int rtas_set_rtc_time(struct rtc_time *tm) { int error, wait_time; u64 max_wait_tb; max_wait_tb = get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; do { error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, 0); wait_time = rtas_busy_delay_time(error); if (wait_time) { if (in_interrupt()) return 1; /* */ msleep(wait_time); } } while (wait_time && (get_tb() < max_wait_tb)); if (error != 0) printk_ratelimited(KERN_WARNING "error: setting the clock failed (%d)\n", error); return 0; }
unsigned long __init rtas_get_boot_time(void) { int ret[8]; int error; unsigned int wait_time; u64 max_wait_tb; max_wait_tb = get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; do { error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); wait_time = rtas_busy_delay_time(error); if (wait_time) { /* */ udelay(wait_time*1000); } } while (wait_time && (get_tb() < max_wait_tb)); if (error != 0) { printk_ratelimited(KERN_WARNING "error: reading the clock failed (%d)\n", error); return 0; } return mktime(ret[0], ret[1], ret[2], ret[3], ret[4], ret[5]); }
/* For an RTAS busy status code, perform the hinted delay. */ unsigned int rtas_busy_delay(int status) { unsigned int ms; might_sleep(); ms = rtas_busy_delay_time(status); if (ms && need_resched()) msleep(ms); return ms; }
void rtas_get_rtc_time(struct rtc_time *rtc_tm) { int ret[8]; int error; unsigned int wait_time; u64 max_wait_tb; max_wait_tb = get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT; do { error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); wait_time = rtas_busy_delay_time(error); if (wait_time) { if (in_interrupt()) { memset(rtc_tm, 0, sizeof(struct rtc_time)); printk_ratelimited(KERN_WARNING "error: reading clock " "would delay interrupt\n"); return; /* */ } msleep(wait_time); } } while (wait_time && (get_tb() < max_wait_tb)); if (error != 0) { printk_ratelimited(KERN_WARNING "error: reading the clock failed (%d)\n", error); return; } rtc_tm->tm_sec = ret[5]; rtc_tm->tm_min = ret[4]; rtc_tm->tm_hour = ret[3]; rtc_tm->tm_mday = ret[2]; rtc_tm->tm_mon = ret[1] - 1; rtc_tm->tm_year = ret[0] - 1900; }
static ssize_t scanlog_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned int *data = scanlog_buffer; int status; unsigned long len, off; unsigned int wait_time; if (count > RTAS_DATA_BUF_SIZE) count = RTAS_DATA_BUF_SIZE; if (count < 1024) { /* This is the min supported by this RTAS call. Rather * than do all the buffering we insist the user code handle * larger reads. As long as cp works... :) */ printk(KERN_ERR "scanlog: cannot perform a small read (%ld)\n", count); return -EINVAL; } if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; for (;;) { wait_time = 500; /* default wait if no data */ spin_lock(&rtas_data_buf_lock); memcpy(rtas_data_buf, data, RTAS_DATA_BUF_SIZE); status = rtas_call(ibm_scan_log_dump, 2, 1, NULL, (u32) __pa(rtas_data_buf), (u32) count); memcpy(data, rtas_data_buf, RTAS_DATA_BUF_SIZE); spin_unlock(&rtas_data_buf_lock); pr_debug("scanlog: status=%d, data[0]=%x, data[1]=%x, " \ "data[2]=%x\n", status, data[0], data[1], data[2]); switch (status) { case SCANLOG_COMPLETE: pr_debug("scanlog: hit eof\n"); return 0; case SCANLOG_HWERROR: pr_debug("scanlog: hardware error reading data\n"); return -EIO; case SCANLOG_CONTINUE: /* We may or may not have data yet */ len = data[1]; off = data[2]; if (len > 0) { if (copy_to_user(buf, ((char *)data)+off, len)) return -EFAULT; return len; } /* Break to sleep default time */ break; default: /* Assume extended busy */ wait_time = rtas_busy_delay_time(status); if (!wait_time) { printk(KERN_ERR "scanlog: unknown error " \ "from rtas: %d\n", status); return -EIO; } } /* Apparently no data yet. Wait and try again. */ msleep_interruptible(wait_time); } /*NOTREACHED*/ }