * related structures allocated below.
	 */
	freemempos = PHYSADDR + 0x100000;
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate dynamic per-cpu area. */
	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
	dpcpu_init((void *)dpcpu.pv_va, 0);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, kstack_pages);
	alloc_pages(minidataclean.pv_pa, 1);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);

	/*
	 * Now construct the L1 page table.  First map the L2
	 * page tables into the L1 so we can replace L1 mappings
	 * later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, rounddown2(ARM_VECTORS_HIGH, 0x00100000),
	    &kernel_pt_table[KERNEL_PT_SYS]);
	pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO]);
	pmap_link_l2pt(l1pagetable, IXP425_MCU_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 1]);
	pmap_link_l2pt(l1pagetable, IXP425_PCI_MEM_VBASE,
	    &kernel_pt_table[KERNEL_PT_IO + 2]);
	pmap_link_l2pt(l1pagetable, KERNBASE,
	    &kernel_pt_table[KERNEL_PT_BEFOREKERN]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, 0x100000,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, KERNBASE + 0x100000, PHYSADDR + 0x100000,
	    0x100000, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_PHYS,
	    next_chunk2(((uint32_t)lastaddr) - KERNEL_TEXT_BASE, L1_S_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	freemem_after = next_page((int)lastaddr);
	afterkern = round_page(next_chunk2((vm_offset_t)lastaddr, L1_S_SIZE));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}
	pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, afterkern,
	    minidataclean.pv_pa);

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	if (cpu_is_ixp43x())
		arm_devmap_bootstrap(l1pagetable, ixp435_devmap);
	else
		arm_devmap_bootstrap(l1pagetable, ixp425_devmap);
	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	cpu_setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in cpu_setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross relocations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();
	cpu_setup();

	/* ready to setup the console (XXX move earlier if possible) */
	cninit();
	/*
	 * Fetch the RAM size from the MCU registers.  The
	 * expansion bus was mapped above so we can now read 'em.
	 */
	if (cpu_is_ixp43x())
		memsize = ixp435_ddram_size();
	else
		memsize = ixp425_sdram_size();

	undefined_init();

	init_proc0(kernelstack.pv_va);

	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + PAGE_SIZE;
	vm_max_kernel_address = 0xe0000000;
	pmap_bootstrap(pmap_curmaxkvaddr, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	/*
	 * Add the physical ram we have available.
	 *
	 * Exclude the kernel, and all the things we allocated which immediately
	 * follow the kernel, from the VM allocation pool but not from crash
	 * dumps.  virtual_avail is a global variable which tracks the kva we've
	 * "allocated" while setting up pmaps.
	 *
	 * Prepare the list of physical memory available to the vm subsystem.
	 */
	arm_physmem_hardware_region(PHYSADDR, memsize);
	arm_physmem_exclude_region(freemem_pt, abp->abp_physaddr -
	    freemem_pt, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(freemempos, abp->abp_physaddr - 0x100000 -
	    freemempos, EXFLAG_NOALLOC);
	arm_physmem_exclude_region(abp->abp_physaddr, 
	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
	arm_physmem_init_kernel_globals();

	init_param2(physmem);
	kdb_init();

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
#undef next_page
#undef next_chunk2
}
コード例 #9
0
/*------------------------------------------------------------------------*
 *	usb_pc_common_mem_cb - BUS-DMA callback function
 *------------------------------------------------------------------------*/
static void
usb_pc_common_mem_cb(void *arg, bus_dma_segment_t *segs,
    int nseg, int error, uint8_t isload)
{
	struct usb_dma_parent_tag *uptag;
	struct usb_page_cache *pc;
	struct usb_page *pg;
	usb_size_t rem;
	bus_size_t off;
	uint8_t owned;

	pc = arg;
	uptag = pc->tag_parent;

	/*
	 * XXX There is sometimes recursive locking here.
	 * XXX We should try to find a better solution.
	 * XXX Until further the "owned" variable does
	 * XXX the trick.
	 */

	if (error) {
		goto done;
	}

	off = 0;
	pg = pc->page_start;
	pg->physaddr = rounddown2(segs->ds_addr, USB_PAGE_SIZE);
	rem = segs->ds_addr & (USB_PAGE_SIZE - 1);
	pc->page_offset_buf = rem;
	pc->page_offset_end += rem;
#ifdef USB_DEBUG
	if (nseg > 1) {
		int x;

		for (x = 0; x != nseg - 1; x++) {
			if (((segs[x].ds_addr + segs[x].ds_len) & (USB_PAGE_SIZE - 1)) ==
			    ((segs[x + 1].ds_addr & (USB_PAGE_SIZE - 1))))
				continue;
			/*
			 * This check verifies there is no page offset
			 * hole between any of the segments. See the
			 * BUS_DMA_KEEP_PG_OFFSET flag.
			 */
			DPRINTFN(0, "Page offset was not preserved\n");
			error = 1;
			goto done;
		}
	}
#endif
	while (pc->ismultiseg) {
		off += USB_PAGE_SIZE;
		if (off >= (segs->ds_len + rem)) {
			/* page crossing */
			nseg--;
			segs++;
			off = 0;
			rem = 0;
			if (nseg == 0)
				break;
		}
		pg++;
		pg->physaddr = rounddown2(segs->ds_addr + off, USB_PAGE_SIZE);
	}

done:
	owned = mtx_owned(uptag->mtx);
	if (!owned)
		mtx_lock(uptag->mtx);

	uptag->dma_error = (error ? 1 : 0);
	if (isload) {
		(uptag->func) (uptag);
	} else {
		cv_broadcast(uptag->cv);
	}
	if (!owned)
		mtx_unlock(uptag->mtx);
}
コード例 #10
0
ファイル: copy.c プロジェクト: illumos/illumos-gate
/*
 * This is called for every object loaded (kernel, module, dtb file, etc).  The
 * expected return value is the next address at or after the given addr which is
 * appropriate for loading the given object described by type and data.  On each
 * call the addr is the next address following the previously loaded object.
 *
 * The first call is for loading the kernel, and the addr argument will be zero,
 * and we search for a big block of ram to load the kernel and modules.
 *
 * On subsequent calls the addr will be non-zero, and we just round it up so
 * that each object begins on a page boundary.
 */
uint64_t
uboot_loadaddr(uint_t type, void *data, uint64_t addr)
{
	struct sys_info *si;
	uint64_t sblock, eblock, subldr, eubldr;
	uint64_t biggest_block, this_block;
	uint64_t biggest_size, this_size;
	int i;
	char *envstr;

	if (addr == 0) {
		/*
		 * If the loader_kernaddr environment variable is set, blindly
		 * honor it.  It had better be right.  We force interpretation
		 * of the value in base-16 regardless of any leading 0x prefix,
		 * because that's the U-Boot convention.
		 */
		envstr = ub_env_get("loader_kernaddr");
		if (envstr != NULL)
			return (strtoul(envstr, NULL, 16));

		/*
		 *  Find addr/size of largest DRAM block.  Carve our own address
		 *  range out of the block, because loading the kernel over the
		 *  top ourself is a poor memory-conservation strategy. Avoid
		 *  memory at beginning of the first block of physical ram,
		 *  since u-boot likes to pass args and data there.  Assume that
		 *  u-boot has moved itself to the very top of ram and
		 *  optimistically assume that we won't run into it up there.
		 */
		if ((si = ub_get_sys_info()) == NULL)
			panic("could not retrieve system info");

		biggest_block = 0;
		biggest_size = 0;
		subldr = rounddown2((uintptr_t)_start, KERN_ALIGN);
		eubldr = roundup2((uint64_t)uboot_heap_end, KERN_ALIGN);
		for (i = 0; i < si->mr_no; i++) {
			if (si->mr[i].flags != MR_ATTR_DRAM)
				continue;
			sblock = roundup2((uint64_t)si->mr[i].start,
			    KERN_ALIGN);
			eblock = rounddown2((uint64_t)si->mr[i].start +
			    si->mr[i].size, KERN_ALIGN);
			if (biggest_size == 0)
				sblock += KERN_MINADDR;
			if (subldr >= sblock && subldr < eblock) {
				if (subldr - sblock > eblock - eubldr) {
					this_block = sblock;
					this_size  = subldr - sblock;
				} else {
					this_block = eubldr;
					this_size = eblock - eubldr;
				}
			} else if (subldr < sblock && eubldr < eblock) {
				/* Loader is below or engulfs the sblock */
				this_block = (eubldr < sblock) ?
				    sblock : eubldr;
				this_size = eblock - this_block;
			} else {
				this_block = 0;
				this_size = 0;
			}
			if (biggest_size < this_size) {
				biggest_block = this_block;
				biggest_size  = this_size;
			}
		}
		if (biggest_size == 0)
			panic("Not enough DRAM to load kernel");
#if 0
		printf("Loading kernel into region 0x%08jx-0x%08jx (%ju MiB)\n",
		    (uintmax_t)biggest_block,
		    (uintmax_t)biggest_block + biggest_size - 1,
		    (uintmax_t)biggest_size / 1024 / 1024);
#endif
		return (biggest_block);
	}
	return (roundup2(addr, PAGE_SIZE));
}
コード例 #11
0
ファイル: adb_mouse.c プロジェクト: 2asoft/freebsd
static u_int 
adb_mouse_receive_packet(device_t dev, u_char status, u_char command, 
    u_char reg, int len, u_char *data) 
{
	struct adb_mouse_softc *sc;
	int i = 0;
	int xdelta, ydelta;
	int buttons, tmp_buttons;

	sc = device_get_softc(dev);

	if (command != ADB_COMMAND_TALK || reg != 0 || len < 2)
		return (0);

	ydelta = data[0] & 0x7f;
	xdelta = data[1] & 0x7f;

	buttons = 0;
	buttons |= !(data[0] & 0x80);
	buttons |= !(data[1] & 0x80) << 1;

	if (sc->flags & AMS_EXTENDED) {
		for (i = 2; i < len && i < 5; i++) {
			xdelta |= (data[i] & 0x07) << (3*i + 1);
			ydelta |= (data[i] & 0x70) << (3*i - 3);

			buttons |= !(data[i] & 0x08) << (2*i - 2);
			buttons |= !(data[i] & 0x80) << (2*i - 1);
		}
	} else {
		len = 2; /* Ignore extra data */
	}

	/* Do sign extension as necessary */
	if (xdelta & (0x40 << 3*(len-2)))
		xdelta |= 0xffffffc0 << 3*(len - 2);
	if (ydelta & (0x40 << 3*(len-2)))
		ydelta |= 0xffffffc0 << 3*(len - 2);

	if ((sc->flags & AMS_TOUCHPAD) && (sc->sc_tapping == 1)) {
		tmp_buttons = buttons;
		if (buttons == 0x12) {
			/* Map a double tap on button 3.
			   Keep the button state for the next sequence.
			   A double tap sequence is followed by a single tap
			   sequence.
			*/
			tmp_buttons = 0x3;
			sc->button_buf = tmp_buttons;
		} else if (buttons == 0x2) {
			/* Map a single tap on button 2. But only if it is
			   not a successor from a double tap.
			*/
			if (sc->button_buf != 0x3) 
				tmp_buttons = 0x2;
			else
				tmp_buttons = 0;

			sc->button_buf = 0;
		}
		buttons = tmp_buttons;
	}

	/*
	 * Some mice report high-numbered buttons on the wrong button number,
	 * so set the highest-numbered real button as pressed if there are
	 * mysterious high-numbered ones set.
	 *
	 * Don't do this for touchpads, because touchpads also trigger
	 * high button events when they are touched.
	 */

	if (rounddown2(buttons, 1 << sc->hw.buttons)
	    && !(sc->flags & AMS_TOUCHPAD)) {
		buttons |= 1 << (sc->hw.buttons - 1);
	}
	buttons &= (1 << sc->hw.buttons) - 1;

	mtx_lock(&sc->sc_mtx);

	/* Add in our new deltas, and take into account
	   Apple's opposite meaning for Y axis motion */

	sc->xdelta += xdelta;
	sc->ydelta -= ydelta;

	sc->buttons = buttons;

	mtx_unlock(&sc->sc_mtx);

	cv_broadcast(&sc->sc_cv);
	selwakeuppri(&sc->rsel, PZERO);

	return (0);
}
コード例 #12
0
ファイル: pci_passthru.c プロジェクト: ChristosKa/freebsd
static int
init_msix_table(struct vmctx *ctx, struct passthru_softc *sc, uint64_t base)
{
	int b, s, f;
	int error, idx;
	size_t len, remaining;
	uint32_t table_size, table_offset;
	uint32_t pba_size, pba_offset;
	vm_paddr_t start;
	struct pci_devinst *pi = sc->psc_pi;

	assert(pci_msix_table_bar(pi) >= 0 && pci_msix_pba_bar(pi) >= 0);

	b = sc->psc_sel.pc_bus;
	s = sc->psc_sel.pc_dev;
	f = sc->psc_sel.pc_func;

	/* 
	 * If the MSI-X table BAR maps memory intended for
	 * other uses, it is at least assured that the table 
	 * either resides in its own page within the region, 
	 * or it resides in a page shared with only the PBA.
	 */
	table_offset = rounddown2(pi->pi_msix.table_offset, 4096);

	table_size = pi->pi_msix.table_offset - table_offset;
	table_size += pi->pi_msix.table_count * MSIX_TABLE_ENTRY_SIZE;
	table_size = roundup2(table_size, 4096);

	if (pi->pi_msix.pba_bar == pi->pi_msix.table_bar) {
		pba_offset = pi->pi_msix.pba_offset;
		pba_size = pi->pi_msix.pba_size;
		if (pba_offset >= table_offset + table_size ||
		    table_offset >= pba_offset + pba_size) {
			/*
			 * The PBA can reside in the same BAR as the MSI-x
			 * tables as long as it does not overlap with any
			 * naturally aligned page occupied by the tables.
			 */
		} else {
			/* Need to also emulate the PBA, not supported yet */
			printf("Unsupported MSI-X configuration: %d/%d/%d\n",
		            b, s, f);
			return (-1);
		}
	}

	idx = pi->pi_msix.table_bar;
	start = pi->pi_bar[idx].addr;
	remaining = pi->pi_bar[idx].size;

	/* Map everything before the MSI-X table */
	if (table_offset > 0) {
		len = table_offset;
		error = vm_map_pptdev_mmio(ctx, b, s, f, start, len, base);
		if (error)
			return (error);

		base += len;
		start += len;
		remaining -= len;
	}

	/* Skip the MSI-X table */
	base += table_size;
	start += table_size;
	remaining -= table_size;

	/* Map everything beyond the end of the MSI-X table */
	if (remaining > 0) {
		len = remaining;
		error = vm_map_pptdev_mmio(ctx, b, s, f, start, len, base);
		if (error)
			return (error);
	}

	return (0);
}