コード例 #1
0
ファイル: c6.cpp プロジェクト: zeplin00/code-monkey-1
main(int argc, char **argv, char **envp)
{

  Array_stack s_ref(10);
  
  use_gstack(&s_ref);

  exit (0);

}
コード例 #2
0
/* Subroutine */ int stgex2_(logical *wantq, logical *wantz, integer *n, real 
	*a, integer *lda, real *b, integer *ldb, real *q, integer *ldq, real *
	z__, integer *ldz, integer *j1, integer *n1, integer *n2, real *work, 
	integer *lwork, integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)   
    of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair   
    (A, B) by an orthogonal equivalence transformation.   

    (A, B) must be in generalized real Schur canonical form (as returned   
    by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2   
    diagonal blocks. B is upper triangular.   

    Optionally, the matrices Q and Z of generalized Schur vectors are   
    updated.   

           Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'   
           Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'   


    Arguments   
    =========   

    WANTQ   (input) LOGICAL   
            .TRUE. : update the left transformation matrix Q;   
            .FALSE.: do not update Q.   

    WANTZ   (input) LOGICAL   
            .TRUE. : update the right transformation matrix Z;   
            .FALSE.: do not update Z.   

    N       (input) INTEGER   
            The order of the matrices A and B. N >= 0.   

    A      (input/output) REAL arrays, dimensions (LDA,N)   
            On entry, the matrix A in the pair (A, B).   
            On exit, the updated matrix A.   

    LDA     (input)  INTEGER   
            The leading dimension of the array A. LDA >= max(1,N).   

    B      (input/output) REAL arrays, dimensions (LDB,N)   
            On entry, the matrix B in the pair (A, B).   
            On exit, the updated matrix B.   

    LDB     (input)  INTEGER   
            The leading dimension of the array B. LDB >= max(1,N).   

    Q       (input/output) REAL array, dimension (LDZ,N)   
            On entry, if WANTQ = .TRUE., the orthogonal matrix Q.   
            On exit, the updated matrix Q.   
            Not referenced if WANTQ = .FALSE..   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q. LDQ >= 1.   
            If WANTQ = .TRUE., LDQ >= N.   

    Z       (input/output) REAL array, dimension (LDZ,N)   
            On entry, if WANTZ =.TRUE., the orthogonal matrix Z.   
            On exit, the updated matrix Z.   
            Not referenced if WANTZ = .FALSE..   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z. LDZ >= 1.   
            If WANTZ = .TRUE., LDZ >= N.   

    J1      (input) INTEGER   
            The index to the first block (A11, B11). 1 <= J1 <= N.   

    N1      (input) INTEGER   
            The order of the first block (A11, B11). N1 = 0, 1 or 2.   

    N2      (input) INTEGER   
            The order of the second block (A22, B22). N2 = 0, 1 or 2.   

    WORK    (workspace) REAL array, dimension (LWORK).   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            LWORK >=  MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )   

    INFO    (output) INTEGER   
              =0: Successful exit   
              >0: If INFO = 1, the transformed matrix (A, B) would be   
                  too far from generalized Schur form; the blocks are   
                  not swapped and (A, B) and (Q, Z) are unchanged.   
                  The problem of swapping is too ill-conditioned.   
              <0: If INFO = -16: LWORK is too small. Appropriate value   
                  for LWORK is returned in WORK(1).   

    Further Details   
    ===============   

    Based on contributions by   
       Bo Kagstrom and Peter Poromaa, Department of Computing Science,   
       Umea University, S-901 87 Umea, Sweden.   

    In the current code both weak and strong stability tests are   
    performed. The user can omit the strong stability test by changing   
    the internal logical parameter WANDS to .FALSE.. See ref. [2] for   
    details.   

    [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the   
        Generalized Real Schur Form of a Regular Matrix Pair (A, B), in   
        M.S. Moonen et al (eds), Linear Algebra for Large Scale and   
        Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.   

    [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified   
        Eigenvalues of a Regular Matrix Pair (A, B) and Condition   
        Estimation: Theory, Algorithms and Software,   
        Report UMINF - 94.04, Department of Computing Science, Umea   
        University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working   
        Note 87. To appear in Numerical Algorithms, 1996.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__16 = 16;
    static real c_b3 = 0.f;
    static integer c__0 = 0;
    static integer c__1 = 1;
    static integer c__4 = 4;
    static integer c__2 = 2;
    static real c_b38 = 1.f;
    static real c_b44 = -1.f;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static logical weak;
    static real ddum;
    static integer idum;
    static real taul[4], dsum, taur[4], scpy[16]	/* was [4][4] */, 
	    tcpy[16]	/* was [4][4] */;
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
	    integer *, real *, real *);
    static real f, g;
    static integer i__, m;
    static real s[16]	/* was [4][4] */, t[16]	/* was [4][4] */, scale, 
	    bqra21, brqa21;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static real licop[16]	/* was [4][4] */;
    static integer linfo;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static real ircop[16]	/* was [4][4] */, dnorm;
    static integer iwork[4];
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slagv2_(real *, integer *, real *, integer *, real *, 
	    real *, real *, real *, real *, real *, real *), sgeqr2_(integer *
	    , integer *, real *, integer *, real *, real *, integer *), 
	    sgerq2_(integer *, integer *, real *, integer *, real *, real *, 
	    integer *);
    static real be[2], ai[2];
    extern /* Subroutine */ int sorg2r_(integer *, integer *, integer *, real 
	    *, integer *, real *, real *, integer *), sorgr2_(integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    );
    static real ar[2], sa, sb, li[16]	/* was [4][4] */;
    extern /* Subroutine */ int sorm2r_(char *, char *, integer *, integer *, 
	    integer *, real *, integer *, real *, real *, integer *, real *, 
	    integer *), sormr2_(char *, char *, integer *, 
	    integer *, integer *, real *, integer *, real *, real *, integer *
	    , real *, integer *);
    static real dscale, ir[16]	/* was [4][4] */;
    extern /* Subroutine */ int stgsy2_(char *, integer *, integer *, integer 
	    *, real *, integer *, real *, integer *, real *, integer *, real *
	    , integer *, real *, integer *, real *, integer *, real *, real *,
	     real *, integer *, integer *, integer *);
    static real ss;
    extern doublereal slamch_(char *);
    static real ws;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *), slartg_(real *, real *, 
	    real *, real *, real *);
    static real thresh;
    extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, 
	    real *);
    static real smlnum;
    static logical strong;
    static real eps;
#define scpy_ref(a_1,a_2) scpy[(a_2)*4 + a_1 - 5]
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*4 + a_1 - 5]
#define t_ref(a_1,a_2) t[(a_2)*4 + a_1 - 5]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
#define li_ref(a_1,a_2) li[(a_2)*4 + a_1 - 5]
#define ir_ref(a_1,a_2) ir[(a_2)*4 + a_1 - 5]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    *info = 0;

/*     Quick return if possible */

    if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
	return 0;
    }
    if (*n1 > *n || *j1 + *n1 > *n) {
	return 0;
    }
    m = *n1 + *n2;
/* Computing MAX */
    i__1 = *n * m, i__2 = m * m << 1;
    if (*lwork < max(i__1,i__2)) {
	*info = -16;
/* Computing MAX */
	i__1 = *n * m, i__2 = m * m << 1;
	work[1] = (real) max(i__1,i__2);
	return 0;
    }

    weak = FALSE_;
    strong = FALSE_;

/*     Make a local copy of selected block */

    scopy_(&c__16, &c_b3, &c__0, li, &c__1);
    scopy_(&c__16, &c_b3, &c__0, ir, &c__1);
    slacpy_("Full", &m, &m, &a_ref(*j1, *j1), lda, s, &c__4);
    slacpy_("Full", &m, &m, &b_ref(*j1, *j1), ldb, t, &c__4);

/*     Compute threshold for testing acceptance of swapping. */

    eps = slamch_("P");
    smlnum = slamch_("S") / eps;
    dscale = 0.f;
    dsum = 1.f;
    slacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
    i__1 = m * m;
    slassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
    slacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
    i__1 = m * m;
    slassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
    dnorm = dscale * sqrt(dsum);
/* Computing MAX */
    r__1 = eps * 10.f * dnorm;
    thresh = dmax(r__1,smlnum);

    if (m == 2) {

/*        CASE 1: Swap 1-by-1 and 1-by-1 blocks.   

          Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks   
          using Givens rotations and perform the swap tentatively. */

	f = s_ref(2, 2) * t_ref(1, 1) - t_ref(2, 2) * s_ref(1, 1);
	g = s_ref(2, 2) * t_ref(1, 2) - t_ref(2, 2) * s_ref(1, 2);
	sb = (r__1 = t_ref(2, 2), dabs(r__1));
	sa = (r__1 = s_ref(2, 2), dabs(r__1));
	slartg_(&f, &g, &ir_ref(1, 2), &ir_ref(1, 1), &ddum);
	ir_ref(2, 1) = -ir_ref(1, 2);
	ir_ref(2, 2) = ir_ref(1, 1);
	srot_(&c__2, &s_ref(1, 1), &c__1, &s_ref(1, 2), &c__1, &ir_ref(1, 1), 
		&ir_ref(2, 1));
	srot_(&c__2, &t_ref(1, 1), &c__1, &t_ref(1, 2), &c__1, &ir_ref(1, 1), 
		&ir_ref(2, 1));
	if (sa >= sb) {
	    slartg_(&s_ref(1, 1), &s_ref(2, 1), &li_ref(1, 1), &li_ref(2, 1), 
		    &ddum);
	} else {
	    slartg_(&t_ref(1, 1), &t_ref(2, 1), &li_ref(1, 1), &li_ref(2, 1), 
		    &ddum);
	}
	srot_(&c__2, &s_ref(1, 1), &c__4, &s_ref(2, 1), &c__4, &li_ref(1, 1), 
		&li_ref(2, 1));
	srot_(&c__2, &t_ref(1, 1), &c__4, &t_ref(2, 1), &c__4, &li_ref(1, 1), 
		&li_ref(2, 1));
	li_ref(2, 2) = li_ref(1, 1);
	li_ref(1, 2) = -li_ref(2, 1);

/*        Weak stability test:   
             |S21| + |T21| <= O(EPS * F-norm((S, T))) */

	ws = (r__1 = s_ref(2, 1), dabs(r__1)) + (r__2 = t_ref(2, 1), dabs(
		r__2));
	weak = ws <= thresh;
	if (! weak) {
	    goto L70;
	}

	if (TRUE_) {

/*           Strong stability test:   
               F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B))) */

	    slacpy_("Full", &m, &m, &a_ref(*j1, *j1), lda, &work[m * m + 1], &
		    m);
	    sgemm_("N", "N", &m, &m, &m, &c_b38, li, &c__4, s, &c__4, &c_b3, &
		    work[1], &m);
	    sgemm_("N", "T", &m, &m, &m, &c_b44, &work[1], &m, ir, &c__4, &
		    c_b38, &work[m * m + 1], &m);
	    dscale = 0.f;
	    dsum = 1.f;
	    i__1 = m * m;
	    slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);

	    slacpy_("Full", &m, &m, &b_ref(*j1, *j1), ldb, &work[m * m + 1], &
		    m);
	    sgemm_("N", "N", &m, &m, &m, &c_b38, li, &c__4, t, &c__4, &c_b3, &
		    work[1], &m);
	    sgemm_("N", "T", &m, &m, &m, &c_b44, &work[1], &m, ir, &c__4, &
		    c_b38, &work[m * m + 1], &m);
	    i__1 = m * m;
	    slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
	    ss = dscale * sqrt(dsum);
	    strong = ss <= thresh;
	    if (! strong) {
		goto L70;
	    }
	}

/*        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and   
                 (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */

	i__1 = *j1 + 1;
	srot_(&i__1, &a_ref(1, *j1), &c__1, &a_ref(1, *j1 + 1), &c__1, &
		ir_ref(1, 1), &ir_ref(2, 1));
	i__1 = *j1 + 1;
	srot_(&i__1, &b_ref(1, *j1), &c__1, &b_ref(1, *j1 + 1), &c__1, &
		ir_ref(1, 1), &ir_ref(2, 1));
	i__1 = *n - *j1 + 1;
	srot_(&i__1, &a_ref(*j1, *j1), lda, &a_ref(*j1 + 1, *j1), lda, &
		li_ref(1, 1), &li_ref(2, 1));
	i__1 = *n - *j1 + 1;
	srot_(&i__1, &b_ref(*j1, *j1), ldb, &b_ref(*j1 + 1, *j1), ldb, &
		li_ref(1, 1), &li_ref(2, 1));

/*        Set  N1-by-N2 (2,1) - blocks to ZERO. */

	a_ref(*j1 + 1, *j1) = 0.f;
	b_ref(*j1 + 1, *j1) = 0.f;

/*        Accumulate transformations into Q and Z if requested. */

	if (*wantz) {
	    srot_(n, &z___ref(1, *j1), &c__1, &z___ref(1, *j1 + 1), &c__1, &
		    ir_ref(1, 1), &ir_ref(2, 1));
	}
	if (*wantq) {
	    srot_(n, &q_ref(1, *j1), &c__1, &q_ref(1, *j1 + 1), &c__1, &
		    li_ref(1, 1), &li_ref(2, 1));
	}

/*        Exit with INFO = 0 if swap was successfully performed. */

	return 0;

    } else {

/*        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2   
                  and 2-by-2 blocks.   

          Solve the generalized Sylvester equation   
                   S11 * R - L * S22 = SCALE * S12   
                   T11 * R - L * T22 = SCALE * T12   
          for R and L. Solutions in LI and IR. */

	slacpy_("Full", n1, n2, &t_ref(1, *n1 + 1), &c__4, li, &c__4);
	slacpy_("Full", n1, n2, &s_ref(1, *n1 + 1), &c__4, &ir_ref(*n2 + 1, *
		n1 + 1), &c__4);
	stgsy2_("N", &c__0, n1, n2, s, &c__4, &s_ref(*n1 + 1, *n1 + 1), &c__4,
		 &ir_ref(*n2 + 1, *n1 + 1), &c__4, t, &c__4, &t_ref(*n1 + 1, *
		n1 + 1), &c__4, li, &c__4, &scale, &dsum, &dscale, iwork, &
		idum, &linfo);

/*        Compute orthogonal matrix QL:   

                      QL' * LI = [ TL ]   
                                 [ 0  ]   
          where   
                      LI =  [      -L              ]   
                            [ SCALE * identity(N2) ] */

	i__1 = *n2;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    sscal_(n1, &c_b44, &li_ref(1, i__), &c__1);
	    li_ref(*n1 + i__, i__) = scale;
/* L10: */
	}
	sgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
	if (linfo != 0) {
	    goto L70;
	}
	sorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
	if (linfo != 0) {
	    goto L70;
	}

/*        Compute orthogonal matrix RQ:   

                      IR * RQ' =   [ 0  TR],   

           where IR = [ SCALE * identity(N1), R ] */

	i__1 = *n1;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    ir_ref(*n2 + i__, i__) = scale;
/* L20: */
	}
	sgerq2_(n1, &m, &ir_ref(*n2 + 1, 1), &c__4, taur, &work[1], &linfo);
	if (linfo != 0) {
	    goto L70;
	}
	sorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
	if (linfo != 0) {
	    goto L70;
	}

/*        Perform the swapping tentatively: */

	sgemm_("T", "N", &m, &m, &m, &c_b38, li, &c__4, s, &c__4, &c_b3, &
		work[1], &m);
	sgemm_("N", "T", &m, &m, &m, &c_b38, &work[1], &m, ir, &c__4, &c_b3, 
		s, &c__4);
	sgemm_("T", "N", &m, &m, &m, &c_b38, li, &c__4, t, &c__4, &c_b3, &
		work[1], &m);
	sgemm_("N", "T", &m, &m, &m, &c_b38, &work[1], &m, ir, &c__4, &c_b3, 
		t, &c__4);
	slacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
	slacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
	slacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
	slacpy_("F", &m, &m, li, &c__4, licop, &c__4);

/*        Triangularize the B-part by an RQ factorization.   
          Apply transformation (from left) to A-part, giving S. */

	sgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
	if (linfo != 0) {
	    goto L70;
	}
	sormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
		linfo);
	if (linfo != 0) {
	    goto L70;
	}
	sormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
		linfo);
	if (linfo != 0) {
	    goto L70;
	}

/*        Compute F-norm(S21) in BRQA21. (T21 is 0.) */

	dscale = 0.f;
	dsum = 1.f;
	i__1 = *n2;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    slassq_(n1, &s_ref(*n2 + 1, i__), &c__1, &dscale, &dsum);
/* L30: */
	}
	brqa21 = dscale * sqrt(dsum);

/*        Triangularize the B-part by a QR factorization.   
          Apply transformation (from right) to A-part, giving S. */

	sgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
	if (linfo != 0) {
	    goto L70;
	}
	sorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
		, info);
	sorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
		1], info);
	if (linfo != 0) {
	    goto L70;
	}

/*        Compute F-norm(S21) in BQRA21. (T21 is 0.) */

	dscale = 0.f;
	dsum = 1.f;
	i__1 = *n2;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    slassq_(n1, &scpy_ref(*n2 + 1, i__), &c__1, &dscale, &dsum);
/* L40: */
	}
	bqra21 = dscale * sqrt(dsum);

/*        Decide which method to use.   
            Weak stability test:   
               F-norm(S21) <= O(EPS * F-norm((S, T))) */

	if (bqra21 <= brqa21 && bqra21 <= thresh) {
	    slacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
	    slacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
	    slacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
	    slacpy_("F", &m, &m, licop, &c__4, li, &c__4);
	} else if (brqa21 >= thresh) {
	    goto L70;
	}

/*        Set lower triangle of B-part to zero */

	i__1 = m;
	for (i__ = 2; i__ <= i__1; ++i__) {
	    i__2 = m - i__ + 1;
	    scopy_(&i__2, &c_b3, &c__0, &t_ref(i__, i__ - 1), &c__1);
/* L50: */
	}

	if (TRUE_) {

/*           Strong stability test:   
                F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B))) */

	    slacpy_("Full", &m, &m, &a_ref(*j1, *j1), lda, &work[m * m + 1], &
		    m);
	    sgemm_("N", "N", &m, &m, &m, &c_b38, li, &c__4, s, &c__4, &c_b3, &
		    work[1], &m);
	    sgemm_("N", "N", &m, &m, &m, &c_b44, &work[1], &m, ir, &c__4, &
		    c_b38, &work[m * m + 1], &m);
	    dscale = 0.f;
	    dsum = 1.f;
	    i__1 = m * m;
	    slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);

	    slacpy_("Full", &m, &m, &b_ref(*j1, *j1), ldb, &work[m * m + 1], &
		    m);
	    sgemm_("N", "N", &m, &m, &m, &c_b38, li, &c__4, t, &c__4, &c_b3, &
		    work[1], &m);
	    sgemm_("N", "N", &m, &m, &m, &c_b44, &work[1], &m, ir, &c__4, &
		    c_b38, &work[m * m + 1], &m);
	    i__1 = m * m;
	    slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
	    ss = dscale * sqrt(dsum);
	    strong = ss <= thresh;
	    if (! strong) {
		goto L70;
	    }

	}

/*        If the swap is accepted ("weakly" and "strongly"), apply the   
          transformations and set N1-by-N2 (2,1)-block to zero. */

	i__1 = *n2;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    scopy_(n1, &c_b3, &c__0, &s_ref(*n2 + 1, i__), &c__1);
/* L60: */
	}

/*        copy back M-by-M diagonal block starting at index J1 of (A, B) */

	slacpy_("F", &m, &m, s, &c__4, &a_ref(*j1, *j1), lda);
	slacpy_("F", &m, &m, t, &c__4, &b_ref(*j1, *j1), ldb);
	scopy_(&c__16, &c_b3, &c__0, t, &c__1);

/*        Standardize existing 2-by-2 blocks. */

	i__1 = m * m;
	scopy_(&i__1, &c_b3, &c__0, &work[1], &c__1);
	work[1] = 1.f;
	t_ref(1, 1) = 1.f;
	idum = *lwork - m * m - 2;
	if (*n2 > 1) {
	    slagv2_(&a_ref(*j1, *j1), lda, &b_ref(*j1, *j1), ldb, ar, ai, be, 
		    &work[1], &work[2], &t_ref(1, 1), &t_ref(2, 1));
	    work[m + 1] = -work[2];
	    work[m + 2] = work[1];
	    t_ref(*n2, *n2) = t_ref(1, 1);
	    t_ref(1, 2) = -t_ref(2, 1);
	}
	work[m * m] = 1.f;
	t_ref(m, m) = 1.f;

	if (*n1 > 1) {
	    slagv2_(&a_ref(*j1 + *n2, *j1 + *n2), lda, &b_ref(*j1 + *n2, *j1 
		    + *n2), ldb, taur, taul, &work[m * m + 1], &work[*n2 * m 
		    + *n2 + 1], &work[*n2 * m + *n2 + 2], &t_ref(*n2 + 1, *n2 
		    + 1), &t_ref(m, m - 1));
	    work[m * m] = work[*n2 * m + *n2 + 1];
	    work[m * m - 1] = -work[*n2 * m + *n2 + 2];
	    t_ref(m, m) = t_ref(*n2 + 1, *n2 + 1);
	    t_ref(m - 1, m) = -t_ref(m, m - 1);
	}
	sgemm_("T", "N", n2, n1, n2, &c_b38, &work[1], &m, &a_ref(*j1, *j1 + *
		n2), lda, &c_b3, &work[m * m + 1], n2);
	slacpy_("Full", n2, n1, &work[m * m + 1], n2, &a_ref(*j1, *j1 + *n2), 
		lda);
	sgemm_("T", "N", n2, n1, n2, &c_b38, &work[1], &m, &b_ref(*j1, *j1 + *
		n2), ldb, &c_b3, &work[m * m + 1], n2);
	slacpy_("Full", n2, n1, &work[m * m + 1], n2, &b_ref(*j1, *j1 + *n2), 
		ldb);
	sgemm_("N", "N", &m, &m, &m, &c_b38, li, &c__4, &work[1], &m, &c_b3, &
		work[m * m + 1], &m);
	slacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
	sgemm_("N", "N", n2, n1, n1, &c_b38, &a_ref(*j1, *j1 + *n2), lda, &
		t_ref(*n2 + 1, *n2 + 1), &c__4, &c_b3, &work[1], n2);
	slacpy_("Full", n2, n1, &work[1], n2, &a_ref(*j1, *j1 + *n2), lda);
	sgemm_("N", "N", n2, n1, n1, &c_b38, &b_ref(*j1, *j1 + *n2), lda, &
		t_ref(*n2 + 1, *n2 + 1), &c__4, &c_b3, &work[1], n2);
	slacpy_("Full", n2, n1, &work[1], n2, &b_ref(*j1, *j1 + *n2), ldb);
	sgemm_("T", "N", &m, &m, &m, &c_b38, ir, &c__4, t, &c__4, &c_b3, &
		work[1], &m);
	slacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);

/*        Accumulate transformations into Q and Z if requested. */

	if (*wantq) {
	    sgemm_("N", "N", n, &m, &m, &c_b38, &q_ref(1, *j1), ldq, li, &
		    c__4, &c_b3, &work[1], n);
	    slacpy_("Full", n, &m, &work[1], n, &q_ref(1, *j1), ldq);

	}

	if (*wantz) {
	    sgemm_("N", "N", n, &m, &m, &c_b38, &z___ref(1, *j1), ldz, ir, &
		    c__4, &c_b3, &work[1], n);
	    slacpy_("Full", n, &m, &work[1], n, &z___ref(1, *j1), ldz);

	}

/*        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and   
                  (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */

	i__ = *j1 + m;
	if (i__ <= *n) {
	    i__1 = *n - i__ + 1;
	    sgemm_("T", "N", &m, &i__1, &m, &c_b38, li, &c__4, &a_ref(*j1, 
		    i__), lda, &c_b3, &work[1], &m);
	    i__1 = *n - i__ + 1;
	    slacpy_("Full", &m, &i__1, &work[1], &m, &a_ref(*j1, i__), lda);
	    i__1 = *n - i__ + 1;
	    sgemm_("T", "N", &m, &i__1, &m, &c_b38, li, &c__4, &b_ref(*j1, 
		    i__), lda, &c_b3, &work[1], &m);
	    i__1 = *n - i__ + 1;
	    slacpy_("Full", &m, &i__1, &work[1], &m, &b_ref(*j1, i__), lda);
	}
	i__ = *j1 - 1;
	if (i__ > 0) {
	    sgemm_("N", "N", &i__, &m, &m, &c_b38, &a_ref(1, *j1), lda, ir, &
		    c__4, &c_b3, &work[1], &i__);
	    slacpy_("Full", &i__, &m, &work[1], &i__, &a_ref(1, *j1), lda);
	    sgemm_("N", "N", &i__, &m, &m, &c_b38, &b_ref(1, *j1), ldb, ir, &
		    c__4, &c_b3, &work[1], &i__);
	    slacpy_("Full", &i__, &m, &work[1], &i__, &b_ref(1, *j1), ldb);
	}

/*        Exit with INFO = 0 if swap was successfully performed. */

	return 0;

    }

/*     Exit with INFO = 1 if swap was rejected. */

L70:

    *info = 1;
    return 0;

/*     End of STGEX2 */

} /* stgex2_ */
コード例 #3
0
/* Subroutine */ int dlaed9_(integer *k, integer *kstart, integer *kstop, 
	integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *
	rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds, 
	integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,   
       Courant Institute, NAG Ltd., and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DLAED9 finds the roots of the secular equation, as defined by the   
    values in D, Z, and RHO, between KSTART and KSTOP.  It makes the   
    appropriate calls to DLAED4 and then stores the new matrix of   
    eigenvectors for use in calculating the next level of Z vectors.   

    Arguments   
    =========   

    K       (input) INTEGER   
            The number of terms in the rational function to be solved by   
            DLAED4.  K >= 0.   

    KSTART  (input) INTEGER   
    KSTOP   (input) INTEGER   
            The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP   
            are to be computed.  1 <= KSTART <= KSTOP <= K.   

    N       (input) INTEGER   
            The number of rows and columns in the Q matrix.   
            N >= K (delation may result in N > K).   

    D       (output) DOUBLE PRECISION array, dimension (N)   
            D(I) contains the updated eigenvalues   
            for KSTART <= I <= KSTOP.   

    Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N)   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.  LDQ >= max( 1, N ).   

    RHO     (input) DOUBLE PRECISION   
            The value of the parameter in the rank one update equation.   
            RHO >= 0 required.   

    DLAMDA  (input) DOUBLE PRECISION array, dimension (K)   
            The first K elements of this array contain the old roots   
            of the deflated updating problem.  These are the poles   
            of the secular equation.   

    W       (input) DOUBLE PRECISION array, dimension (K)   
            The first K elements of this array contain the components   
            of the deflation-adjusted updating vector.   

    S       (output) DOUBLE PRECISION array, dimension (LDS, K)   
            Will contain the eigenvectors of the repaired matrix which   
            will be stored for subsequent Z vector calculation and   
            multiplied by the previously accumulated eigenvectors   
            to update the system.   

    LDS     (input) INTEGER   
            The leading dimension of S.  LDS >= max( 1, K ).   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = 1, an eigenvalue did not converge   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
    doublereal d__1;
    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);
    /* Local variables */
    static doublereal temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    static integer i__, j;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlaed4_(integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    extern doublereal dlamc3_(doublereal *, doublereal *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*s_dim1 + a_1]


    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --dlamda;
    --w;
    s_dim1 = *lds;
    s_offset = 1 + s_dim1 * 1;
    s -= s_offset;

    /* Function Body */
    *info = 0;

    if (*k < 0) {
	*info = -1;
    } else if (*kstart < 1 || *kstart > max(1,*k)) {
	*info = -2;
    } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
	*info = -3;
    } else if (*n < *k) {
	*info = -4;
    } else if (*ldq < max(1,*k)) {
	*info = -7;
    } else if (*lds < max(1,*k)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED9", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*k == 0) {
	return 0;
    }

/*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can   
       be computed with high relative accuracy (barring over/underflow).   
       This is a problem on machines without a guard digit in   
       add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).   
       The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),   
       which on any of these machines zeros out the bottommost   
       bit of DLAMDA(I) if it is 1; this makes the subsequent   
       subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation   
       occurs. On binary machines with a guard digit (almost all   
       machines) it does not change DLAMDA(I) at all. On hexadecimal   
       and decimal machines with a guard digit, it slightly   
       changes the bottommost bits of DLAMDA(I). It does not account   
       for hexadecimal or decimal machines without guard digits   
       (we know of none). We use a subroutine call to compute   
       2*DLAMBDA(I) to prevent optimizing compilers from eliminating   
       this code. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
/* L10: */
    }

    i__1 = *kstop;
    for (j = *kstart; j <= i__1; ++j) {
	dlaed4_(k, &j, &dlamda[1], &w[1], &q_ref(1, j), rho, &d__[j], info);

/*        If the zero finder fails, the computation is terminated. */

	if (*info != 0) {
	    goto L120;
	}
/* L20: */
    }

    if (*k == 1 || *k == 2) {
	i__1 = *k;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *k;
	    for (j = 1; j <= i__2; ++j) {
		s_ref(j, i__) = q_ref(j, i__);
/* L30: */
	    }
/* L40: */
	}
	goto L120;
    }

/*     Compute updated W. */

    dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);

/*     Initialize W(I) = Q(I,I) */

    i__1 = *ldq + 1;
    dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    w[i__] *= q_ref(i__, j) / (dlamda[i__] - dlamda[j]);
/* L50: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    w[i__] *= q_ref(i__, j) / (dlamda[i__] - dlamda[j]);
/* L60: */
	}
/* L70: */
    }
    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__1 = sqrt(-w[i__]);
	w[i__] = d_sign(&d__1, &s_ref(i__, 1));
/* L80: */
    }

/*     Compute eigenvectors of the modified rank-1 modification. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *k;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    q_ref(i__, j) = w[i__] / q_ref(i__, j);
/* L90: */
	}
	temp = dnrm2_(k, &q_ref(1, j), &c__1);
	i__2 = *k;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    s_ref(i__, j) = q_ref(i__, j) / temp;
/* L100: */
	}
/* L110: */
    }

L120:
    return 0;

/*     End of DLAED9 */

} /* dlaed9_ */
コード例 #4
0
ファイル: dhseqr.c プロジェクト: MichaelH13/sdkpub
/* Subroutine */ int dhseqr_(char *job, char *compz, integer *n, integer *ilo,
	 integer *ihi, doublereal *h__, integer *ldh, doublereal *wr, 
	doublereal *wi, doublereal *z__, integer *ldz, doublereal *work, 
	integer *lwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DHSEQR computes the eigenvalues of a real upper Hessenberg matrix H   
    and, optionally, the matrices T and Z from the Schur decomposition   
    H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur   
    form), and Z is the orthogonal matrix of Schur vectors.   

    Optionally Z may be postmultiplied into an input orthogonal matrix Q,   
    so that this routine can give the Schur factorization of a matrix A   
    which has been reduced to the Hessenberg form H by the orthogonal   
    matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            = 'E':  compute eigenvalues only;   
            = 'S':  compute eigenvalues and the Schur form T.   

    COMPZ   (input) CHARACTER*1   
            = 'N':  no Schur vectors are computed;   
            = 'I':  Z is initialized to the unit matrix and the matrix Z   
                    of Schur vectors of H is returned;   
            = 'V':  Z must contain an orthogonal matrix Q on entry, and   
                    the product Q*Z is returned.   

    N       (input) INTEGER   
            The order of the matrix H.  N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            It is assumed that H is already upper triangular in rows   
            and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally   
            set by a previous call to DGEBAL, and then passed to SGEHRD   
            when the matrix output by DGEBAL is reduced to Hessenberg   
            form. Otherwise ILO and IHI should be set to 1 and N   
            respectively.   
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.   

    H       (input/output) DOUBLE PRECISION array, dimension (LDH,N)   
            On entry, the upper Hessenberg matrix H.   
            On exit, if JOB = 'S', H contains the upper quasi-triangular   
            matrix T from the Schur decomposition (the Schur form);   
            2-by-2 diagonal blocks (corresponding to complex conjugate   
            pairs of eigenvalues) are returned in standard form, with   
            H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E',   
            the contents of H are unspecified on exit.   

    LDH     (input) INTEGER   
            The leading dimension of the array H. LDH >= max(1,N).   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            The real and imaginary parts, respectively, of the computed   
            eigenvalues. If two eigenvalues are computed as a complex   
            conjugate pair, they are stored in consecutive elements of   
            WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and   
            WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the   
            same order as on the diagonal of the Schur form returned in   
            H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2   
            diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and   
            WI(i+1) = -WI(i).   

    Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)   
            If COMPZ = 'N': Z is not referenced.   
            If COMPZ = 'I': on entry, Z need not be set, and on exit, Z   
            contains the orthogonal matrix Z of the Schur vectors of H.   
            If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,   
            which is assumed to be equal to the unit matrix except for   
            the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.   
            Normally Q is the orthogonal matrix generated by DORGHR after   
            the call to DGEHRD which formed the Hessenberg matrix H.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.   
            LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,N).   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, DHSEQR failed to compute all of the   
                  eigenvalues in a total of 30*(IHI-ILO+1) iterations;   
                  elements 1:ilo-1 and i+1:n of WR and WI contain those   
                  eigenvalues which have been successfully computed.   

    =====================================================================   


       Decode and test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static doublereal c_b9 = 0.;
    static doublereal c_b10 = 1.;
    static integer c__4 = 4;
    static integer c_n1 = -1;
    static integer c__2 = 2;
    static integer c__8 = 8;
    static integer c__15 = 15;
    static logical c_false = FALSE_;
    static integer c__1 = 1;
    
    /* System generated locals */
    address a__1[2];
    integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2], i__4, 
	    i__5;
    doublereal d__1, d__2;
    char ch__1[2];
    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
    /* Local variables */
    static integer maxb;
    static doublereal absw;
    static integer ierr;
    static doublereal unfl, temp, ovfl;
    static integer i__, j, k, l;
    static doublereal s[225]	/* was [15][15] */, v[16];
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *);
    static integer itemp;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer i1, i2;
    static logical initz, wantt, wantz;
    extern doublereal dlapy2_(doublereal *, doublereal *);
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static integer ii, nh;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *);
    static integer nr, ns;
    extern integer idamax_(integer *, doublereal *, integer *);
    static integer nv;
    extern doublereal dlanhs_(char *, integer *, doublereal *, integer *, 
	    doublereal *);
    extern /* Subroutine */ int dlahqr_(logical *, logical *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    static doublereal vv[16];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dlarfx_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *), xerbla_(char *, 
	    integer *);
    static doublereal smlnum;
    static logical lquery;
    static integer itn;
    static doublereal tau;
    static integer its;
    static doublereal ulp, tst1;
#define h___ref(a_1,a_2) h__[(a_2)*h_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*15 + a_1 - 16]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    h_dim1 = *ldh;
    h_offset = 1 + h_dim1 * 1;
    h__ -= h_offset;
    --wr;
    --wi;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantt = lsame_(job, "S");
    initz = lsame_(compz, "I");
    wantz = initz || lsame_(compz, "V");

    *info = 0;
    work[1] = (doublereal) max(1,*n);
    lquery = *lwork == -1;
    if (! lsame_(job, "E") && ! wantt) {
	*info = -1;
    } else if (! lsame_(compz, "N") && ! wantz) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
	*info = -4;
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
	*info = -5;
    } else if (*ldh < max(1,*n)) {
	*info = -7;
    } else if (*ldz < 1 || wantz && *ldz < max(1,*n)) {
	*info = -11;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -13;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DHSEQR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Initialize Z, if necessary */

    if (initz) {
	dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
    }

/*     Store the eigenvalues isolated by DGEBAL. */

    i__1 = *ilo - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	wr[i__] = h___ref(i__, i__);
	wi[i__] = 0.;
/* L10: */
    }
    i__1 = *n;
    for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
	wr[i__] = h___ref(i__, i__);
	wi[i__] = 0.;
/* L20: */
    }

/*     Quick return if possible. */

    if (*n == 0) {
	return 0;
    }
    if (*ilo == *ihi) {
	wr[*ilo] = h___ref(*ilo, *ilo);
	wi[*ilo] = 0.;
	return 0;
    }

/*     Set rows and columns ILO to IHI to zero below the first   
       subdiagonal. */

    i__1 = *ihi - 2;
    for (j = *ilo; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = j + 2; i__ <= i__2; ++i__) {
	    h___ref(i__, j) = 0.;
/* L30: */
	}
/* L40: */
    }
    nh = *ihi - *ilo + 1;

/*     Determine the order of the multi-shift QR algorithm to be used.   

   Writing concatenation */
    i__3[0] = 1, a__1[0] = job;
    i__3[1] = 1, a__1[1] = compz;
    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
    ns = ilaenv_(&c__4, "DHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
	    ftnlen)2);
/* Writing concatenation */
    i__3[0] = 1, a__1[0] = job;
    i__3[1] = 1, a__1[1] = compz;
    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
    maxb = ilaenv_(&c__8, "DHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
	    ftnlen)2);
    if (ns <= 2 || ns > nh || maxb >= nh) {

/*        Use the standard double-shift algorithm */

	dlahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
		1], ilo, ihi, &z__[z_offset], ldz, info);
	return 0;
    }
    maxb = max(3,maxb);
/* Computing MIN */
    i__1 = min(ns,maxb);
    ns = min(i__1,15);

/*     Now 2 < NS <= MAXB < NH.   

       Set machine-dependent constants for the stopping criterion.   
       If norm(H) <= sqrt(OVFL), overflow should not occur. */

    unfl = dlamch_("Safe minimum");
    ovfl = 1. / unfl;
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Precision");
    smlnum = unfl * (nh / ulp);

/*     I1 and I2 are the indices of the first row and last column of H   
       to which transformations must be applied. If eigenvalues only are   
       being computed, I1 and I2 are set inside the main loop. */

    if (wantt) {
	i1 = 1;
	i2 = *n;
    }

/*     ITN is the total number of multiple-shift QR iterations allowed. */

    itn = nh * 30;

/*     The main loop begins here. I is the loop index and decreases from   
       IHI to ILO in steps of at most MAXB. Each iteration of the loop   
       works with the active submatrix in rows and columns L to I.   
       Eigenvalues I+1 to IHI have already converged. Either L = ILO or   
       H(L,L-1) is negligible so that the matrix splits. */

    i__ = *ihi;
L50:
    l = *ilo;
    if (i__ < *ilo) {
	goto L170;
    }

/*     Perform multiple-shift QR iterations on rows and columns ILO to I   
       until a submatrix of order at most MAXB splits off at the bottom   
       because a subdiagonal element has become negligible. */

    i__1 = itn;
    for (its = 0; its <= i__1; ++its) {

/*        Look for a single small subdiagonal element. */

	i__2 = l + 1;
	for (k = i__; k >= i__2; --k) {
	    tst1 = (d__1 = h___ref(k - 1, k - 1), abs(d__1)) + (d__2 = 
		    h___ref(k, k), abs(d__2));
	    if (tst1 == 0.) {
		i__4 = i__ - l + 1;
		tst1 = dlanhs_("1", &i__4, &h___ref(l, l), ldh, &work[1]);
	    }
/* Computing MAX */
	    d__2 = ulp * tst1;
	    if ((d__1 = h___ref(k, k - 1), abs(d__1)) <= max(d__2,smlnum)) {
		goto L70;
	    }
/* L60: */
	}
L70:
	l = k;
	if (l > *ilo) {

/*           H(L,L-1) is negligible. */

	    h___ref(l, l - 1) = 0.;
	}

/*        Exit from loop if a submatrix of order <= MAXB has split off. */

	if (l >= i__ - maxb + 1) {
	    goto L160;
	}

/*        Now the active submatrix is in rows and columns L to I. If   
          eigenvalues only are being computed, only the active submatrix   
          need be transformed. */

	if (! wantt) {
	    i1 = l;
	    i2 = i__;
	}

	if (its == 20 || its == 30) {

/*           Exceptional shifts. */

	    i__2 = i__;
	    for (ii = i__ - ns + 1; ii <= i__2; ++ii) {
		wr[ii] = ((d__1 = h___ref(ii, ii - 1), abs(d__1)) + (d__2 = 
			h___ref(ii, ii), abs(d__2))) * 1.5;
		wi[ii] = 0.;
/* L80: */
	    }
	} else {

/*           Use eigenvalues of trailing submatrix of order NS as shifts. */

	    dlacpy_("Full", &ns, &ns, &h___ref(i__ - ns + 1, i__ - ns + 1), 
		    ldh, s, &c__15);
	    dlahqr_(&c_false, &c_false, &ns, &c__1, &ns, s, &c__15, &wr[i__ - 
		    ns + 1], &wi[i__ - ns + 1], &c__1, &ns, &z__[z_offset], 
		    ldz, &ierr);
	    if (ierr > 0) {

/*              If DLAHQR failed to compute all NS eigenvalues, use the   
                unconverged diagonal elements as the remaining shifts. */

		i__2 = ierr;
		for (ii = 1; ii <= i__2; ++ii) {
		    wr[i__ - ns + ii] = s_ref(ii, ii);
		    wi[i__ - ns + ii] = 0.;
/* L90: */
		}
	    }
	}

/*        Form the first column of (G-w(1)) (G-w(2)) . . . (G-w(ns))   
          where G is the Hessenberg submatrix H(L:I,L:I) and w is   
          the vector of shifts (stored in WR and WI). The result is   
          stored in the local array V. */

	v[0] = 1.;
	i__2 = ns + 1;
	for (ii = 2; ii <= i__2; ++ii) {
	    v[ii - 1] = 0.;
/* L100: */
	}
	nv = 1;
	i__2 = i__;
	for (j = i__ - ns + 1; j <= i__2; ++j) {
	    if (wi[j] >= 0.) {
		if (wi[j] == 0.) {

/*                 real shift */

		    i__4 = nv + 1;
		    dcopy_(&i__4, v, &c__1, vv, &c__1);
		    i__4 = nv + 1;
		    d__1 = -wr[j];
		    dgemv_("No transpose", &i__4, &nv, &c_b10, &h___ref(l, l),
			     ldh, vv, &c__1, &d__1, v, &c__1);
		    ++nv;
		} else if (wi[j] > 0.) {

/*                 complex conjugate pair of shifts */

		    i__4 = nv + 1;
		    dcopy_(&i__4, v, &c__1, vv, &c__1);
		    i__4 = nv + 1;
		    d__1 = wr[j] * -2.;
		    dgemv_("No transpose", &i__4, &nv, &c_b10, &h___ref(l, l),
			     ldh, v, &c__1, &d__1, vv, &c__1);
		    i__4 = nv + 1;
		    itemp = idamax_(&i__4, vv, &c__1);
/* Computing MAX */
		    d__2 = (d__1 = vv[itemp - 1], abs(d__1));
		    temp = 1. / max(d__2,smlnum);
		    i__4 = nv + 1;
		    dscal_(&i__4, &temp, vv, &c__1);
		    absw = dlapy2_(&wr[j], &wi[j]);
		    temp = temp * absw * absw;
		    i__4 = nv + 2;
		    i__5 = nv + 1;
		    dgemv_("No transpose", &i__4, &i__5, &c_b10, &h___ref(l, 
			    l), ldh, vv, &c__1, &temp, v, &c__1);
		    nv += 2;
		}

/*              Scale V(1:NV) so that max(abs(V(i))) = 1. If V is zero,   
                reset it to the unit vector. */

		itemp = idamax_(&nv, v, &c__1);
		temp = (d__1 = v[itemp - 1], abs(d__1));
		if (temp == 0.) {
		    v[0] = 1.;
		    i__4 = nv;
		    for (ii = 2; ii <= i__4; ++ii) {
			v[ii - 1] = 0.;
/* L110: */
		    }
		} else {
		    temp = max(temp,smlnum);
		    d__1 = 1. / temp;
		    dscal_(&nv, &d__1, v, &c__1);
		}
	    }
/* L120: */
	}

/*        Multiple-shift QR step */

	i__2 = i__ - 1;
	for (k = l; k <= i__2; ++k) {

/*           The first iteration of this loop determines a reflection G   
             from the vector V and applies it from left and right to H,   
             thus creating a nonzero bulge below the subdiagonal.   

             Each subsequent iteration determines a reflection G to   
             restore the Hessenberg form in the (K-1)th column, and thus   
             chases the bulge one step toward the bottom of the active   
             submatrix. NR is the order of G.   

   Computing MIN */
	    i__4 = ns + 1, i__5 = i__ - k + 1;
	    nr = min(i__4,i__5);
	    if (k > l) {
		dcopy_(&nr, &h___ref(k, k - 1), &c__1, v, &c__1);
	    }
	    dlarfg_(&nr, v, &v[1], &c__1, &tau);
	    if (k > l) {
		h___ref(k, k - 1) = v[0];
		i__4 = i__;
		for (ii = k + 1; ii <= i__4; ++ii) {
		    h___ref(ii, k - 1) = 0.;
/* L130: */
		}
	    }
	    v[0] = 1.;

/*           Apply G from the left to transform the rows of the matrix in   
             columns K to I2. */

	    i__4 = i2 - k + 1;
	    dlarfx_("Left", &nr, &i__4, v, &tau, &h___ref(k, k), ldh, &work[1]
		    );

/*           Apply G from the right to transform the columns of the   
             matrix in rows I1 to min(K+NR,I).   

   Computing MIN */
	    i__5 = k + nr;
	    i__4 = min(i__5,i__) - i1 + 1;
	    dlarfx_("Right", &i__4, &nr, v, &tau, &h___ref(i1, k), ldh, &work[
		    1]);

	    if (wantz) {

/*              Accumulate transformations in the matrix Z */

		dlarfx_("Right", &nh, &nr, v, &tau, &z___ref(*ilo, k), ldz, &
			work[1]);
	    }
/* L140: */
	}

/* L150: */
    }

/*     Failure to converge in remaining number of iterations */

    *info = i__;
    return 0;

L160:

/*     A submatrix of order <= MAXB in rows and columns L to I has split   
       off. Use the double-shift QR algorithm to handle it. */

    dlahqr_(&wantt, &wantz, n, &l, &i__, &h__[h_offset], ldh, &wr[1], &wi[1], 
	    ilo, ihi, &z__[z_offset], ldz, info);
    if (*info > 0) {
	return 0;
    }

/*     Decrement number of remaining iterations, and return to start of   
       the main loop with a new value of I. */

    itn -= its;
    i__ = l - 1;
    goto L50;

L170:
    work[1] = (doublereal) max(1,*n);
    return 0;

/*     End of DHSEQR */

} /* dhseqr_ */
コード例 #5
0
ファイル: cdrvgg.c プロジェクト: zangel/uquad
/* Subroutine */ int cdrvgg_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, real *thresh, real *thrshn, integer *
	nounit, complex *a, integer *lda, complex *b, complex *s, complex *t, 
	complex *s2, complex *t2, complex *q, integer *ldq, complex *z__, 
	complex *alpha1, complex *beta1, complex *alpha2, complex *beta2, 
	complex *vl, complex *vr, complex *work, integer *lwork, real *rwork, 
	real *result, integer *info)
{
    /* Initialized data */

    static integer kclass[26] = { 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
	    2,2,2,3 };
    static integer kbmagn[26] = { 1,1,1,1,1,1,1,1,3,2,3,2,2,3,1,1,1,1,1,1,1,3,
	    2,3,2,1 };
    static integer ktrian[26] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
	    1,1,1,1 };
    static logical lasign[26] = { FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,
	    TRUE_,FALSE_,TRUE_,TRUE_,FALSE_,FALSE_,TRUE_,TRUE_,TRUE_,FALSE_,
	    TRUE_,FALSE_,FALSE_,FALSE_,TRUE_,TRUE_,TRUE_,TRUE_,TRUE_,FALSE_ };
    static logical lbsign[26] = { FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,
	    FALSE_,TRUE_,FALSE_,FALSE_,TRUE_,TRUE_,FALSE_,FALSE_,TRUE_,FALSE_,
	    TRUE_,FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,FALSE_,
	    FALSE_ };
    static integer kz1[6] = { 0,1,2,1,3,3 };
    static integer kz2[6] = { 0,0,1,2,1,1 };
    static integer kadd[6] = { 0,0,0,0,3,2 };
    static integer katype[26] = { 0,1,0,1,2,3,4,1,4,4,1,1,4,4,4,2,4,5,8,7,9,4,
	    4,4,4,0 };
    static integer kbtype[26] = { 0,0,1,1,2,-3,1,4,1,1,4,4,1,1,-4,2,-4,8,8,8,
	    8,8,8,8,8,0 };
    static integer kazero[26] = { 1,1,1,1,1,1,2,1,2,2,1,1,2,2,3,1,3,5,5,5,5,3,
	    3,3,3,1 };
    static integer kbzero[26] = { 1,1,1,1,1,1,1,2,1,1,2,2,1,1,4,1,4,6,6,6,6,4,
	    4,4,4,1 };
    static integer kamagn[26] = { 1,1,1,1,1,1,1,1,2,3,2,3,2,3,1,1,1,1,1,1,1,2,
	    3,3,2,1 };

    /* Format strings */
    static char fmt_9999[] = "(\002 CDRVGG: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 CDRVGG: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(/1x,a3,\002 -- Complex Generalized eigenvalue"
	    " problem driver\002)";
    static char fmt_9996[] = "(\002 Matrix types (see CDRVGG for details):"
	    " \002)";
    static char fmt_9995[] = "(\002 Special Matrices:\002,23x,\002(J'=transp"
	    "osed Jordan block)\002,/\002   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I"
	    ")  5=(J',J')  \002,\0026=(diag(J',I), diag(I,J'))\002,/\002 Diag"
	    "onal Matrices:  ( \002,\002D=diag(0,1,2,...) )\002,/\002   7=(D,"
	    "I)   9=(large*D, small*I\002,\002)  11=(large*I, small*D)  13=(l"
	    "arge*D, large*I)\002,/\002   8=(I,D)  10=(small*D, large*I)  12="
	    "(small*I, large*D) \002,\002 14=(small*D, small*I)\002,/\002  15"
	    "=(D, reversed D)\002)";
    static char fmt_9994[] = "(\002 Matrices Rotated by Random \002,a,\002 M"
	    "atrices U, V:\002,/\002  16=Transposed Jordan Blocks            "
	    " 19=geometric \002,\002alpha, beta=0,1\002,/\002  17=arithm. alp"
	    "ha&beta             \002,\002      20=arithmetic alpha, beta=0,"
	    "1\002,/\002  18=clustered \002,\002alpha, beta=0,1            21"
	    "=random alpha, beta=0,1\002,/\002 Large & Small Matrices:\002,"
	    "/\002  22=(large, small)   \002,\00223=(small,large)    24=(smal"
	    "l,small)    25=(large,large)\002,/\002  26=random O(1) matrices"
	    ".\002)";
    static char fmt_9993[] = "(/\002 Tests performed:  (S is Schur, T is tri"
	    "angular, \002,\002Q and Z are \002,a,\002,\002,/20x,\002l and r "
	    "are the appropriate left and right\002,/19x,\002eigenvectors, re"
	    "sp., a is alpha, b is beta, and\002,/19x,a,\002 means \002,a,"
	    "\002.)\002,/\002 1 = | A - Q S Z\002,a,\002 | / ( |A| n ulp )   "
	    "   2 = | B - Q T Z\002,a,\002 | / ( |B| n ulp )\002,/\002 3 = | "
	    "I - QQ\002,a,\002 | / ( n ulp )             4 = | I - ZZ\002,a"
	    ",\002 | / ( n ulp )\002,/\002 5 = difference between (alpha,beta"
	    ") and diagonals of\002,\002 (S,T)\002,/\002 6 = max | ( b A - a "
	    "B )\002,a,\002 l | / const.   7 = max | ( b A - a B ) r | / cons"
	    "t.\002,/1x)";
    static char fmt_9992[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2"
	    ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002"
	    ",0p,f8.2)";
    static char fmt_9991[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2"
	    ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002"
	    ",1p,e10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, s_dim1, 
	    s_offset, s2_dim1, s2_offset, t_dim1, t_offset, t2_dim1, 
	    t2_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, 
	    i__10, i__11;
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10, r__11, 
	    r__12, r__13, r__14, r__15, r__16;
    complex q__1, q__2, q__3, q__4;

    /* Builtin functions */
    double r_sign(real *, real *), c_abs(complex *);
    void r_cnjg(complex *, complex *);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    double r_imag(complex *);

    /* Local variables */
    static integer iadd, nmax;
    static real temp1, temp2;
    static integer j, n;
    static logical badnn;
    extern /* Subroutine */ int cgegs_(char *, char *, integer *, complex *, 
	    integer *, complex *, integer *, complex *, complex *, complex *, 
	    integer *, complex *, integer *, complex *, integer *, real *, 
	    integer *), cgegv_(char *, char *, integer *, 
	    complex *, integer *, complex *, integer *, complex *, complex *, 
	    complex *, integer *, complex *, integer *, complex *, integer *, 
	    real *, integer *), cget51_(integer *, integer *, 
	    complex *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, complex *, real *, real *), cget52_(logical 
	    *, integer *, complex *, integer *, complex *, integer *, complex 
	    *, integer *, complex *, complex *, complex *, real *, real *);
    static real dumma[4];
    static integer iinfo;
    static real rmagn[4];
    static complex ctemp;
    static integer nmats, jsize, nerrs, i1, jtype, ntest, n1;
    extern /* Subroutine */ int clatm4_(integer *, integer *, integer *, 
	    integer *, logical *, real *, real *, real *, integer *, integer *
	    , complex *, integer *), cunm2r_(char *, char *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, complex *, 
	    integer *, complex *, integer *);
    static integer jc, nb;
    extern /* Subroutine */ int slabad_(real *, real *);
    static integer in, jr;
    extern /* Subroutine */ int clarfg_(integer *, complex *, complex *, 
	    integer *, complex *);
    static integer ns;
    extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *);
    static real safmin, safmax;
    static integer ioldsd[4];
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *), claset_(char *, integer *, integer *, 
	    complex *, complex *, complex *, integer *), xerbla_(char 
	    *, integer *);
    static real ulpinv;
    static integer lwkopt, mtypes, ntestt, nbz;
    static real ulp;

    /* Fortran I/O blocks */
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___47 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___49 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___54 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9992, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9991, 0 };



#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1
#define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)]
#define s_subscr(a_1,a_2) (a_2)*s_dim1 + a_1
#define s_ref(a_1,a_2) s[s_subscr(a_1,a_2)]
#define t_subscr(a_1,a_2) (a_2)*t_dim1 + a_1
#define t_ref(a_1,a_2) t[t_subscr(a_1,a_2)]
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CDRVGG  checks the nonsymmetric generalized eigenvalue driver   
    routines.   
                                  T          T        T   
    CGEGS factors A and B as Q S Z  and Q T Z , where   means   
    transpose, T is upper triangular, S is in generalized Schur form   
    (upper triangular), and Q and Z are unitary.  It also   
    computes the generalized eigenvalues (alpha(1),beta(1)), ...,   
    (alpha(n),beta(n)), where alpha(j)=S(j,j) and beta(j)=T(j,j) --   
    thus, w(j) = alpha(j)/beta(j) is a root of the generalized   
    eigenvalue problem   

        det( A - w(j) B ) = 0   

    and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent   
    problem   

        det( m(j) A - B ) = 0   

    CGEGV computes the generalized eigenvalues (alpha(1),beta(1)), ...,   
    (alpha(n),beta(n)), the matrix L whose columns contain the   
    generalized left eigenvectors l, and the matrix R whose columns   
    contain the generalized right eigenvectors r for the pair (A,B).   

    When CDRVGG is called, a number of matrix "sizes" ("n's") and a   
    number of matrix "types" are specified.  For each size ("n")   
    and each type of matrix, one matrix will be generated and used   
    to test the nonsymmetric eigenroutines.  For each matrix, 7   
    tests will be performed and compared with the threshhold THRESH:   

    Results from CGEGS:   

                     H   
    (1)   | A - Q S Z  | / ( |A| n ulp )   

                     H   
    (2)   | B - Q T Z  | / ( |B| n ulp )   

                  H   
    (3)   | I - QQ  | / ( n ulp )   

                  H   
    (4)   | I - ZZ  | / ( n ulp )   

    (5)   maximum over j of D(j)  where:   

                        |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|   
              D(j) = ------------------------ + -----------------------   
                     max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)   

    Results from CGEGV:   

    (6)   max over all left eigenvalue/-vector pairs (beta/alpha,l) of   

       | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )   

          where l**H is the conjugate tranpose of l.   

    (7)   max over all right eigenvalue/-vector pairs (beta/alpha,r) of   

          | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )   

    Test Matrices   
    ---- --------   

    The sizes of the test matrices are specified by an array   
    NN(1:NSIZES); the value of each element NN(j) specifies one size.   
    The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if   
    DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
    Currently, the list of possible types is:   

    (1)  ( 0, 0 )         (a pair of zero matrices)   

    (2)  ( I, 0 )         (an identity and a zero matrix)   

    (3)  ( 0, I )         (an identity and a zero matrix)   

    (4)  ( I, I )         (a pair of identity matrices)   

            t   t   
    (5)  ( J , J  )       (a pair of transposed Jordan blocks)   

                                        t                ( I   0  )   
    (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )   
                                     ( 0   I  )          ( 0   J  )   
                          and I is a k x k identity and J a (k+1)x(k+1)   
                          Jordan block; k=(N-1)/2   

    (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal   
                          matrix with those diagonal entries.)   
    (8)  ( I, D )   

    (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big   

    (10) ( small*D, big*I )   

    (11) ( big*I, small*D )   

    (12) ( small*I, big*D )   

    (13) ( big*D, big*I )   

    (14) ( small*D, small*I )   

    (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and   
                           D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )   
              t   t   
    (16) Q ( J , J ) Z     where Q and Z are random unitary matrices.   

    (17) Q ( T1, T2 ) Z    where T1 and T2 are upper triangular matrices   
                           with random O(1) entries above the diagonal   
                           and diagonal entries diag(T1) =   
                           ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =   
                           ( 0, N-3, N-4,..., 1, 0, 0 )   

    (18) Q ( T1, T2 ) Z    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )   
                           s = machine precision.   

    (19) Q ( T1, T2 ) Z    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )   

                                                           N-5   
    (20) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )   

    (21) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )   
                           where r1,..., r(N-4) are random.   

    (22) Q ( big*T1, small*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (23) Q ( small*T1, big*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (24) Q ( small*T1, small*T2 ) Z  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (25) Q ( big*T1, big*T2 ) Z      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (26) Q ( T1, T2 ) Z     where T1 and T2 are random upper-triangular   
                            matrices.   

    Arguments   
    =========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  If it is zero,   
            CDRVGG does nothing.  It must be at least zero.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  The values must be at least   
            zero.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE.   If it is zero, CDRVGG   
            does nothing.  It must be at least zero.  If it is MAXTYP+1   
            and NSIZES is 1, then an additional type, MAXTYP+1 is   
            defined, which is to use whatever matrix is in A.  This   
            is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
            DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated.  If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096.  Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to CDRVGG to continue the same random number   
            sequence.   

    THRESH  (input) REAL   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error is   
            scaled to be O(1), so THRESH should be a reasonably small   
            multiple of 1, e.g., 10 or 100.  In particular, it should   
            not depend on the precision (single vs. double) or the size   
            of the matrix.  It must be at least zero.   

    THRSHN  (input) REAL   
            Threshhold for reporting eigenvector normalization error.   
            If the normalization of any eigenvector differs from 1 by   
            more than THRSHN*ulp, then a special error message will be   
            printed.  (This is handled separately from the other tests,   
            since only a compiler or programming error should cause an   
            error message, at least if THRSHN is at least 5--10.)   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns IINFO not equal to 0.)   

    A       (input/workspace) COMPLEX array, dimension (LDA, max(NN))   
            Used to hold the original A matrix.  Used as input only   
            if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and   
            DOTYPE(MAXTYP+1)=.TRUE.   

    LDA     (input) INTEGER   
            The leading dimension of A, B, S, T, S2, and T2.   
            It must be at least 1 and at least max( NN ).   

    B       (input/workspace) COMPLEX array, dimension (LDA, max(NN))   
            Used to hold the original B matrix.  Used as input only   
            if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and   
            DOTYPE(MAXTYP+1)=.TRUE.   

    S       (workspace) COMPLEX array, dimension (LDA, max(NN))   
            The upper triangular matrix computed from A by CGEGS.   

    T       (workspace) COMPLEX array, dimension (LDA, max(NN))   
            The upper triangular matrix computed from B by CGEGS.   

    S2      (workspace) COMPLEX array, dimension (LDA, max(NN))   
            The matrix computed from A by CGEGV.  This will be the   
            Schur (upper triangular) form of some matrix related to A,   
            but will not, in general, be the same as S.   

    T2      (workspace) COMPLEX array, dimension (LDA, max(NN))   
            The matrix computed from B by CGEGV.  This will be the   
            Schur form of some matrix related to B, but will not, in   
            general, be the same as T.   

    Q       (workspace) COMPLEX array, dimension (LDQ, max(NN))   
            The (left) unitary matrix computed by CGEGS.   

    LDQ     (input) INTEGER   
            The leading dimension of Q, Z, VL, and VR.  It must   
            be at least 1 and at least max( NN ).   

    Z       (workspace) COMPLEX array, dimension (LDQ, max(NN))   
            The (right) unitary matrix computed by CGEGS.   

    ALPHA1  (workspace) COMPLEX array, dimension (max(NN))   
    BETA1   (workspace) COMPLEX array, dimension (max(NN))   
            The generalized eigenvalues of (A,B) computed by CGEGS.   
            ALPHA1(k) / BETA1(k)  is the k-th generalized eigenvalue of   
            the matrices in A and B.   

    ALPHA2  (workspace) COMPLEX array, dimension (max(NN))   
    BETA2   (workspace) COMPLEX array, dimension (max(NN))   
            The generalized eigenvalues of (A,B) computed by CGEGV.   
            ALPHA2(k) / BETA2(k)  is the k-th generalized eigenvalue of   
            the matrices in A and B.   

    VL      (workspace) COMPLEX array, dimension (LDQ, max(NN))   
            The (lower triangular) left eigenvector matrix for the   
            matrices in A and B.   

    VR      (workspace) COMPLEX array, dimension (LDQ, max(NN))   
            The (upper triangular) right eigenvector matrix for the   
            matrices in A and B.   

    WORK    (workspace) COMPLEX array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The number of entries in WORK.  This must be at least   
            MAX( 2*N, N*(NB+1), (k+1)*(2*k+N+1) ), where "k" is the   
            sum of the blocksize and number-of-shifts for CHGEQZ, and   
            NB is the greatest of the blocksizes for CGEQRF, CUNMQR,   
            and CUNGQR.  (The blocksizes and the number-of-shifts are   
            retrieved through calls to ILAENV.)   

    RWORK   (workspace) REAL array, dimension (8*N)   

    RESULT  (output) REAL array, dimension (7)   
            The values computed by the tests described above.   
            The values are currently limited to 1/ulp, to avoid   
            overflow.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  A routine returned an error code.  INFO is the   
                  absolute value of the INFO value returned.   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1 * 1;
    t2 -= t2_offset;
    s2_dim1 = *lda;
    s2_offset = 1 + s2_dim1 * 1;
    s2 -= s2_offset;
    t_dim1 = *lda;
    t_offset = 1 + t_dim1 * 1;
    t -= t_offset;
    s_dim1 = *lda;
    s_offset = 1 + s_dim1 * 1;
    s -= s_offset;
    b_dim1 = *lda;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    vr_dim1 = *ldq;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    vl_dim1 = *ldq;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    z_dim1 = *ldq;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --alpha1;
    --beta1;
    --alpha2;
    --beta2;
    --work;
    --rwork;
    --result;

    /* Function Body   

       Check for errors */

    *info = 0;

    badnn = FALSE_;
    nmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Maximum blocksize and shift -- we assume that blocksize and number   
       of shifts are monotone increasing functions of N.   

   Computing MAX */
    i__1 = 1, i__2 = ilaenv_(&c__1, "CGEQRF", " ", &nmax, &nmax, &c_n1, &c_n1,
	     (ftnlen)6, (ftnlen)1), i__1 = max(i__1,i__2), i__2 = ilaenv_(&
	    c__1, "CUNMQR", "LC", &nmax, &nmax, &nmax, &c_n1, (ftnlen)6, (
	    ftnlen)2), i__1 = max(i__1,i__2), i__2 = ilaenv_(&c__1, "CUNGQR", 
	    " ", &nmax, &nmax, &nmax, &c_n1, (ftnlen)6, (ftnlen)1);
    nb = max(i__1,i__2);
    nbz = ilaenv_(&c__1, "CHGEQZ", "SII", &nmax, &c__1, &nmax, &c__0, (ftnlen)
	    6, (ftnlen)3);
    ns = ilaenv_(&c__4, "CHGEQZ", "SII", &nmax, &c__1, &nmax, &c__0, (ftnlen)
	    6, (ftnlen)3);
    i1 = nbz + ns;
/* Computing MAX */
    i__1 = nmax << 1, i__2 = nmax * (nb + 1), i__1 = max(i__1,i__2), i__2 = ((
	    i1 << 1) + nmax + 1) * (i1 + 1);
    lwkopt = max(i__1,i__2);

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.f) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -10;
    } else if (*ldq <= 1 || *ldq < nmax) {
	*info = -19;
    } else if (lwkopt > *lwork) {
	*info = -30;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CDRVGG", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

    ulp = slamch_("Precision");
    safmin = slamch_("Safe minimum");
    safmin /= ulp;
    safmax = 1.f / safmin;
    slabad_(&safmin, &safmax);
    ulpinv = 1.f / ulp;

/*     The values RMAGN(2:3) depend on N, see below. */

    rmagn[0] = 0.f;
    rmagn[1] = 1.f;

/*     Loop over sizes, types */

    ntestt = 0;
    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	n1 = max(1,n);
	rmagn[2] = safmax * ulp / (real) n1;
	rmagn[3] = safmin * ulpinv * n1;

	if (*nsizes != 1) {
	    mtypes = min(26,*ntypes);
	} else {
	    mtypes = min(27,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L150;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 7; ++j) {
		result[j] = 0.f;
/* L30: */
	    }

/*           Compute A and B   

             Description of control parameters:   

             KCLASS: =1 means w/o rotation, =2 means w/ rotation,   
                     =3 means random.   
             KATYPE: the "type" to be passed to CLATM4 for computing A.   
             KAZERO: the pattern of zeros on the diagonal for A:   
                     =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),   
                     =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),   
                     =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of   
                     non-zero entries.)   
             KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),   
                     =2: large, =3: small.   
             LASIGN: .TRUE. if the diagonal elements of A are to be   
                     multiplied by a random magnitude 1 number.   
             KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.   
             KTRIAN: =0: don't fill in the upper triangle, =1: do.   
             KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.   
             RMAGN:  used to implement KAMAGN and KBMAGN. */

	    if (mtypes > 26) {
		goto L110;
	    }
	    iinfo = 0;
	    if (kclass[jtype - 1] < 3) {

/*              Generate A (w/o rotation) */

		if ((i__3 = katype[jtype - 1], abs(i__3)) == 3) {
		    in = ((n - 1) / 2 << 1) + 1;
		    if (in != n) {
			claset_("Full", &n, &n, &c_b1, &c_b1, &a[a_offset], 
				lda);
		    }
		} else {
		    in = n;
		}
		clatm4_(&katype[jtype - 1], &in, &kz1[kazero[jtype - 1] - 1], 
			&kz2[kazero[jtype - 1] - 1], &lasign[jtype - 1], &
			rmagn[kamagn[jtype - 1]], &ulp, &rmagn[ktrian[jtype - 
			1] * kamagn[jtype - 1]], &c__2, &iseed[1], &a[
			a_offset], lda);
		iadd = kadd[kazero[jtype - 1] - 1];
		if (iadd > 0 && iadd <= n) {
		    i__3 = a_subscr(iadd, iadd);
		    i__4 = kamagn[jtype - 1];
		    a[i__3].r = rmagn[i__4], a[i__3].i = 0.f;
		}

/*              Generate B (w/o rotation) */

		if ((i__3 = kbtype[jtype - 1], abs(i__3)) == 3) {
		    in = ((n - 1) / 2 << 1) + 1;
		    if (in != n) {
			claset_("Full", &n, &n, &c_b1, &c_b1, &b[b_offset], 
				lda);
		    }
		} else {
		    in = n;
		}
		clatm4_(&kbtype[jtype - 1], &in, &kz1[kbzero[jtype - 1] - 1], 
			&kz2[kbzero[jtype - 1] - 1], &lbsign[jtype - 1], &
			rmagn[kbmagn[jtype - 1]], &c_b39, &rmagn[ktrian[jtype 
			- 1] * kbmagn[jtype - 1]], &c__2, &iseed[1], &b[
			b_offset], lda);
		iadd = kadd[kbzero[jtype - 1] - 1];
		if (iadd != 0 && iadd <= n) {
		    i__3 = b_subscr(iadd, iadd);
		    i__4 = kbmagn[jtype - 1];
		    b[i__3].r = rmagn[i__4], b[i__3].i = 0.f;
		}

		if (kclass[jtype - 1] == 2 && n > 0) {

/*                 Include rotations   

                   Generate Q, Z as Householder transformations times   
                   a diagonal matrix. */

		    i__3 = n - 1;
		    for (jc = 1; jc <= i__3; ++jc) {
			i__4 = n;
			for (jr = jc; jr <= i__4; ++jr) {
			    i__5 = q_subscr(jr, jc);
			    clarnd_(&q__1, &c__3, &iseed[1]);
			    q[i__5].r = q__1.r, q[i__5].i = q__1.i;
			    i__5 = z___subscr(jr, jc);
			    clarnd_(&q__1, &c__3, &iseed[1]);
			    z__[i__5].r = q__1.r, z__[i__5].i = q__1.i;
/* L40: */
			}
			i__4 = n + 1 - jc;
			clarfg_(&i__4, &q_ref(jc, jc), &q_ref(jc + 1, jc), &
				c__1, &work[jc]);
			i__4 = (n << 1) + jc;
			i__5 = q_subscr(jc, jc);
			r__2 = q[i__5].r;
			r__1 = r_sign(&c_b39, &r__2);
			work[i__4].r = r__1, work[i__4].i = 0.f;
			i__4 = q_subscr(jc, jc);
			q[i__4].r = 1.f, q[i__4].i = 0.f;
			i__4 = n + 1 - jc;
			clarfg_(&i__4, &z___ref(jc, jc), &z___ref(jc + 1, jc),
				 &c__1, &work[n + jc]);
			i__4 = n * 3 + jc;
			i__5 = z___subscr(jc, jc);
			r__2 = z__[i__5].r;
			r__1 = r_sign(&c_b39, &r__2);
			work[i__4].r = r__1, work[i__4].i = 0.f;
			i__4 = z___subscr(jc, jc);
			z__[i__4].r = 1.f, z__[i__4].i = 0.f;
/* L50: */
		    }
		    clarnd_(&q__1, &c__3, &iseed[1]);
		    ctemp.r = q__1.r, ctemp.i = q__1.i;
		    i__3 = q_subscr(n, n);
		    q[i__3].r = 1.f, q[i__3].i = 0.f;
		    i__3 = n;
		    work[i__3].r = 0.f, work[i__3].i = 0.f;
		    i__3 = n * 3;
		    r__1 = c_abs(&ctemp);
		    q__1.r = ctemp.r / r__1, q__1.i = ctemp.i / r__1;
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
		    clarnd_(&q__1, &c__3, &iseed[1]);
		    ctemp.r = q__1.r, ctemp.i = q__1.i;
		    i__3 = z___subscr(n, n);
		    z__[i__3].r = 1.f, z__[i__3].i = 0.f;
		    i__3 = n << 1;
		    work[i__3].r = 0.f, work[i__3].i = 0.f;
		    i__3 = n << 2;
		    r__1 = c_abs(&ctemp);
		    q__1.r = ctemp.r / r__1, q__1.i = ctemp.i / r__1;
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;

/*                 Apply the diagonal matrices */

		    i__3 = n;
		    for (jc = 1; jc <= i__3; ++jc) {
			i__4 = n;
			for (jr = 1; jr <= i__4; ++jr) {
			    i__5 = a_subscr(jr, jc);
			    i__6 = (n << 1) + jr;
			    r_cnjg(&q__3, &work[n * 3 + jc]);
			    q__2.r = work[i__6].r * q__3.r - work[i__6].i * 
				    q__3.i, q__2.i = work[i__6].r * q__3.i + 
				    work[i__6].i * q__3.r;
			    i__7 = a_subscr(jr, jc);
			    q__1.r = q__2.r * a[i__7].r - q__2.i * a[i__7].i, 
				    q__1.i = q__2.r * a[i__7].i + q__2.i * a[
				    i__7].r;
			    a[i__5].r = q__1.r, a[i__5].i = q__1.i;
			    i__5 = b_subscr(jr, jc);
			    i__6 = (n << 1) + jr;
			    r_cnjg(&q__3, &work[n * 3 + jc]);
			    q__2.r = work[i__6].r * q__3.r - work[i__6].i * 
				    q__3.i, q__2.i = work[i__6].r * q__3.i + 
				    work[i__6].i * q__3.r;
			    i__7 = b_subscr(jr, jc);
			    q__1.r = q__2.r * b[i__7].r - q__2.i * b[i__7].i, 
				    q__1.i = q__2.r * b[i__7].i + q__2.i * b[
				    i__7].r;
			    b[i__5].r = q__1.r, b[i__5].i = q__1.i;
/* L60: */
			}
/* L70: */
		    }
		    i__3 = n - 1;
		    cunm2r_("L", "N", &n, &n, &i__3, &q[q_offset], ldq, &work[
			    1], &a[a_offset], lda, &work[(n << 1) + 1], &
			    iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    cunm2r_("R", "C", &n, &n, &i__3, &z__[z_offset], ldq, &
			    work[n + 1], &a[a_offset], lda, &work[(n << 1) + 
			    1], &iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    cunm2r_("L", "N", &n, &n, &i__3, &q[q_offset], ldq, &work[
			    1], &b[b_offset], lda, &work[(n << 1) + 1], &
			    iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    cunm2r_("R", "C", &n, &n, &i__3, &z__[z_offset], ldq, &
			    work[n + 1], &b[b_offset], lda, &work[(n << 1) + 
			    1], &iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		}
	    } else {

/*              Random matrices */

		i__3 = n;
		for (jc = 1; jc <= i__3; ++jc) {
		    i__4 = n;
		    for (jr = 1; jr <= i__4; ++jr) {
			i__5 = a_subscr(jr, jc);
			i__6 = kamagn[jtype - 1];
			clarnd_(&q__2, &c__4, &iseed[1]);
			q__1.r = rmagn[i__6] * q__2.r, q__1.i = rmagn[i__6] * 
				q__2.i;
			a[i__5].r = q__1.r, a[i__5].i = q__1.i;
			i__5 = b_subscr(jr, jc);
			i__6 = kbmagn[jtype - 1];
			clarnd_(&q__2, &c__4, &iseed[1]);
			q__1.r = rmagn[i__6] * q__2.r, q__1.i = rmagn[i__6] * 
				q__2.i;
			b[i__5].r = q__1.r, b[i__5].i = q__1.i;
/* L80: */
		    }
/* L90: */
		}
	    }

L100:

	    if (iinfo != 0) {
		io___43.ciunit = *nounit;
		s_wsfe(&io___43);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L110:

/*           Call CGEGS to compute H, T, Q, Z, alpha, and beta. */

	    clacpy_(" ", &n, &n, &a[a_offset], lda, &s[s_offset], lda);
	    clacpy_(" ", &n, &n, &b[b_offset], lda, &t[t_offset], lda);
	    ntest = 1;
	    result[1] = ulpinv;

	    cgegs_("V", "V", &n, &s[s_offset], lda, &t[t_offset], lda, &
		    alpha1[1], &beta1[1], &q[q_offset], ldq, &z__[z_offset], 
		    ldq, &work[1], lwork, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___44.ciunit = *nounit;
		s_wsfe(&io___44);
		do_fio(&c__1, "CGEGS", (ftnlen)5);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L130;
	    }

	    ntest = 4;

/*           Do tests 1--4 */

	    cget51_(&c__1, &n, &a[a_offset], lda, &s[s_offset], lda, &q[
		    q_offset], ldq, &z__[z_offset], ldq, &work[1], &rwork[1], 
		    &result[1]);
	    cget51_(&c__1, &n, &b[b_offset], lda, &t[t_offset], lda, &q[
		    q_offset], ldq, &z__[z_offset], ldq, &work[1], &rwork[1], 
		    &result[2]);
	    cget51_(&c__3, &n, &b[b_offset], lda, &t[t_offset], lda, &q[
		    q_offset], ldq, &q[q_offset], ldq, &work[1], &rwork[1], &
		    result[3]);
	    cget51_(&c__3, &n, &b[b_offset], lda, &t[t_offset], lda, &z__[
		    z_offset], ldq, &z__[z_offset], ldq, &work[1], &rwork[1], 
		    &result[4]);

/*           Do test 5: compare eigenvalues with diagonals. */

	    temp1 = 0.f;

	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		i__4 = j;
		i__5 = s_subscr(j, j);
		q__2.r = alpha1[i__4].r - s[i__5].r, q__2.i = alpha1[i__4].i 
			- s[i__5].i;
		q__1.r = q__2.r, q__1.i = q__2.i;
		i__6 = j;
		i__7 = t_subscr(j, j);
		q__4.r = beta1[i__6].r - t[i__7].r, q__4.i = beta1[i__6].i - 
			t[i__7].i;
		q__3.r = q__4.r, q__3.i = q__4.i;
/* Computing MAX */
		i__8 = j;
		i__9 = s_subscr(j, j);
		r__13 = safmin, r__14 = (r__1 = alpha1[i__8].r, dabs(r__1)) + 
			(r__2 = r_imag(&alpha1[j]), dabs(r__2)), r__13 = max(
			r__13,r__14), r__14 = (r__3 = s[i__9].r, dabs(r__3)) 
			+ (r__4 = r_imag(&s_ref(j, j)), dabs(r__4));
/* Computing MAX */
		i__10 = j;
		i__11 = t_subscr(j, j);
		r__15 = safmin, r__16 = (r__5 = beta1[i__10].r, dabs(r__5)) + 
			(r__6 = r_imag(&beta1[j]), dabs(r__6)), r__15 = max(
			r__15,r__16), r__16 = (r__7 = t[i__11].r, dabs(r__7)) 
			+ (r__8 = r_imag(&t_ref(j, j)), dabs(r__8));
		temp2 = (((r__9 = q__1.r, dabs(r__9)) + (r__10 = r_imag(&q__1)
			, dabs(r__10))) / dmax(r__13,r__14) + ((r__11 = 
			q__3.r, dabs(r__11)) + (r__12 = r_imag(&q__3), dabs(
			r__12))) / dmax(r__15,r__16)) / ulp;
		temp1 = dmax(temp1,temp2);
/* L120: */
	    }
	    result[5] = temp1;

/*           Call CGEGV to compute S2, T2, VL, and VR, do tests.   

             Eigenvalues and Eigenvectors */

	    clacpy_(" ", &n, &n, &a[a_offset], lda, &s2[s2_offset], lda);
	    clacpy_(" ", &n, &n, &b[b_offset], lda, &t2[t2_offset], lda);
	    ntest = 6;
	    result[6] = ulpinv;

	    cgegv_("V", "V", &n, &s2[s2_offset], lda, &t2[t2_offset], lda, &
		    alpha2[1], &beta2[1], &vl[vl_offset], ldq, &vr[vr_offset],
		     ldq, &work[1], lwork, &rwork[1], &iinfo);
	    if (iinfo != 0) {
		io___47.ciunit = *nounit;
		s_wsfe(&io___47);
		do_fio(&c__1, "CGEGV", (ftnlen)5);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L130;
	    }

	    ntest = 7;

/*           Do Tests 6 and 7 */

	    cget52_(&c_true, &n, &a[a_offset], lda, &b[b_offset], lda, &vl[
		    vl_offset], ldq, &alpha2[1], &beta2[1], &work[1], &rwork[
		    1], dumma);
	    result[6] = dumma[0];
	    if (dumma[1] > *thrshn) {
		io___49.ciunit = *nounit;
		s_wsfe(&io___49);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "CGEGV", (ftnlen)5);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

	    cget52_(&c_false, &n, &a[a_offset], lda, &b[b_offset], lda, &vr[
		    vr_offset], ldq, &alpha2[1], &beta2[1], &work[1], &rwork[
		    1], dumma);
	    result[7] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___50.ciunit = *nounit;
		s_wsfe(&io___50);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "CGEGV", (ftnlen)5);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L130:

	    ntestt += ntest;

/*           Print out tests which fail. */

	    i__3 = ntest;
	    for (jr = 1; jr <= i__3; ++jr) {
		if (result[jr] >= *thresh) {

/*                 If this is the first test to fail,   
                   print a header to the data file. */

		    if (nerrs == 0) {
			io___51.ciunit = *nounit;
			s_wsfe(&io___51);
			do_fio(&c__1, "CGG", (ftnlen)3);
			e_wsfe();

/*                    Matrix types */

			io___52.ciunit = *nounit;
			s_wsfe(&io___52);
			e_wsfe();
			io___53.ciunit = *nounit;
			s_wsfe(&io___53);
			e_wsfe();
			io___54.ciunit = *nounit;
			s_wsfe(&io___54);
			do_fio(&c__1, "Unitary", (ftnlen)7);
			e_wsfe();

/*                    Tests performed */

			io___55.ciunit = *nounit;
			s_wsfe(&io___55);
			do_fio(&c__1, "unitary", (ftnlen)7);
			do_fio(&c__1, "*", (ftnlen)1);
			do_fio(&c__1, "conjugate transpose", (ftnlen)19);
			for (j = 1; j <= 5; ++j) {
			    do_fio(&c__1, "*", (ftnlen)1);
			}
			e_wsfe();

		    }
		    ++nerrs;
		    if (result[jr] < 1e4f) {
			io___56.ciunit = *nounit;
			s_wsfe(&io___56);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				real));
			e_wsfe();
		    } else {
			io___57.ciunit = *nounit;
			s_wsfe(&io___57);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				real));
			e_wsfe();
		    }
		}
/* L140: */
	    }

L150:
	    ;
	}
/* L160: */
    }

/*     Summary */

    alasvm_("CGG", nounit, &nerrs, &ntestt, &c__0);
    return 0;







/*     End of CDRVGG */

} /* cdrvgg_ */
コード例 #6
0
ファイル: ddrges.c プロジェクト: zangel/uquad
/* Subroutine */ int ddrges_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, 
	doublereal *a, integer *lda, doublereal *b, doublereal *s, doublereal 
	*t, doublereal *q, integer *ldq, doublereal *z__, doublereal *alphar, 
	doublereal *alphai, doublereal *beta, doublereal *work, integer *
	lwork, doublereal *result, logical *bwork, integer *info)
{
    /* Initialized data */

    static integer kclass[26] = { 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
	    2,2,2,3 };
    static integer kbmagn[26] = { 1,1,1,1,1,1,1,1,3,2,3,2,2,3,1,1,1,1,1,1,1,3,
	    2,3,2,1 };
    static integer ktrian[26] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,
	    1,1,1,1 };
    static integer iasign[26] = { 0,0,0,0,0,0,2,0,2,2,0,0,2,2,2,0,2,0,0,0,2,2,
	    2,2,2,0 };
    static integer ibsign[26] = { 0,0,0,0,0,0,0,2,0,0,2,2,0,0,2,0,2,0,0,0,0,0,
	    0,0,0,0 };
    static integer kz1[6] = { 0,1,2,1,3,3 };
    static integer kz2[6] = { 0,0,1,2,1,1 };
    static integer kadd[6] = { 0,0,0,0,3,2 };
    static integer katype[26] = { 0,1,0,1,2,3,4,1,4,4,1,1,4,4,4,2,4,5,8,7,9,4,
	    4,4,4,0 };
    static integer kbtype[26] = { 0,0,1,1,2,-3,1,4,1,1,4,4,1,1,-4,2,-4,8,8,8,
	    8,8,8,8,8,0 };
    static integer kazero[26] = { 1,1,1,1,1,1,2,1,2,2,1,1,2,2,3,1,3,5,5,5,5,3,
	    3,3,3,1 };
    static integer kbzero[26] = { 1,1,1,1,1,1,1,2,1,1,2,2,1,1,4,1,4,6,6,6,6,4,
	    4,4,4,1 };
    static integer kamagn[26] = { 1,1,1,1,1,1,1,1,2,3,2,3,2,3,1,1,1,1,1,1,1,2,
	    3,3,2,1 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DDRGES: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,4(i4,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 DDRGES: DGET53 returned INFO=\002,i1,"
	    "\002 for eigenvalue \002,i6,\002.\002,/9x,\002N=\002,i6,\002, JT"
	    "YPE=\002,i6,\002, ISEED=(\002,4(i4,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 DDRGES: S not in Schur form at eigenvalu"
	    "e \002,i6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, "
	    "ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9996[] = "(/1x,a3,\002 -- Real Generalized Schur form dr"
	    "iver\002)";
    static char fmt_9995[] = "(\002 Matrix types (see DDRGES for details):"
	    " \002)";
    static char fmt_9994[] = "(\002 Special Matrices:\002,23x,\002(J'=transp"
	    "osed Jordan block)\002,/\002   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I"
	    ")  5=(J',J')  \002,\0026=(diag(J',I), diag(I,J'))\002,/\002 Diag"
	    "onal Matrices:  ( \002,\002D=diag(0,1,2,...) )\002,/\002   7=(D,"
	    "I)   9=(large*D, small*I\002,\002)  11=(large*I, small*D)  13=(l"
	    "arge*D, large*I)\002,/\002   8=(I,D)  10=(small*D, large*I)  12="
	    "(small*I, large*D) \002,\002 14=(small*D, small*I)\002,/\002  15"
	    "=(D, reversed D)\002)";
    static char fmt_9993[] = "(\002 Matrices Rotated by Random \002,a,\002 M"
	    "atrices U, V:\002,/\002  16=Transposed Jordan Blocks            "
	    " 19=geometric \002,\002alpha, beta=0,1\002,/\002  17=arithm. alp"
	    "ha&beta             \002,\002      20=arithmetic alpha, beta=0,"
	    "1\002,/\002  18=clustered \002,\002alpha, beta=0,1            21"
	    "=random alpha, beta=0,1\002,/\002 Large & Small Matrices:\002,"
	    "/\002  22=(large, small)   \002,\00223=(small,large)    24=(smal"
	    "l,small)    25=(large,large)\002,/\002  26=random O(1) matrices"
	    ".\002)";
    static char fmt_9992[] = "(/\002 Tests performed:  (S is Schur, T is tri"
	    "angular, \002,\002Q and Z are \002,a,\002,\002,/19x,\002l and r "
	    "are the appropriate left and right\002,/19x,\002eigenvectors, re"
	    "sp., a is alpha, b is beta, and\002,/19x,a,\002 means \002,a,"
	    "\002.)\002,/\002 Without ordering: \002,/\002  1 = | A - Q S "
	    "Z\002,a,\002 | / ( |A| n ulp )      2 = | B - Q T Z\002,a,\002 |"
	    " / ( |B| n ulp )\002,/\002  3 = | I - QQ\002,a,\002 | / ( n ulp "
	    ")             4 = | I - ZZ\002,a,\002 | / ( n ulp )\002,/\002  5"
	    " = A is in Schur form S\002,/\002  6 = difference between (alpha"
	    ",beta)\002,\002 and diagonals of (S,T)\002,/\002 With ordering:"
	    " \002,/\002  7 = | (A,B) - Q (S,T) Z\002,a,\002 | / ( |(A,B)| n "
	    "ulp )  \002,/\002  8 = | I - QQ\002,a,\002 | / ( n ulp )        "
	    "    9 = | I - ZZ\002,a,\002 | / ( n ulp )\002,/\002 10 = A is in"
	    " Schur form S\002,/\002 11 = difference between (alpha,beta) and"
	    " diagonals\002,\002 of (S,T)\002,/\002 12 = SDIM is the correct "
	    "number of \002,\002selected eigenvalues\002,/)";
    static char fmt_9991[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2"
	    ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i2,\002 is\002"
	    ",0p,f8.2)";
    static char fmt_9990[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2"
	    ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i2,\002 is\002"
	    ",1p,d10.3)";

    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, s_dim1, 
	    s_offset, t_dim1, t_offset, z_dim1, z_offset, i__1, i__2, i__3, 
	    i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10;

    /* Builtin functions */
    double d_sign(doublereal *, doublereal *);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer iadd, sdim, ierr, nmax, rsub;
    static char sort[1];
    static doublereal temp1, temp2;
    static integer i__, j, n;
    static logical badnn;
    extern /* Subroutine */ int dget51_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *), dget53_(
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *), dget54_(
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *), 
	    dgges_(char *, char *, char *, L_fp, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, doublereal *, integer *, logical *, integer *);
    static integer iinfo;
    static doublereal rmagn[4];
    static integer nmats, jsize, nerrs, i1, jtype, ntest, n1, isort;
    extern /* Subroutine */ int dlatm4_(integer *, integer *, integer *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *, integer *, doublereal *, integer *), dorm2r_(char *, 
	    char *, integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *), dlabad_(doublereal *, doublereal *);
    static logical ilabad;
    static integer jc, nb, in;
    extern doublereal dlamch_(char *);
    static integer jr;
    extern /* Subroutine */ int dlarfg_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *);
    extern doublereal dlarnd_(integer *, integer *);
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static doublereal safmin;
    static integer ioldsd[4];
    static doublereal safmax;
    static integer knteig;
    extern logical dlctes_(doublereal *, doublereal *, doublereal *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *), dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    static integer minwrk, maxwrk;
    static doublereal ulpinv;
    static integer mtypes, ntestt;
    static doublereal ulp;

    /* Fortran I/O blocks */
    static cilist io___40 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___46 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___53 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___55 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9993, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9992, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9991, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9990, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*s_dim1 + a_1]
#define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DDRGES checks the nonsymmetric generalized eigenvalue (Schur form)   
    problem driver DGGES.   

    DGGES factors A and B as Q S Z'  and Q T Z' , where ' means   
    transpose, T is upper triangular, S is in generalized Schur form   
    (block upper triangular, with 1x1 and 2x2 blocks on the diagonal,   
    the 2x2 blocks corresponding to complex conjugate pairs of   
    generalized eigenvalues), and Q and Z are orthogonal. It also   
    computes the generalized eigenvalues (alpha(j),beta(j)), j=1,...,n,   
    Thus, w(j) = alpha(j)/beta(j) is a root of the characteristic   
    equation   
                    det( A - w(j) B ) = 0   
    Optionally it also reorder the eigenvalues so that a selected   
    cluster of eigenvalues appears in the leading diagonal block of the   
    Schur forms.   

    When DDRGES is called, a number of matrix "sizes" ("N's") and a   
    number of matrix "TYPES" are specified.  For each size ("N")   
    and each TYPE of matrix, a pair of matrices (A, B) will be generated   
    and used for testing. For each matrix pair, the following 13 tests   
    will be performed and compared with the threshhold THRESH except   
    the tests (5), (11) and (13).   


    (1)   | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues)   


    (2)   | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues)   


    (3)   | I - QQ' | / ( n ulp ) (no sorting of eigenvalues)   


    (4)   | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues)   

    (5)   if A is in Schur form (i.e. quasi-triangular form)   
          (no sorting of eigenvalues)   

    (6)   if eigenvalues = diagonal blocks of the Schur form (S, T),   
          i.e., test the maximum over j of D(j)  where:   

          if alpha(j) is real:   
                        |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|   
              D(j) = ------------------------ + -----------------------   
                     max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)   

          if alpha(j) is complex:   
                                    | det( s S - w T ) |   
              D(j) = ---------------------------------------------------   
                     ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )   

          and S and T are here the 2 x 2 diagonal blocks of S and T   
          corresponding to the j-th and j+1-th eigenvalues.   
          (no sorting of eigenvalues)   

    (7)   | (A,B) - Q (S,T) Z' | / ( | (A,B) | n ulp )   
               (with sorting of eigenvalues).   

    (8)   | I - QQ' | / ( n ulp ) (with sorting of eigenvalues).   

    (9)   | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues).   

    (10)  if A is in Schur form (i.e. quasi-triangular form)   
          (with sorting of eigenvalues).   

    (11)  if eigenvalues = diagonal blocks of the Schur form (S, T),   
          i.e. test the maximum over j of D(j)  where:   

          if alpha(j) is real:   
                        |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|   
              D(j) = ------------------------ + -----------------------   
                     max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)   

          if alpha(j) is complex:   
                                    | det( s S - w T ) |   
              D(j) = ---------------------------------------------------   
                     ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )   

          and S and T are here the 2 x 2 diagonal blocks of S and T   
          corresponding to the j-th and j+1-th eigenvalues.   
          (with sorting of eigenvalues).   

    (12)  if sorting worked and SDIM is the number of eigenvalues   
          which were SELECTed.   

    Test Matrices   
    =============   

    The sizes of the test matrices are specified by an array   
    NN(1:NSIZES); the value of each element NN(j) specifies one size.   
    The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if   
    DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
    Currently, the list of possible types is:   

    (1)  ( 0, 0 )         (a pair of zero matrices)   

    (2)  ( I, 0 )         (an identity and a zero matrix)   

    (3)  ( 0, I )         (an identity and a zero matrix)   

    (4)  ( I, I )         (a pair of identity matrices)   

            t   t   
    (5)  ( J , J  )       (a pair of transposed Jordan blocks)   

                                        t                ( I   0  )   
    (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )   
                                     ( 0   I  )          ( 0   J  )   
                          and I is a k x k identity and J a (k+1)x(k+1)   
                          Jordan block; k=(N-1)/2   

    (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal   
                          matrix with those diagonal entries.)   
    (8)  ( I, D )   

    (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big   

    (10) ( small*D, big*I )   

    (11) ( big*I, small*D )   

    (12) ( small*I, big*D )   

    (13) ( big*D, big*I )   

    (14) ( small*D, small*I )   

    (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and   
                           D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )   
              t   t   
    (16) Q ( J , J ) Z     where Q and Z are random orthogonal matrices.   

    (17) Q ( T1, T2 ) Z    where T1 and T2 are upper triangular matrices   
                           with random O(1) entries above the diagonal   
                           and diagonal entries diag(T1) =   
                           ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =   
                           ( 0, N-3, N-4,..., 1, 0, 0 )   

    (18) Q ( T1, T2 ) Z    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )   
                           s = machine precision.   

    (19) Q ( T1, T2 ) Z    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )   

                                                           N-5   
    (20) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )   

    (21) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )   
                           diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )   
                           where r1,..., r(N-4) are random.   

    (22) Q ( big*T1, small*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (23) Q ( small*T1, big*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (24) Q ( small*T1, small*T2 ) Z  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (25) Q ( big*T1, big*T2 ) Z      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )   
                                     diag(T2) = ( 0, 1, ..., 1, 0, 0 )   

    (26) Q ( T1, T2 ) Z     where T1 and T2 are random upper-triangular   
                            matrices.   


    Arguments   
    =========   

    NSIZES  (input) INTEGER   
            The number of sizes of matrices to use.  If it is zero,   
            DDRGES does nothing.  NSIZES >= 0.   

    NN      (input) INTEGER array, dimension (NSIZES)   
            An array containing the sizes to be used for the matrices.   
            Zero values will be skipped.  NN >= 0.   

    NTYPES  (input) INTEGER   
            The number of elements in DOTYPE.   If it is zero, DDRGES   
            does nothing.  It must be at least zero.  If it is MAXTYP+1   
            and NSIZES is 1, then an additional type, MAXTYP+1 is   
            defined, which is to use whatever matrix is in A on input.   
            This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
            DOTYPE(MAXTYP+1) is .TRUE. .   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            If DOTYPE(j) is .TRUE., then for each size in NN a   
            matrix of that size and of type j will be generated.   
            If NTYPES is smaller than the maximum number of types   
            defined (PARAMETER MAXTYP), then types NTYPES+1 through   
            MAXTYP will not be generated. If NTYPES is larger   
            than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
            will be ignored.   

    ISEED   (input/output) INTEGER array, dimension (4)   
            On entry ISEED specifies the seed of the random number   
            generator. The array elements should be between 0 and 4095;   
            if not they will be reduced mod 4096. Also, ISEED(4) must   
            be odd.  The random number generator uses a linear   
            congruential sequence limited to small integers, and so   
            should produce machine independent random numbers. The   
            values of ISEED are changed on exit, and can be used in the   
            next call to DDRGES to continue the same random number   
            sequence.   

    THRESH  (input) DOUBLE PRECISION   
            A test will count as "failed" if the "error", computed as   
            described above, exceeds THRESH.  Note that the error is   
            scaled to be O(1), so THRESH should be a reasonably small   
            multiple of 1, e.g., 10 or 100.  In particular, it should   
            not depend on the precision (single vs. double) or the size   
            of the matrix.  THRESH >= 0.   

    NOUNIT  (input) INTEGER   
            The FORTRAN unit number for printing out error messages   
            (e.g., if a routine returns IINFO not equal to 0.)   

    A       (input/workspace) DOUBLE PRECISION array,   
                                         dimension(LDA, max(NN))   
            Used to hold the original A matrix.  Used as input only   
            if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and   
            DOTYPE(MAXTYP+1)=.TRUE.   

    LDA     (input) INTEGER   
            The leading dimension of A, B, S, and T.   
            It must be at least 1 and at least max( NN ).   

    B       (input/workspace) DOUBLE PRECISION array,   
                                         dimension(LDA, max(NN))   
            Used to hold the original B matrix.  Used as input only   
            if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and   
            DOTYPE(MAXTYP+1)=.TRUE.   

    S       (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN))   
            The Schur form matrix computed from A by DGGES.  On exit, S   
            contains the Schur form matrix corresponding to the matrix   
            in A.   

    T       (workspace) DOUBLE PRECISION array, dimension (LDA, max(NN))   
            The upper triangular matrix computed from B by DGGES.   

    Q       (workspace) DOUBLE PRECISION array, dimension (LDQ, max(NN))   
            The (left) orthogonal matrix computed by DGGES.   

    LDQ     (input) INTEGER   
            The leading dimension of Q and Z. It must   
            be at least 1 and at least max( NN ).   

    Z       (workspace) DOUBLE PRECISION array, dimension( LDQ, max(NN) )   
            The (right) orthogonal matrix computed by DGGES.   

    ALPHAR  (workspace) DOUBLE PRECISION array, dimension (max(NN))   
    ALPHAI  (workspace) DOUBLE PRECISION array, dimension (max(NN))   
    BETA    (workspace) DOUBLE PRECISION array, dimension (max(NN))   
            The generalized eigenvalues of (A,B) computed by DGGES.   
            ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th   
            generalized eigenvalue of A and B.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK)   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            LWORK >= MAX( 10*(N+1), 3*N*N ), where N is the largest   
            matrix dimension.   

    RESULT  (output) DOUBLE PRECISION array, dimension (15)   
            The values computed by the tests described above.   
            The values are currently limited to 1/ulp, to avoid overflow.   

    BWORK   (workspace) LOGICAL array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  A routine returned an error code.  INFO is the   
                  absolute value of the INFO value returned.   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t_dim1 = *lda;
    t_offset = 1 + t_dim1 * 1;
    t -= t_offset;
    s_dim1 = *lda;
    s_offset = 1 + s_dim1 * 1;
    s -= s_offset;
    b_dim1 = *lda;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    z_dim1 = *ldq;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --alphar;
    --alphai;
    --beta;
    --work;
    --result;
    --bwork;

    /* Function Body   

       Check for errors */

    *info = 0;

    badnn = FALSE_;
    nmax = 1;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldq <= 1 || *ldq < nmax) {
	*info = -14;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV. */

    minwrk = 1;
    if (*info == 0 && *lwork >= 1) {
/* Computing MAX */
	i__1 = (nmax + 1) * 10, i__2 = nmax * 3 * nmax;
	minwrk = max(i__1,i__2);
/* Computing MAX */
	i__1 = 1, i__2 = ilaenv_(&c__1, "DGEQRF", " ", &nmax, &nmax, &c_n1, &
		c_n1, (ftnlen)6, (ftnlen)1), i__1 = max(i__1,i__2), i__2 = 
		ilaenv_(&c__1, "DORMQR", "LT", &nmax, &nmax, &nmax, &c_n1, (
		ftnlen)6, (ftnlen)2), i__1 = max(i__1,i__2), i__2 = ilaenv_(&
		c__1, "DORGQR", " ", &nmax, &nmax, &nmax, &c_n1, (ftnlen)6, (
		ftnlen)1);
	nb = max(i__1,i__2);
/* Computing MAX */
	i__1 = (nmax + 1) * 10, i__2 = (nmax << 1) + nmax * nb, i__1 = max(
		i__1,i__2), i__2 = nmax * 3 * nmax;
	maxwrk = max(i__1,i__2);
	work[1] = (doublereal) maxwrk;
    }

    if (*lwork < minwrk) {
	*info = -20;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DDRGES", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

    safmin = dlamch_("Safe minimum");
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    safmin /= ulp;
    safmax = 1. / safmin;
    dlabad_(&safmin, &safmax);
    ulpinv = 1. / ulp;

/*     The values RMAGN(2:3) depend on N, see below. */

    rmagn[0] = 0.;
    rmagn[1] = 1.;

/*     Loop over matrix sizes */

    ntestt = 0;
    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	n1 = max(1,n);
	rmagn[2] = safmax * ulp / (doublereal) n1;
	rmagn[3] = safmin * ulpinv * (doublereal) n1;

	if (*nsizes != 1) {
	    mtypes = min(26,*ntypes);
	} else {
	    mtypes = min(27,*ntypes);
	}

/*        Loop over matrix types */

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L180;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 13; ++j) {
		result[j] = 0.;
/* L30: */
	    }

/*           Generate test matrices A and B   

             Description of control parameters:   

             KZLASS: =1 means w/o rotation, =2 means w/ rotation,   
                     =3 means random.   
             KATYPE: the "type" to be passed to DLATM4 for computing A.   
             KAZERO: the pattern of zeros on the diagonal for A:   
                     =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),   
                     =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),   
                     =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of   
                     non-zero entries.)   
             KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),   
                     =2: large, =3: small.   
             IASIGN: 1 if the diagonal elements of A are to be   
                     multiplied by a random magnitude 1 number, =2 if   
                     randomly chosen diagonal blocks are to be rotated   
                     to form 2x2 blocks.   
             KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.   
             KTRIAN: =0: don't fill in the upper triangle, =1: do.   
             KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.   
             RMAGN: used to implement KAMAGN and KBMAGN. */

	    if (mtypes > 26) {
		goto L110;
	    }
	    iinfo = 0;
	    if (kclass[jtype - 1] < 3) {

/*              Generate A (w/o rotation) */

		if ((i__3 = katype[jtype - 1], abs(i__3)) == 3) {
		    in = ((n - 1) / 2 << 1) + 1;
		    if (in != n) {
			dlaset_("Full", &n, &n, &c_b26, &c_b26, &a[a_offset], 
				lda);
		    }
		} else {
		    in = n;
		}
		dlatm4_(&katype[jtype - 1], &in, &kz1[kazero[jtype - 1] - 1], 
			&kz2[kazero[jtype - 1] - 1], &iasign[jtype - 1], &
			rmagn[kamagn[jtype - 1]], &ulp, &rmagn[ktrian[jtype - 
			1] * kamagn[jtype - 1]], &c__2, &iseed[1], &a[
			a_offset], lda);
		iadd = kadd[kazero[jtype - 1] - 1];
		if (iadd > 0 && iadd <= n) {
		    a_ref(iadd, iadd) = 1.;
		}

/*              Generate B (w/o rotation) */

		if ((i__3 = kbtype[jtype - 1], abs(i__3)) == 3) {
		    in = ((n - 1) / 2 << 1) + 1;
		    if (in != n) {
			dlaset_("Full", &n, &n, &c_b26, &c_b26, &b[b_offset], 
				lda);
		    }
		} else {
		    in = n;
		}
		dlatm4_(&kbtype[jtype - 1], &in, &kz1[kbzero[jtype - 1] - 1], 
			&kz2[kbzero[jtype - 1] - 1], &ibsign[jtype - 1], &
			rmagn[kbmagn[jtype - 1]], &c_b32, &rmagn[ktrian[jtype 
			- 1] * kbmagn[jtype - 1]], &c__2, &iseed[1], &b[
			b_offset], lda);
		iadd = kadd[kbzero[jtype - 1] - 1];
		if (iadd != 0 && iadd <= n) {
		    b_ref(iadd, iadd) = 1.;
		}

		if (kclass[jtype - 1] == 2 && n > 0) {

/*                 Include rotations   

                   Generate Q, Z as Householder transformations times   
                   a diagonal matrix. */

		    i__3 = n - 1;
		    for (jc = 1; jc <= i__3; ++jc) {
			i__4 = n;
			for (jr = jc; jr <= i__4; ++jr) {
			    q_ref(jr, jc) = dlarnd_(&c__3, &iseed[1]);
			    z___ref(jr, jc) = dlarnd_(&c__3, &iseed[1]);
/* L40: */
			}
			i__4 = n + 1 - jc;
			dlarfg_(&i__4, &q_ref(jc, jc), &q_ref(jc + 1, jc), &
				c__1, &work[jc]);
			work[(n << 1) + jc] = d_sign(&c_b32, &q_ref(jc, jc));
			q_ref(jc, jc) = 1.;
			i__4 = n + 1 - jc;
			dlarfg_(&i__4, &z___ref(jc, jc), &z___ref(jc + 1, jc),
				 &c__1, &work[n + jc]);
			work[n * 3 + jc] = d_sign(&c_b32, &z___ref(jc, jc));
			z___ref(jc, jc) = 1.;
/* L50: */
		    }
		    q_ref(n, n) = 1.;
		    work[n] = 0.;
		    d__1 = dlarnd_(&c__2, &iseed[1]);
		    work[n * 3] = d_sign(&c_b32, &d__1);
		    z___ref(n, n) = 1.;
		    work[n * 2] = 0.;
		    d__1 = dlarnd_(&c__2, &iseed[1]);
		    work[n * 4] = d_sign(&c_b32, &d__1);

/*                 Apply the diagonal matrices */

		    i__3 = n;
		    for (jc = 1; jc <= i__3; ++jc) {
			i__4 = n;
			for (jr = 1; jr <= i__4; ++jr) {
			    a_ref(jr, jc) = work[(n << 1) + jr] * work[n * 3 
				    + jc] * a_ref(jr, jc);
			    b_ref(jr, jc) = work[(n << 1) + jr] * work[n * 3 
				    + jc] * b_ref(jr, jc);
/* L60: */
			}
/* L70: */
		    }
		    i__3 = n - 1;
		    dorm2r_("L", "N", &n, &n, &i__3, &q[q_offset], ldq, &work[
			    1], &a[a_offset], lda, &work[(n << 1) + 1], &
			    iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    dorm2r_("R", "T", &n, &n, &i__3, &z__[z_offset], ldq, &
			    work[n + 1], &a[a_offset], lda, &work[(n << 1) + 
			    1], &iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    dorm2r_("L", "N", &n, &n, &i__3, &q[q_offset], ldq, &work[
			    1], &b[b_offset], lda, &work[(n << 1) + 1], &
			    iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		    i__3 = n - 1;
		    dorm2r_("R", "T", &n, &n, &i__3, &z__[z_offset], ldq, &
			    work[n + 1], &b[b_offset], lda, &work[(n << 1) + 
			    1], &iinfo);
		    if (iinfo != 0) {
			goto L100;
		    }
		}
	    } else {

/*              Random matrices */

		i__3 = n;
		for (jc = 1; jc <= i__3; ++jc) {
		    i__4 = n;
		    for (jr = 1; jr <= i__4; ++jr) {
			a_ref(jr, jc) = rmagn[kamagn[jtype - 1]] * dlarnd_(&
				c__2, &iseed[1]);
			b_ref(jr, jc) = rmagn[kbmagn[jtype - 1]] * dlarnd_(&
				c__2, &iseed[1]);
/* L80: */
		    }
/* L90: */
		}
	    }

L100:

	    if (iinfo != 0) {
		io___40.ciunit = *nounit;
		s_wsfe(&io___40);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L110:

	    for (i__ = 1; i__ <= 13; ++i__) {
		result[i__] = -1.;
/* L120: */
	    }

/*           Test with and without sorting of eigenvalues */

	    for (isort = 0; isort <= 1; ++isort) {
		if (isort == 0) {
		    *(unsigned char *)sort = 'N';
		    rsub = 0;
		} else {
		    *(unsigned char *)sort = 'S';
		    rsub = 5;
		}

/*              Call DGGES to compute H, T, Q, Z, alpha, and beta. */

		dlacpy_("Full", &n, &n, &a[a_offset], lda, &s[s_offset], lda);
		dlacpy_("Full", &n, &n, &b[b_offset], lda, &t[t_offset], lda);
		ntest = rsub + 1 + isort;
		result[rsub + 1 + isort] = ulpinv;
		dgges_("V", "V", sort, (L_fp)dlctes_, &n, &s[s_offset], lda, &
			t[t_offset], lda, &sdim, &alphar[1], &alphai[1], &
			beta[1], &q[q_offset], ldq, &z__[z_offset], ldq, &
			work[1], lwork, &bwork[1], &iinfo);
		if (iinfo != 0 && iinfo != n + 2) {
		    result[rsub + 1 + isort] = ulpinv;
		    io___46.ciunit = *nounit;
		    s_wsfe(&io___46);
		    do_fio(&c__1, "DGGES", (ftnlen)5);
		    do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		    *info = abs(iinfo);
		    goto L160;
		}

		ntest = rsub + 4;

/*              Do tests 1--4 (or tests 7--9 when reordering ) */

		if (isort == 0) {
		    dget51_(&c__1, &n, &a[a_offset], lda, &s[s_offset], lda, &
			    q[q_offset], ldq, &z__[z_offset], ldq, &work[1], &
			    result[1]);
		    dget51_(&c__1, &n, &b[b_offset], lda, &t[t_offset], lda, &
			    q[q_offset], ldq, &z__[z_offset], ldq, &work[1], &
			    result[2]);
		} else {
		    dget54_(&n, &a[a_offset], lda, &b[b_offset], lda, &s[
			    s_offset], lda, &t[t_offset], lda, &q[q_offset], 
			    ldq, &z__[z_offset], ldq, &work[1], &result[7]);
		}
		dget51_(&c__3, &n, &a[a_offset], lda, &t[t_offset], lda, &q[
			q_offset], ldq, &q[q_offset], ldq, &work[1], &result[
			rsub + 3]);
		dget51_(&c__3, &n, &b[b_offset], lda, &t[t_offset], lda, &z__[
			z_offset], ldq, &z__[z_offset], ldq, &work[1], &
			result[rsub + 4]);

/*              Do test 5 and 6 (or Tests 10 and 11 when reordering):   
                check Schur form of A and compare eigenvalues with   
                diagonals. */

		ntest = rsub + 6;
		temp1 = 0.;

		i__3 = n;
		for (j = 1; j <= i__3; ++j) {
		    ilabad = FALSE_;
		    if (alphai[j] == 0.) {
/* Computing MAX */
			d__7 = safmin, d__8 = (d__2 = alphar[j], abs(d__2)), 
				d__7 = max(d__7,d__8), d__8 = (d__3 = s_ref(j,
				 j), abs(d__3));
/* Computing MAX */
			d__9 = safmin, d__10 = (d__5 = beta[j], abs(d__5)), 
				d__9 = max(d__9,d__10), d__10 = (d__6 = t_ref(
				j, j), abs(d__6));
			temp2 = ((d__1 = alphar[j] - s_ref(j, j), abs(d__1)) /
				 max(d__7,d__8) + (d__4 = beta[j] - t_ref(j, 
				j), abs(d__4)) / max(d__9,d__10)) / ulp;

			if (j < n) {
			    if (s_ref(j + 1, j) != 0.) {
				ilabad = TRUE_;
				result[rsub + 5] = ulpinv;
			    }
			}
			if (j > 1) {
			    if (s_ref(j, j - 1) != 0.) {
				ilabad = TRUE_;
				result[rsub + 5] = ulpinv;
			    }
			}

		    } else {
			if (alphai[j] > 0.) {
			    i1 = j;
			} else {
			    i1 = j - 1;
			}
			if (i1 <= 0 || i1 >= n) {
			    ilabad = TRUE_;
			} else if (i1 < n - 1) {
			    if (s_ref(i1 + 2, i1 + 1) != 0.) {
				ilabad = TRUE_;
				result[rsub + 5] = ulpinv;
			    }
			} else if (i1 > 1) {
			    if (s_ref(i1, i1 - 1) != 0.) {
				ilabad = TRUE_;
				result[rsub + 5] = ulpinv;
			    }
			}
			if (! ilabad) {
			    dget53_(&s_ref(i1, i1), lda, &t_ref(i1, i1), lda, 
				    &beta[j], &alphar[j], &alphai[j], &temp2, 
				    &ierr);
			    if (ierr >= 3) {
				io___52.ciunit = *nounit;
				s_wsfe(&io___52);
				do_fio(&c__1, (char *)&ierr, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&j, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(
					integer));
				do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)
					sizeof(integer));
				e_wsfe();
				*info = abs(ierr);
			    }
			} else {
			    temp2 = ulpinv;
			}

		    }
		    temp1 = max(temp1,temp2);
		    if (ilabad) {
			io___53.ciunit = *nounit;
			s_wsfe(&io___53);
			do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			e_wsfe();
		    }
/* L130: */
		}
		result[rsub + 6] = temp1;

		if (isort >= 1) {

/*                 Do test 12 */

		    ntest = 12;
		    result[12] = 0.;
		    knteig = 0;
		    i__3 = n;
		    for (i__ = 1; i__ <= i__3; ++i__) {
			d__1 = -alphai[i__];
			if (dlctes_(&alphar[i__], &alphai[i__], &beta[i__]) ||
				 dlctes_(&alphar[i__], &d__1, &beta[i__])) {
			    ++knteig;
			}
			if (i__ < n) {
			    d__1 = -alphai[i__ + 1];
			    d__2 = -alphai[i__];
			    if ((dlctes_(&alphar[i__ + 1], &alphai[i__ + 1], &
				    beta[i__ + 1]) || dlctes_(&alphar[i__ + 1]
				    , &d__1, &beta[i__ + 1])) && ! (dlctes_(&
				    alphar[i__], &alphai[i__], &beta[i__]) || 
				    dlctes_(&alphar[i__], &d__2, &beta[i__])) 
				    && iinfo != n + 2) {
				result[12] = ulpinv;
			    }
			}
/* L140: */
		    }
		    if (sdim != knteig) {
			result[12] = ulpinv;
		    }
		}

/* L150: */
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L160:

	    ntestt += ntest;

/*           Print out tests which fail. */

	    i__3 = ntest;
	    for (jr = 1; jr <= i__3; ++jr) {
		if (result[jr] >= *thresh) {

/*                 If this is the first test to fail,   
                   print a header to the data file. */

		    if (nerrs == 0) {
			io___55.ciunit = *nounit;
			s_wsfe(&io___55);
			do_fio(&c__1, "DGS", (ftnlen)3);
			e_wsfe();

/*                    Matrix types */

			io___56.ciunit = *nounit;
			s_wsfe(&io___56);
			e_wsfe();
			io___57.ciunit = *nounit;
			s_wsfe(&io___57);
			e_wsfe();
			io___58.ciunit = *nounit;
			s_wsfe(&io___58);
			do_fio(&c__1, "Orthogonal", (ftnlen)10);
			e_wsfe();

/*                    Tests performed */

			io___59.ciunit = *nounit;
			s_wsfe(&io___59);
			do_fio(&c__1, "orthogonal", (ftnlen)10);
			do_fio(&c__1, "'", (ftnlen)1);
			do_fio(&c__1, "transpose", (ftnlen)9);
			for (j = 1; j <= 8; ++j) {
			    do_fio(&c__1, "'", (ftnlen)1);
			}
			e_wsfe();

		    }
		    ++nerrs;
		    if (result[jr] < 1e4) {
			io___60.ciunit = *nounit;
			s_wsfe(&io___60);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
		    } else {
			io___61.ciunit = *nounit;
			s_wsfe(&io___61);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer))
				;
			do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(
				integer));
			do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
		    }
		}
/* L170: */
	    }

L180:
	    ;
	}
/* L190: */
    }

/*     Summary */

    alasvm_("DGS", nounit, &nerrs, &ntestt, &c__0);

    work[1] = (doublereal) maxwrk;

    return 0;








/*     End of DDRGES */

} /* ddrges_ */