コード例 #1
0
ファイル: dc.c プロジェクト: chaithracgowda/cg-simple-code
void display()
{
int i=0;
glClear(GL_COLOR_BUFFER_BIT);
buret();
glPushMatrix();
glutTimerFunc(400,update,0);
glTranslated(a,b,0.0);
dro();
glutPostRedisplay();
glPopMatrix();
glPushMatrix();
glTranslated(c,d,0.0);
conical();
scanfill1(75,25,78,22,122,22,125,25);
glutPostRedisplay();
glPopMatrix();
scanfill(94,185,106,185,106,111,94,111);
scanfill(95,111,107,111,103,90,99,90);
scanfill(95,111,103,90,101,80,101,80);
sprintf(125,100,"conical");
glColor3f(1.0,1.0,1.0);
glRasterPos2i(100,120);
glutBitmapCharacter(GLUT_BITMAP_HELVETICA_12,"L");
glFlush();
}
コード例 #2
0
void display()
{
	x1=200.0;y1=200.0;x2=100.0,y2=300.0;x3=200.0;
	y3=400.0;x4=300.0;y4=300.0;
	glClear(GL_COLOR_BUFFER_BIT);
	glColor3f(0.0,0.0,1.0);
	glBegin(GL_LINE_LOOP);
		glVertex2f(x1,y1);
		glVertex2f(x2,y2);\
		glVertex2f(x3,y3);
		glVertex2f(x4,y4);
	glEnd();
	scanfill(x1,y1,x2,y2,x3,y3,x4,y4);
	glFlush();
}
コード例 #3
0
ファイル: cg.c プロジェクト: abhishekdutta/abhi_list
void display6()
{
    xo1=200.0;yo1=200.0;x2=100.0;y2=300.0;x3=200.0;y3=400.0;x4=300.0;y4=300.0;
  glClear(GL_COLOR_BUFFER_BIT);
    glColor3f(0.0,0.0,1.0);
   glRasterPos2f(50.03,60.57);
   Write("Close");
   glutMouseFunc(OnClick1);

     if(xo>38&&xo<69&&yo>72&&yo<91)
          glutHideWindow(); 
  glColor3f(0.0,0.0,1.0);
  glBegin(GL_LINE_LOOP);
  glVertex2f(xo1,yo1);
  glVertex2f(x2,y2);
  glVertex2f(x3,y3);
  glVertex2f(x4,y4);
  glEnd();
  scanfill(xo1,yo1,x2,y2,x3,y3,x4,y4);
  glFlush();
}
コード例 #4
0
ファイル: scanfill.c プロジェクト: sftd/blender
unsigned int BLI_scanfill_calc_ex(ScanFillContext *sf_ctx, const int flag, const float nor_proj[3])
{
	/*
	 * - fill works with its own lists, so create that first (no faces!)
	 * - for vertices, put in ->tmp.v the old pointer
	 * - struct elements xs en ys are not used here: don't hide stuff in it
	 * - edge flag ->f becomes 2 when it's a new edge
	 * - mode: & 1 is check for crossings, then create edges (TO DO )
	 * - returns number of triangle faces added.
	 */
	ListBase tempve, temped;
	ScanFillVert *eve;
	ScanFillEdge *eed, *eed_next;
	PolyFill *pflist, *pf;
	float *min_xy_p, *max_xy_p;
	unsigned int totfaces = 0;  /* total faces added */
	unsigned short a, c, poly = 0;
	bool ok;
	float mat_2d[3][3];

	BLI_assert(!nor_proj || len_squared_v3(nor_proj) > FLT_EPSILON);

#ifdef DEBUG
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
		/* these values used to be set,
		 * however they should always be zero'd so check instead */
		BLI_assert(eve->f == 0);
		BLI_assert(sf_ctx->poly_nr || eve->poly_nr == 0);
		BLI_assert(eve->edge_tot == 0);
	}
#endif

#if 0
	if (flag & BLI_SCANFILL_CALC_QUADTRI_FASTPATH) {
		const int totverts = BLI_countlist(&sf_ctx->fillvertbase);

		if (totverts == 3) {
			eve = sf_ctx->fillvertbase.first;

			addfillface(sf_ctx, eve, eve->next, eve->next->next);
			return 1;
		}
		else if (totverts == 4) {
			float vec1[3], vec2[3];

			eve = sf_ctx->fillvertbase.first;
			/* no need to check 'eve->next->next->next' is valid, already counted */
			/* use shortest diagonal for quad */
			sub_v3_v3v3(vec1, eve->co, eve->next->next->co);
			sub_v3_v3v3(vec2, eve->next->co, eve->next->next->next->co);

			if (dot_v3v3(vec1, vec1) < dot_v3v3(vec2, vec2)) {
				addfillface(sf_ctx, eve, eve->next, eve->next->next);
				addfillface(sf_ctx, eve->next->next, eve->next->next->next, eve);
			}
			else {
				addfillface(sf_ctx, eve->next, eve->next->next, eve->next->next->next);
				addfillface(sf_ctx, eve->next->next->next, eve, eve->next);
			}
			return 2;
		}
	}
#endif

	/* first test vertices if they are in edges */
	/* including resetting of flags */
	for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
		BLI_assert(sf_ctx->poly_nr != SF_POLY_UNSET || eed->poly_nr == SF_POLY_UNSET);
		eed->v1->f = SF_VERT_AVAILABLE;
		eed->v2->f = SF_VERT_AVAILABLE;
	}

	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
		if (eve->f == SF_VERT_AVAILABLE) {
			break;
		}
	}

	if (UNLIKELY(eve == NULL)) {
		return 0;
	}
	else {
		float n[3];

		if (nor_proj) {
			copy_v3_v3(n, nor_proj);
		}
		else {
			/* define projection: with 'best' normal */
			/* Newell's Method */
			/* Similar code used elsewhere, but this checks for double ups
			 * which historically this function supports so better not change */

			/* warning: this only gives stable direction with single polygons,
			 * ideally we'd calcualte connectivity and calculate each polys normal, see T41047 */
			const float *v_prev;

			zero_v3(n);
			eve = sf_ctx->fillvertbase.last;
			v_prev = eve->co;

			for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
				if (LIKELY(!compare_v3v3(v_prev, eve->co, SF_EPSILON))) {
					add_newell_cross_v3_v3v3(n, v_prev, eve->co);
					v_prev = eve->co;
				}
			}
		}

		if (UNLIKELY(normalize_v3(n) == 0.0f)) {
			return 0;
		}

		axis_dominant_v3_to_m3(mat_2d, n);
	}


	/* STEP 1: COUNT POLYS */
	if (sf_ctx->poly_nr != SF_POLY_UNSET) {
		poly = (unsigned short)(sf_ctx->poly_nr + 1);
		sf_ctx->poly_nr = SF_POLY_UNSET;
	}

	if (flag & BLI_SCANFILL_CALC_POLYS && (poly == 0)) {
		for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
			mul_v2_m3v3(eve->xy, mat_2d, eve->co);

			/* get first vertex with no poly number */
			if (eve->poly_nr == SF_POLY_UNSET) {
				unsigned int toggle = 0;
				/* now a sort of select connected */
				ok = true;
				eve->poly_nr = poly;

				while (ok) {

					ok = false;

					toggle++;
					for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last;
					     eed;
					     eed = (toggle & 1) ? eed->next : eed->prev)
					{
						if (eed->v1->poly_nr == SF_POLY_UNSET && eed->v2->poly_nr == poly) {
							eed->v1->poly_nr = poly;
							eed->poly_nr = poly;
							ok = true;
						}
						else if (eed->v2->poly_nr == SF_POLY_UNSET && eed->v1->poly_nr == poly) {
							eed->v2->poly_nr = poly;
							eed->poly_nr = poly;
							ok = true;
						}
						else if (eed->poly_nr == SF_POLY_UNSET) {
							if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) {
								eed->poly_nr = poly;
								ok = true;
							}
						}
					}
				}

				poly++;
			}
		}
		/* printf("amount of poly's: %d\n", poly); */
	}
	else if (poly) {
		/* we pre-calculated poly_nr */
		for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
			mul_v2_m3v3(eve->xy, mat_2d, eve->co);
		}
	}
	else {
		poly = 1;

		for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
			mul_v2_m3v3(eve->xy, mat_2d, eve->co);
			eve->poly_nr = 0;
		}

		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
			eed->poly_nr = 0;
		}
	}

	/* STEP 2: remove loose edges and strings of edges */
	if (flag & BLI_SCANFILL_CALC_LOOSE) {
		unsigned int toggle = 0;
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
			if (eed->v1->edge_tot++ > 250) break;
			if (eed->v2->edge_tot++ > 250) break;
		}
		if (eed) {
			/* otherwise it's impossible to be sure you can clear vertices */
#ifdef DEBUG
			printf("No vertices with 250 edges allowed!\n");
#endif
			return 0;
		}

		/* does it only for vertices with (->edge_tot == 1) */
		testvertexnearedge(sf_ctx);

		ok = true;
		while (ok) {
			ok = false;

			toggle++;
			for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last;
			     eed;
			     eed = eed_next)
			{
				eed_next = (toggle & 1) ? eed->next : eed->prev;
				if (eed->v1->edge_tot == 1) {
					eed->v2->edge_tot--;
					BLI_remlink(&sf_ctx->fillvertbase, eed->v1);
					BLI_remlink(&sf_ctx->filledgebase, eed);
					ok = true;
				}
				else if (eed->v2->edge_tot == 1) {
					eed->v1->edge_tot--;
					BLI_remlink(&sf_ctx->fillvertbase, eed->v2);
					BLI_remlink(&sf_ctx->filledgebase, eed);
					ok = true;
				}
			}
		}
		if (BLI_listbase_is_empty(&sf_ctx->filledgebase)) {
			/* printf("All edges removed\n"); */
			return 0;
		}
	}
	else {
		/* skip checks for loose edges */
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
			eed->v1->edge_tot++;
			eed->v2->edge_tot++;
		}
#ifdef DEBUG
		/* ensure we're right! */
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
			BLI_assert(eed->v1->edge_tot != 1);
			BLI_assert(eed->v2->edge_tot != 1);
		}
#endif
	}


	/* CURRENT STATUS:
	 * - eve->f        :1 = available in edges
	 * - eve->poly_nr  :polynumber
	 * - eve->edge_tot :amount of edges connected to vertex
	 * - eve->tmp.v    :store! original vertex number
	 * 
	 * - eed->f        :1 = boundary edge (optionally set by caller)
	 * - eed->poly_nr  :poly number
	 */


	/* STEP 3: MAKE POLYFILL STRUCT */
	pflist = MEM_mallocN(sizeof(*pflist) * (size_t)poly, "edgefill");
	pf = pflist;
	for (a = 0; a < poly; a++) {
		pf->edges = pf->verts = 0;
		pf->min_xy[0] = pf->min_xy[1] =  1.0e20f;
		pf->max_xy[0] = pf->max_xy[1] = -1.0e20f;
		pf->f = SF_POLY_NEW;
		pf->nr = a;
		pf++;
	}
	for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
		pflist[eed->poly_nr].edges++;
	}

	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
		pflist[eve->poly_nr].verts++;
		min_xy_p = pflist[eve->poly_nr].min_xy;
		max_xy_p = pflist[eve->poly_nr].max_xy;

		min_xy_p[0] = (min_xy_p[0]) < (eve->xy[0]) ? (min_xy_p[0]) : (eve->xy[0]);
		min_xy_p[1] = (min_xy_p[1]) < (eve->xy[1]) ? (min_xy_p[1]) : (eve->xy[1]);
		max_xy_p[0] = (max_xy_p[0]) > (eve->xy[0]) ? (max_xy_p[0]) : (eve->xy[0]);
		max_xy_p[1] = (max_xy_p[1]) > (eve->xy[1]) ? (max_xy_p[1]) : (eve->xy[1]);
		if (eve->edge_tot > 2) {
			pflist[eve->poly_nr].f = SF_POLY_VALID;
		}
	}

	/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
	 *  ( bounds just to divide it in pieces for optimization, 
	 *    the edgefill itself has good auto-hole detection)
	 * WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
	
	if ((flag & BLI_SCANFILL_CALC_HOLES) && (poly > 1)) {
		unsigned short *polycache, *pc;

		/* so, sort first */
		qsort(pflist, (size_t)poly, sizeof(PolyFill), vergpoly);

#if 0
		pf = pflist;
		for (a = 0; a < poly; a++) {
			printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
			PRINT2(f, f, pf->min[0], pf->min[1]);
			pf++;
		}
#endif

		polycache = pc = MEM_callocN(sizeof(*polycache) * (size_t)poly, "polycache");
		pf = pflist;
		for (a = 0; a < poly; a++, pf++) {
			for (c = (unsigned short)(a + 1); c < poly; c++) {
				
				/* if 'a' inside 'c': join (bbox too)
				 * Careful: 'a' can also be inside another poly.
				 */
				if (boundisect(pf, pflist + c)) {
					*pc = c;
					pc++;
				}
				/* only for optimize! */
				/* else if (pf->max_xy[0] < (pflist+c)->min[cox]) break; */
				
			}
			while (pc != polycache) {
				pc--;
				mergepolysSimp(sf_ctx, pf, pflist + *pc);
			}
		}
		MEM_freeN(polycache);
	}

#if 0
	printf("after merge\n");
	pf = pflist;
	for (a = 0; a < poly; a++) {
		printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
		pf++;
	}
#endif

	/* STEP 5: MAKE TRIANGLES */

	tempve.first = sf_ctx->fillvertbase.first;
	tempve.last = sf_ctx->fillvertbase.last;
	temped.first = sf_ctx->filledgebase.first;
	temped.last = sf_ctx->filledgebase.last;
	BLI_listbase_clear(&sf_ctx->fillvertbase);
	BLI_listbase_clear(&sf_ctx->filledgebase);

	pf = pflist;
	for (a = 0; a < poly; a++) {
		if (pf->edges > 1) {
			splitlist(sf_ctx, &tempve, &temped, pf->nr);
			totfaces += scanfill(sf_ctx, pf, flag);
		}
		pf++;
	}
	BLI_movelisttolist(&sf_ctx->fillvertbase, &tempve);
	BLI_movelisttolist(&sf_ctx->filledgebase, &temped);

	/* FREE */

	MEM_freeN(pflist);

	return totfaces;
}
コード例 #5
0
int BLI_edgefill(int mat_nr)
{
	/*
	  - fill works with its own lists, so create that first (no faces!)
	  - for vertices, put in ->tmp.v the old pointer
	  - struct elements xs en ys are not used here: don't hide stuff in it
	  - edge flag ->f becomes 2 when it's a new edge
	  - mode: & 1 is check for crossings, then create edges (TO DO )
	*/
	ListBase tempve, temped;
	EditVert *eve;
	EditEdge *eed,*nexted;
	PolyFill *pflist,*pf;
	float *minp, *maxp, *v1, *v2, norm[3], len;
	short a,c,poly=0,ok=0,toggle=0;

	/* reset variables */
	eve= fillvertbase.first;
	while(eve) {
		eve->f= 0;
		eve->xs= 0;
		eve->h= 0;
		eve= eve->next;
	}

	/* first test vertices if they are in edges */
	/* including resetting of flags */
	eed= filledgebase.first;
	while(eed) {
		eed->f= eed->f1= eed->h= 0;
		eed->v1->f= 1;
		eed->v2->f= 1;

		eed= eed->next;
	}

	eve= fillvertbase.first;
	while(eve) {
		if(eve->f & 1) {
			ok=1; 
			break;
		}
		eve= eve->next;
	}

	if(ok==0) return 0;

	/* NEW NEW! define projection: with 'best' normal */
	/* just use the first three different vertices */
	
	/* THIS PART STILL IS PRETTY WEAK! (ton) */
	
	eve= fillvertbase.last;
	len= 0.0;
	v1= eve->co;
	v2= 0;
	eve= fillvertbase.first;
	while(eve) {
		if(v2) {
			if( compare_v3v3(v2, eve->co, COMPLIMIT)==0) {
				len= normal_tri_v3( norm,v1, v2, eve->co);
				if(len != 0.0) break;
			}
		}
		else if(compare_v3v3(v1, eve->co, COMPLIMIT)==0) {
			v2= eve->co;
		}
		eve= eve->next;
	}

	if(len==0.0) return 0;	/* no fill possible */

	norm[0]= fabs(norm[0]);
	norm[1]= fabs(norm[1]);
	norm[2]= fabs(norm[2]);
	
	if(norm[2]>=norm[0] && norm[2]>=norm[1]) {
		cox= 0; coy= 1;
	}
	else if(norm[1]>=norm[0] && norm[1]>=norm[2]) {
		cox= 0; coy= 2;
	}
	else {
		cox= 1; coy= 2;
	}

	/* STEP 1: COUNT POLYS */
	eve= fillvertbase.first;
	while(eve) {
		/* get first vertex with no poly number */
		if(eve->xs==0) {
			poly++;
			/* now a sortof select connected */
			ok= 1;
			eve->xs= poly;
			
			while(ok) {
				
				ok= 0;
				toggle++;
				if(toggle & 1) eed= filledgebase.first;
				else eed= filledgebase.last;

				while(eed) {
					if(eed->v1->xs==0 && eed->v2->xs==poly) {
						eed->v1->xs= poly;
						eed->f1= poly;
						ok= 1;
					}
					else if(eed->v2->xs==0 && eed->v1->xs==poly) {
						eed->v2->xs= poly;
						eed->f1= poly;
						ok= 1;
					}
					else if(eed->f1==0) {
						if(eed->v1->xs==poly && eed->v2->xs==poly) {
							eed->f1= poly;
							ok= 1;
						}
					}
					if(toggle & 1) eed= eed->next;
					else eed= eed->prev;
				}
			}
		}
		eve= eve->next;
	}
	/* printf("amount of poly's: %d\n",poly); */

	/* STEP 2: remove loose edges and strings of edges */
	eed= filledgebase.first;
	while(eed) {
		if(eed->v1->h++ >250) break;
		if(eed->v2->h++ >250) break;
		eed= eed->next;
	}
	if(eed) {
		/* otherwise it's impossible to be sure you can clear vertices */
		callLocalErrorCallBack("No vertices with 250 edges allowed!");
		return 0;
	}
	
	/* does it only for vertices with ->h==1 */
	testvertexnearedge();

	ok= 1;
	while(ok) {
		ok= 0;
		toggle++;
		if(toggle & 1) eed= filledgebase.first;
		else eed= filledgebase.last;
		while(eed) {
			if(toggle & 1) nexted= eed->next;
			else nexted= eed->prev;
			if(eed->v1->h==1) {
				eed->v2->h--;
				BLI_remlink(&fillvertbase,eed->v1); 
				BLI_remlink(&filledgebase,eed); 
				ok= 1;
			}
			else if(eed->v2->h==1) {
				eed->v1->h--;
				BLI_remlink(&fillvertbase,eed->v2); 
				BLI_remlink(&filledgebase,eed); 
				ok= 1;
			}
			eed= nexted;
		}
	}
	if(filledgebase.first==0) {
		/* printf("All edges removed\n"); */
		return 0;
	}


	/* CURRENT STATUS:
	- eve->f      :1= availalble in edges
	- eve->xs     :polynumber
	- eve->h      :amount of edges connected to vertex
	- eve->tmp.v  :store! original vertex number

	- eed->f  :
	- eed->f1 :poly number
	*/


	/* STEP 3: MAKE POLYFILL STRUCT */
	pflist= (PolyFill *)MEM_callocN(poly*sizeof(PolyFill),"edgefill");
	pf= pflist;
	for(a=1;a<=poly;a++) {
		pf->nr= a;
		pf->min[0]=pf->min[1]=pf->min[2]= 1.0e20;
		pf->max[0]=pf->max[1]=pf->max[2]= -1.0e20;
		pf++;
	}
	eed= filledgebase.first;
	while(eed) {
		pflist[eed->f1-1].edges++;
		eed= eed->next;
	}

	eve= fillvertbase.first;
	while(eve) {
		pflist[eve->xs-1].verts++;
		minp= pflist[eve->xs-1].min;
		maxp= pflist[eve->xs-1].max;

		minp[cox]= (minp[cox])<(eve->co[cox]) ? (minp[cox]) : (eve->co[cox]);
		minp[coy]= (minp[coy])<(eve->co[coy]) ? (minp[coy]) : (eve->co[coy]);
		maxp[cox]= (maxp[cox])>(eve->co[cox]) ? (maxp[cox]) : (eve->co[cox]);
		maxp[coy]= (maxp[coy])>(eve->co[coy]) ? (maxp[coy]) : (eve->co[coy]);
		if(eve->h>2) pflist[eve->xs-1].f= 1;

		eve= eve->next;
	}

	/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
	 *  ( bounds just to divide it in pieces for optimization, 
	 *    the edgefill itself has good auto-hole detection)
	 * WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
	
	if(poly>1) {
		short *polycache, *pc;

		/* so, sort first */
		qsort(pflist, poly, sizeof(PolyFill), vergpoly);
		
		/*pf= pflist;
		for(a=1;a<=poly;a++) {
			printf("poly:%d edges:%d verts:%d flag: %d\n",a,pf->edges,pf->verts,pf->f);
			PRINT2(f, f, pf->min[0], pf->min[1]);
			pf++;
		}*/
	
		polycache= pc= MEM_callocN(sizeof(short)*poly, "polycache");
		pf= pflist;
		for(a=0; a<poly; a++, pf++) {
			for(c=a+1;c<poly;c++) {
				
				/* if 'a' inside 'c': join (bbox too)
				 * Careful: 'a' can also be inside another poly.
				 */
				if(boundisect(pf, pflist+c)) {
					*pc= c;
					pc++;
				}
				/* only for optimize! */
				/* else if(pf->max[cox] < (pflist+c)->min[cox]) break; */
				
			}
			while(pc!=polycache) {
				pc--;
				mergepolysSimp(pf, pflist+ *pc);
			}
		}
		MEM_freeN(polycache);
	}
	
	/* printf("after merge\n");
	pf= pflist;
	for(a=1;a<=poly;a++) {
		printf("poly:%d edges:%d verts:%d flag: %d\n",a,pf->edges,pf->verts,pf->f);
		pf++;
	} */

	/* STEP 5: MAKE TRIANGLES */

	tempve.first= fillvertbase.first;
	tempve.last= fillvertbase.last;
	temped.first= filledgebase.first;
	temped.last= filledgebase.last;
	fillvertbase.first=fillvertbase.last= 0;
	filledgebase.first=filledgebase.last= 0;

	pf= pflist;
	for(a=0;a<poly;a++) {
		if(pf->edges>1) {
			splitlist(&tempve,&temped,pf->nr);
			scanfill(pf, mat_nr);
		}
		pf++;
	}
	BLI_movelisttolist(&fillvertbase,&tempve);
	BLI_movelisttolist(&filledgebase,&temped);

	/* FREE */

	MEM_freeN(pflist);
	return 1;

}
コード例 #6
0
int BLI_edgefill_ex(ScanFillContext *sf_ctx, const short do_quad_tri_speedup, const float nor_proj[3])
{
	/*
	 * - fill works with its own lists, so create that first (no faces!)
	 * - for vertices, put in ->tmp.v the old pointer
	 * - struct elements xs en ys are not used here: don't hide stuff in it
	 * - edge flag ->f becomes 2 when it's a new edge
	 * - mode: & 1 is check for crossings, then create edges (TO DO )
	 * - returns number of triangle faces added.
	 */
	ListBase tempve, temped;
	ScanFillVert *eve;
	ScanFillEdge *eed, *nexted;
	PolyFill *pflist, *pf;
	float *min_xy_p, *max_xy_p;
	short a, c, poly = 0, ok = 0, toggle = 0;
	int totfaces = 0; /* total faces added */
	int co_x, co_y;

	/* reset variables */
	eve = sf_ctx->fillvertbase.first;
	a = 0;
	while (eve) {
		eve->f = 0;
		eve->poly_nr = 0;
		eve->h = 0;
		eve = eve->next;
		a += 1;
	}

	if (do_quad_tri_speedup && (a == 3)) {
		eve = sf_ctx->fillvertbase.first;

		addfillface(sf_ctx, eve, eve->next, eve->next->next);
		return 1;
	}
	else if (do_quad_tri_speedup && (a == 4)) {
		float vec1[3], vec2[3];

		eve = sf_ctx->fillvertbase.first;
		/* no need to check 'eve->next->next->next' is valid, already counted */
		/* use shortest diagonal for quad */
		sub_v3_v3v3(vec1, eve->co, eve->next->next->co);
		sub_v3_v3v3(vec2, eve->next->co, eve->next->next->next->co);

		if (dot_v3v3(vec1, vec1) < dot_v3v3(vec2, vec2)) {
			addfillface(sf_ctx, eve, eve->next, eve->next->next);
			addfillface(sf_ctx, eve->next->next, eve->next->next->next, eve);
		}
		else {
			addfillface(sf_ctx, eve->next, eve->next->next, eve->next->next->next);
			addfillface(sf_ctx, eve->next->next->next, eve, eve->next);
		}
		return 2;
	}

	/* first test vertices if they are in edges */
	/* including resetting of flags */
	eed = sf_ctx->filledgebase.first;
	while (eed) {
		eed->poly_nr = 0;
		eed->v1->f = SF_VERT_UNKNOWN;
		eed->v2->f = SF_VERT_UNKNOWN;

		eed = eed->next;
	}

	eve = sf_ctx->fillvertbase.first;
	while (eve) {
		if (eve->f & SF_VERT_UNKNOWN) {
			ok = 1;
			break;
		}
		eve = eve->next;
	}

	if (ok == 0) {
		return 0;
	}
	else {
		float n[3];

		if (nor_proj) {
			copy_v3_v3(n, nor_proj);
		}
		else {
			/* define projection: with 'best' normal */
			/* Newell's Method */
			/* Similar code used elsewhere, but this checks for double ups
			 * which historically this function supports so better not change */
			float *v_prev;

			zero_v3(n);
			eve = sf_ctx->fillvertbase.last;
			v_prev = eve->co;

			for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
				if (LIKELY(!compare_v3v3(v_prev, eve->co, SF_EPSILON))) {
					add_newell_cross_v3_v3v3(n, v_prev, eve->co);
					v_prev = eve->co;
				}
			}
		}

		if (UNLIKELY(normalize_v3(n) == 0.0f)) {
			return 0;
		}

		axis_dominant_v3(&co_x, &co_y, n);
	}


	/* STEP 1: COUNT POLYS */
	eve = sf_ctx->fillvertbase.first;
	while (eve) {
		eve->xy[0] = eve->co[co_x];
		eve->xy[1] = eve->co[co_y];

		/* get first vertex with no poly number */
		if (eve->poly_nr == 0) {
			poly++;
			/* now a sort of select connected */
			ok = 1;
			eve->poly_nr = poly;
			
			while (ok) {
				
				ok = 0;
				toggle++;
				if (toggle & 1) eed = sf_ctx->filledgebase.first;
				else eed = sf_ctx->filledgebase.last;

				while (eed) {
					if (eed->v1->poly_nr == 0 && eed->v2->poly_nr == poly) {
						eed->v1->poly_nr = poly;
						eed->poly_nr = poly;
						ok = 1;
					}
					else if (eed->v2->poly_nr == 0 && eed->v1->poly_nr == poly) {
						eed->v2->poly_nr = poly;
						eed->poly_nr = poly;
						ok = 1;
					}
					else if (eed->poly_nr == 0) {
						if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) {
							eed->poly_nr = poly;
							ok = 1;
						}
					}
					if (toggle & 1) eed = eed->next;
					else eed = eed->prev;
				}
			}
		}
		eve = eve->next;
	}
	/* printf("amount of poly's: %d\n",poly); */

	/* STEP 2: remove loose edges and strings of edges */
	eed = sf_ctx->filledgebase.first;
	while (eed) {
		if (eed->v1->h++ > 250) break;
		if (eed->v2->h++ > 250) break;
		eed = eed->next;
	}
	if (eed) {
		/* otherwise it's impossible to be sure you can clear vertices */
		callLocalErrorCallBack("No vertices with 250 edges allowed!");
		return 0;
	}
	
	/* does it only for vertices with ->h==1 */
	testvertexnearedge(sf_ctx);

	ok = 1;
	while (ok) {
		ok = 0;
		toggle++;
		if (toggle & 1) eed = sf_ctx->filledgebase.first;
		else eed = sf_ctx->filledgebase.last;
		while (eed) {
			if (toggle & 1) nexted = eed->next;
			else nexted = eed->prev;
			if (eed->v1->h == 1) {
				eed->v2->h--;
				BLI_remlink(&sf_ctx->fillvertbase, eed->v1);
				BLI_remlink(&sf_ctx->filledgebase, eed);
				ok = 1;
			}
			else if (eed->v2->h == 1) {
				eed->v1->h--;
				BLI_remlink(&sf_ctx->fillvertbase, eed->v2);
				BLI_remlink(&sf_ctx->filledgebase, eed);
				ok = 1;
			}
			eed = nexted;
		}
	}
	if (sf_ctx->filledgebase.first == 0) {
		/* printf("All edges removed\n"); */
		return 0;
	}


	/* CURRENT STATUS:
	 * - eve->f       :1= availalble in edges
	 * - eve->xs      :polynumber
	 * - eve->h       :amount of edges connected to vertex
	 * - eve->tmp.v   :store! original vertex number
	 * 
	 * - eed->f       :1= boundary edge (optionally set by caller)
	 * - eed->poly_nr :poly number
	 */


	/* STEP 3: MAKE POLYFILL STRUCT */
	pflist = (PolyFill *)MEM_callocN(poly * sizeof(PolyFill), "edgefill");
	pf = pflist;
	for (a = 1; a <= poly; a++) {
		pf->nr = a;
		pf->min_xy[0] = pf->min_xy[1] =  1.0e20;
		pf->max_xy[0] = pf->max_xy[1] = -1.0e20;
		pf++;
	}
	eed = sf_ctx->filledgebase.first;
	while (eed) {
		pflist[eed->poly_nr - 1].edges++;
		eed = eed->next;
	}

	eve = sf_ctx->fillvertbase.first;
	while (eve) {
		pflist[eve->poly_nr - 1].verts++;
		min_xy_p = pflist[eve->poly_nr - 1].min_xy;
		max_xy_p = pflist[eve->poly_nr - 1].max_xy;

		min_xy_p[0] = (min_xy_p[0]) < (eve->xy[0]) ? (min_xy_p[0]) : (eve->xy[0]);
		min_xy_p[1] = (min_xy_p[1]) < (eve->xy[1]) ? (min_xy_p[1]) : (eve->xy[1]);
		max_xy_p[0] = (max_xy_p[0]) > (eve->xy[0]) ? (max_xy_p[0]) : (eve->xy[0]);
		max_xy_p[1] = (max_xy_p[1]) > (eve->xy[1]) ? (max_xy_p[1]) : (eve->xy[1]);
		if (eve->h > 2) pflist[eve->poly_nr - 1].f = 1;

		eve = eve->next;
	}

	/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
	 *  ( bounds just to divide it in pieces for optimization, 
	 *    the edgefill itself has good auto-hole detection)
	 * WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
	
	if (poly > 1) {
		short *polycache, *pc;

		/* so, sort first */
		qsort(pflist, poly, sizeof(PolyFill), vergpoly);

#if 0
		pf = pflist;
		for (a = 1; a <= poly; a++) {
			printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
			PRINT2(f, f, pf->min[0], pf->min[1]);
			pf++;
		}
#endif
	
		polycache = pc = MEM_callocN(sizeof(short) * poly, "polycache");
		pf = pflist;
		for (a = 0; a < poly; a++, pf++) {
			for (c = a + 1; c < poly; c++) {
				
				/* if 'a' inside 'c': join (bbox too)
				 * Careful: 'a' can also be inside another poly.
				 */
				if (boundisect(pf, pflist + c)) {
					*pc = c;
					pc++;
				}
				/* only for optimize! */
				/* else if (pf->max_xy[0] < (pflist+c)->min[cox]) break; */
				
			}
			while (pc != polycache) {
				pc--;
				mergepolysSimp(sf_ctx, pf, pflist + *pc);
			}
		}
		MEM_freeN(polycache);
	}

#if 0
	printf("after merge\n");
	pf = pflist;
	for (a = 1; a <= poly; a++) {
		printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
		pf++;
	}
#endif

	/* STEP 5: MAKE TRIANGLES */

	tempve.first = sf_ctx->fillvertbase.first;
	tempve.last = sf_ctx->fillvertbase.last;
	temped.first = sf_ctx->filledgebase.first;
	temped.last = sf_ctx->filledgebase.last;
	sf_ctx->fillvertbase.first = sf_ctx->fillvertbase.last = NULL;
	sf_ctx->filledgebase.first = sf_ctx->filledgebase.last = NULL;

	pf = pflist;
	for (a = 0; a < poly; a++) {
		if (pf->edges > 1) {
			splitlist(sf_ctx, &tempve, &temped, pf->nr);
			totfaces += scanfill(sf_ctx, pf);
		}
		pf++;
	}
	BLI_movelisttolist(&sf_ctx->fillvertbase, &tempve);
	BLI_movelisttolist(&sf_ctx->filledgebase, &temped);

	/* FREE */

	MEM_freeN(pflist);

	return totfaces;
}