コード例 #1
0
/**
 * __ccs_search_binary_handler - Load policy before calling search_binary_handler().
 *
 * @bprm: Pointer to "struct linux_binprm".
 * @regs: Pointer to "struct pt_regs".
 *
 * Returns 0 on success, negative value otherwise.
 */
static int __ccs_search_binary_handler(struct linux_binprm *bprm,
				       struct pt_regs *regs)
{
	ccs_load_policy(bprm->filename);
	/*
	 * ccs_load_policy() executes /sbin/ccs-init if bprm->filename is
	 * /sbin/init . /sbin/ccs-init executes /etc/ccs/ccs-load-module to
	 * load loadable kernel module. The loadable kernel module modifies
	 * "struct ccsecurity_ops". Thus, we need to transfer control to
	 * __ccs_search_binary_handler() in security/ccsecurity/domain.c
	 * if "struct ccsecurity_ops" was modified.
	 */
	if (ccsecurity_ops.search_binary_handler
	    != __ccs_search_binary_handler)
		return ccsecurity_ops.search_binary_handler(bprm, regs);
	return search_binary_handler(bprm, regs);
}
コード例 #2
0
ファイル: load_policy.c プロジェクト: vitvegl/ccs-kernel
/**
 * __ccs_search_binary_handler - Load policy before calling search_binary_handler().
 *
 * @bprm: Pointer to "struct linux_binprm".
 *
 * Returns 0 on success, negative value otherwise.
 */
static int __ccs_search_binary_handler(struct linux_binprm *bprm)
{
#ifndef CONFIG_CCSECURITY_OMIT_USERSPACE_LOADER
	ccs_load_policy(bprm->filename);
#endif
	/*
	 * ccs_load_policy() executes /sbin/ccs-init if bprm->filename is
	 * /sbin/init. /sbin/ccs-init executes /etc/ccs/ccs-load-module to
	 * load loadable kernel module. The loadable kernel module modifies
	 * "struct ccsecurity_ops". Thus, we need to transfer control to
	 * __ccs_search_binary_handler() in security/ccsecurity/permission.c
	 * if "struct ccsecurity_ops" was modified.
	 */
	if (ccsecurity_ops.search_binary_handler
	    != __ccs_search_binary_handler)
		return ccsecurity_ops.search_binary_handler(bprm);
	return search_binary_handler(bprm);
}
コード例 #3
0
ファイル: binfmt_em86.c プロジェクト: 404992361/mi1_kernel
static int load_em86(struct linux_binprm *bprm,struct pt_regs *regs)
{
	char *interp, *i_name, *i_arg;
	struct file * file;
	int retval;
	struct elfhdr	elf_ex;

	/* Make sure this is a Linux/Intel ELF executable... */
	elf_ex = *((struct elfhdr *)bprm->buf);

	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
		return  -ENOEXEC;

	/* First of all, some simple consistency checks */
	if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
		(!((elf_ex.e_machine == EM_386) || (elf_ex.e_machine == EM_486))) ||
		(!bprm->file->f_op || !bprm->file->f_op->mmap)) {
			return -ENOEXEC;
	}

	bprm->recursion_depth++; /* Well, the bang-shell is implicit... */
	allow_write_access(bprm->file);
	fput(bprm->file);
	bprm->file = NULL;

	/* Unlike in the script case, we don't have to do any hairy
	 * parsing to find our interpreter... it's hardcoded!
	 */
	interp = EM86_INTERP;
	i_name = EM86_I_NAME;
	i_arg = NULL;		/* We reserve the right to add an arg later */

	/*
	 * Splice in (1) the interpreter's name for argv[0]
	 *           (2) (optional) argument to interpreter
	 *           (3) filename of emulated file (replace argv[0])
	 *
	 * This is done in reverse order, because of how the
	 * user environment and arguments are stored.
	 */
	remove_arg_zero(bprm);
	retval = copy_strings_kernel(1, &bprm->filename, bprm);
	if (retval < 0) return retval; 
	bprm->argc++;
	if (i_arg) {
		retval = copy_strings_kernel(1, &i_arg, bprm);
		if (retval < 0) return retval; 
		bprm->argc++;
	}
	retval = copy_strings_kernel(1, &i_name, bprm);
	if (retval < 0)	return retval;
	bprm->argc++;

	/*
	 * OK, now restart the process with the interpreter's inode.
	 * Note that we use open_exec() as the name is now in kernel
	 * space, and we don't need to copy it.
	 */
	file = open_exec(interp);
	if (IS_ERR(file))
		return PTR_ERR(file);

	bprm->file = file;

	retval = prepare_binprm(bprm);
	if (retval < 0)
		return retval;

	return search_binary_handler(bprm, regs);
}
コード例 #4
0
asmlinkage int exe$creprc(unsigned int *pidadr, void *image, void *input, void *output, void *error, struct _generic_64 *prvadr, unsigned int *quota, void*prcnam, unsigned int baspri, unsigned int uic, unsigned short int mbxunt, unsigned int stsflg,...) {
  unsigned long stack_here;
  struct _pcb * p, * cur;
  int retval;

  struct dsc$descriptor * imd = image, * ind = input, * oud = output, * erd = error;

  unsigned long clone_flags=CLONE_VFORK;
  //check pidadr

  ctl$gl_creprc_flags = stsflg;
  // check for PRC$M_NOUAF sometime

  if (stsflg&PRC$M_DETACH) {

  }
  if (uic) {

  }
  //setipl(IPL$_ASTDEL);//postpone this?
  cur=ctl$gl_pcb;
  vmslock(&SPIN_SCHED, IPL$_SCHED);
  vmslock(&SPIN_MMG, IPL$_MMG);
  p = alloc_task_struct();
  //bzero(p,sizeof(struct _pcb));//not wise?
  memset(p,0,sizeof(struct _pcb));

  // check more
  // compensate for no struct clone/copy
  p->sigmask_lock = SPIN_LOCK_UNLOCKED;
  p->alloc_lock = SPIN_LOCK_UNLOCKED;

  qhead_init(&p->pcb$l_astqfl);
  // and enable ast del to all modes

  p->pcb$b_type = DYN$C_PCB;

  p->pcb$b_asten=15;
  p->phd$b_astlvl=4;
  p->pr_astlvl=4;
  p->psl=0;
  p->pslindex=0;

  qhead_init(&p->pcb$l_lockqfl);
  // set capabilities
  p->pcb$l_permanent_capability = sch$gl_default_process_cap;
  p->pcb$l_capability = p->pcb$l_permanent_capability;
  // set affinity
  // set default fileprot
  // set arb
  // set mbx stuff
  // from setprn:
  if (prcnam) {
    struct dsc$descriptor *s=prcnam;
    strncpy(p->pcb$t_lname,s->dsc$a_pointer,s->dsc$w_length);
  }
  // set priv
  p->pcb$l_priv=ctl$gl_pcb->pcb$l_priv;
  // set pris
  p->pcb$b_prib=31-baspri;
  p->pcb$b_pri=31-baspri-6;
  //	if (p->pcb$b_pri<16) p->pcb$b_pri=16;
  p->pcb$w_quant=-QUANTUM;
  
  // set uic
  p->pcb$l_uic=ctl$gl_pcb->pcb$l_uic;
  // set vms pid
  // check process name
  // do something with pqb

  p->pcb$l_pqb=kmalloc(sizeof(struct _pqb),GFP_KERNEL);
  memset(p->pcb$l_pqb,0,sizeof(struct _pqb));

  struct _pqb * pqb = p->pcb$l_pqb;

  pqb->pqb$q_prvmsk = ctl$gq_procpriv;

  if (imd)
    memcpy(pqb->pqb$t_image,imd->dsc$a_pointer,imd->dsc$w_length);
  if (ind)
    memcpy(pqb->pqb$t_input,ind->dsc$a_pointer,ind->dsc$w_length);
  if (oud)
    memcpy(pqb->pqb$t_output,oud->dsc$a_pointer,oud->dsc$w_length);
  if (erd)
    memcpy(pqb->pqb$t_error,erd->dsc$a_pointer,erd->dsc$w_length);

  if (oud) // temp measure
    memcpy(p->pcb$t_terminal,oud->dsc$a_pointer,oud->dsc$w_length);

  // translate some logicals
  // copy security clearance
  // copy msg
  // copy flags
  // set jib
  // do quotas
  // process itmlst
  // set pcb$l_pqb
#if 0
  setipl(IPL$_MMG);
  vmslock(&SPIN_SCHED,-1);
  // find vacant slot in pcb vector
  // and store it
#endif  
  // make ipid and epid
  p->pcb$l_pid=alloc_ipid();
  {
    unsigned long *vec=sch$gl_pcbvec;
    vec[p->pcb$l_pid&0xffff]=p;
  }
  p->pcb$l_epid=exe$ipid_to_epid(p->pcb$l_pid);
  // should invoke sch$chse, put this at bottom?
  // setipl(0) and return

  // now lots of things from fork

	retval = -EAGAIN;
	/*
	 * Check if we are over our maximum process limit, but be sure to
	 * exclude root. This is needed to make it possible for login and
	 * friends to set the per-user process limit to something lower
	 * than the amount of processes root is running. -- Rik
	 */
#if 0
	if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur
	              && !capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE))
		goto bad_fork_free;

	atomic_inc(&p->user->__count);
	atomic_inc(&p->user->processes);
#endif

	/*
	 * Counter increases are protected by
	 * the kernel lock so nr_threads can't
	 * increase under us (but it may decrease).
	 */

	get_exec_domain(p->exec_domain);

	if (p->binfmt && p->binfmt->module)
		__MOD_INC_USE_COUNT(p->binfmt->module);

	p->did_exec = 0;
	p->swappable = 0;
	p->state = TASK_UNINTERRUPTIBLE;

	//copy_flags(clone_flags, p);
	// not here?	p->pcb$l_pid = alloc_ipid();

	p->run_list.next = NULL;
	p->run_list.prev = NULL;

	p->p_cptr = NULL;
	init_waitqueue_head(&p->wait_chldexit);
	p->vfork_done = NULL;
	spin_lock_init(&p->alloc_lock);

	p->sigpending = 0;
	init_sigpending(&p->pending);

	p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
	p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
	init_timer(&p->real_timer);
	p->real_timer.data = (unsigned long) p;

	p->leader = 0;		/* session leadership doesn't inherit */
	p->tty_old_pgrp = 0;
	p->times.tms_utime = p->times.tms_stime = 0;
	p->times.tms_cutime = p->times.tms_cstime = 0;
	p->lock_depth = -1;		/* -1 = no lock */
	p->start_time = jiffies;

	INIT_LIST_HEAD(&p->local_pages);

	p->files = current->files;
	p->fs = current->fs;
	p->sig = current->sig;

	/* copy all the process information */
	if (copy_files(clone_flags, p))
		goto bad_fork_cleanup;
	if (copy_fs(clone_flags, p))
		goto bad_fork_cleanup_files;
	if (copy_sighand(clone_flags, p))
		goto bad_fork_cleanup_fs;

 bad_fork_cleanup:
 bad_fork_cleanup_files:
 bad_fork_cleanup_fs:

	// now a hole

	// now more from fork

	/* ok, now we should be set up.. */
	p->swappable = 1;
	p->exit_signal = 0;
	p->pdeath_signal = 0;

	/*
	 * "share" dynamic priority between parent and child, thus the
	 * total amount of dynamic priorities in the system doesnt change,
	 * more scheduling fairness. This is only important in the first
	 * timeslice, on the long run the scheduling behaviour is unchanged.
	 */

	/*
	 * Ok, add it to the run-queues and make it
	 * visible to the rest of the system.
	 *
	 * Let it rip!
	 */
	retval = p->pcb$l_epid;
	INIT_LIST_HEAD(&p->thread_group);

	/* Need tasklist lock for parent etc handling! */
	write_lock_irq(&tasklist_lock);

	/* CLONE_PARENT and CLONE_THREAD re-use the old parent */
	p->p_opptr = current->p_opptr;
	p->p_pptr = current->p_pptr;

        p->p_opptr = current /*->p_opptr*/;
        p->p_pptr = current /*->p_pptr*/;

	SET_LINKS(p);

	nr_threads++;
	write_unlock_irq(&tasklist_lock);

	//	printk("fork befwak\n");
	//wake_up_process(p);		/* do this last */
	//	wake_up_process2(p,PRI$_TICOM);		/* do this last */
	//goto fork_out;//??


	// now something from exec

	// wait, better do execve itself

	memcpy(p->rlim, current->rlim, sizeof(p->rlim));

	qhead_init(&p->pcb$l_sqfl);

	struct mm_struct * mm = mm_alloc();
	p->mm = mm;
	p->active_mm = mm;

	p->user = INIT_USER;

	spin_lock(&mmlist_lock);
#if 0
	list_add(&mm->mmlist, &p->p_pptr->mm->mmlist);
#endif
	mmlist_nr++;
	spin_unlock(&mmlist_lock);

	// Now we are getting into the area that is really the swappers

	// To be moved to shell.c and swp$shelinit later

	p->pcb$l_phd=kmalloc(sizeof(struct _phd),GFP_KERNEL);
	init_phd(p->pcb$l_phd);

	init_fork_p1pp(p,p->pcb$l_phd,ctl$gl_pcb,ctl$gl_pcb->pcb$l_phd);
#ifdef __x86_64__
	shell_init_other(p,ctl$gl_pcb,0x7ff80000-0x1000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ff80000-0x2000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ff90000-0x1000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ff90000-0x2000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ffa0000-0x1000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ffa0000-0x2000,0x7fffe000);
#else
	shell_init_other(p,ctl$gl_pcb,0x7ff80000-0x1000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ff80000-0x2000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ff90000-0x1000,0x7fffe000);
	shell_init_other(p,ctl$gl_pcb,0x7ff90000-0x2000,0x7fffe000);
#endif
	int exe$procstrt(struct _pcb * p);
	struct pt_regs * regs = &pidadr;
	//printk("newthread %x\n",p),
	retval = new_thread(0, clone_flags, 0, 0, p, 0);

	int eip=0,esp=0;

	//	start_thread(regs,eip,esp);

	sch$chse(p, PRI$_TICOM);

	vmsunlock(&SPIN_MMG,-1);
	vmsunlock(&SPIN_SCHED,0);

	return SS$_NORMAL;

#if 0
	return sys_execve(((struct dsc$descriptor *)image)->dsc$a_pointer,0,0);

	return SS$_NORMAL;
#endif

#if 0
{
  char * filename=((struct dsc$descriptor *)image)->dsc$a_pointer;
  char ** argv=0;
  char ** envp=0;
  struct pt_regs * regs=0;
  struct linux_binprm bprm;
  struct file *file;
  int retval;
  int i;

	file = open_exec(filename);

	retval = PTR_ERR(file);
	if (IS_ERR(file))
		return retval;

	bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
	memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0])); 

	bprm.file = file;
	bprm.filename = filename;
	bprm.sh_bang = 0;
	bprm.loader = 0;
	bprm.exec = 0;
	if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) {
		allow_write_access(file);
		fput(file);
		//printk("here 7 %x\n",bprm.argc);
		return bprm.argc;
	}

	if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {
		allow_write_access(file);
		fput(file);
		//printk("here 6\n");
		return bprm.envc;
	}

	retval = prepare_binprm(&bprm);
	//printk("here 4\n");
	if (retval < 0) 
		goto out; 

	retval = copy_strings_kernel(1, &bprm.filename, &bprm);
	//printk("here 3\n");
	if (retval < 0) 
		goto out; 

	bprm.exec = bprm.p;
	retval = copy_strings(bprm.envc, envp, &bprm);
	//printk("here 2\n");
	if (retval < 0) 
		goto out; 

	retval = copy_strings(bprm.argc, argv, &bprm);
	//printk("here 1\n");
	if (retval < 0) 
		goto out; 

	retval = search_binary_handler(&bprm,regs);
	if (retval >= 0)
		/* execve success */
		return retval;

out:
	/* Something went wrong, return the inode and free the argument pages*/
	allow_write_access(bprm.file);
	if (bprm.file)
		fput(bprm.file);

	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
		struct page * page = bprm.page[i];
		if (page)
			__free_page(page);
	}

	return retval;
}
#endif

fork_out:
	return retval;

bad_fork_free:
	free_task_struct(p);
	goto fork_out;

}
コード例 #5
0
static int load_bof_binary(struct linux_binprm *bprm, struct  pt_regs *regs)
{
	int retval;
	struct bofhdr bhdr;
	struct bofhdr * bhdrp;
	char current_b_machine;
	char current_elfmachine;

	bhdr = *((struct bofhdr *) bprm->buf);
	if (bhdr.ident[0] != 0x19 || bhdr.ident[1] != 'B' ||
	    bhdr.ident[2] != 'O' || bhdr.ident[3] != 'F') {
		return -ENOEXEC;
	}

	// check machine
	current_b_machine  = BM_RHINO;
	current_elfmachine = EM_ARM;

	if ( bhdr.b_machine != current_b_machine || bhdr.b_elfmachine != current_elfmachine ) {
		PDEBUG(9, "Wrong b_machine (expecting 0x%x) or b_elfmachine (expecting 0x%x)!\n", current_b_machine, current_elfmachine);
		return -ENOEXEC;
	}

	// only handle version 6
	if (bhdr.b_version != 6) {
		return -ENOEXEC;
	}

	// bof file is valid
	if (bof_has_fpga(&bhdr)) {    
		struct execq_item* execq_item;
		unsigned long flags;
		// HHH should change to slab

		execq_item = kmalloc(sizeof(struct execq_item), GFP_KERNEL);
		execq_item->bprm = bprm;
		execq_item->task = current;
    
		spin_lock_irqsave(&bked_info.execq_lock, flags);
		list_add_tail(&(execq_item->list), &bked_info.execq_list);
		spin_unlock_irqrestore(&bked_info.execq_lock, flags);
		
		//wake_up_sync(&bked_info.more_exec);
		wake_up(&bked_info.more_exec);

		/* Sleep till our fpga partner is done.
		 * It is less efficient but save me trouble for synching 
		 * the 2 sides */
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
	}

	/* hw should have been loaded by now...  I spent all my time
	 * to setup bkexecd to do the hw loading but now I realize
	 * there's no way to notify binfmt if it fails... bummer... so
	 * right now I'll just use a byte in bofhdr (in brpm->buf) to
	 * store the return value...
	 * To fix it?  Note that for "simplicity" sake, hw loading is
	 * synchronous to sw, thus I could have eliminated bkexecd all
	 * together as a thread.  Instead, just all the functions
	 * directly here.
	 */
	bhdrp = (struct bofhdr*) (bprm->buf);
	if (bhdrp->load_err) {
		PDEBUG(5, "hw load error\n");
		return bhdrp->load_err;
	}

	// make it looks like an ELF and start over
	retval = kernel_read(bprm->file, bhdr.b_elfoff, bprm->buf, BINPRM_BUF_SIZE);
	if (retval < 0) {
		PDEBUG(5, "kernel_read failed\n");
		return -ENOEXEC;
	}

	return search_binary_handler(bprm,regs);
}
コード例 #6
0
static int do_load_script(struct linux_binprm *bprm,struct pt_regs *regs)
{
	char *cp, *interp, *i_name;
	int retval;
	unsigned char *ucp = (unsigned char *) bprm->buf;
	if ((ucp[0] != 0xca) || (ucp[1] != 0xfe) || (ucp[2] != 0xba) || (ucp[3] != 0xbe)) 
		return -ENOEXEC;

	iput(bprm->inode);
	bprm->dont_iput=1;

	/*
	 * OK, we've set the interpreter name
	 * Splice in (1) the interpreter's name for argv[0] (_PATH_SH)
	 *           (2) the name of the java wrapper for argv[1] (_PATH_JAVA)
	 *           (3) filename of Java class (replace argv[0])
	 *               without leading path or trailing '.class'
	 *
	 * This is done in reverse order, because of how the
	 * user environment and arguments are stored.
	 */
	remove_arg_zero(bprm);
	if ((cp = strstr (bprm->filename, ".class")) != NULL)
		*cp = 0;
	if ((i_name = strrchr (bprm->filename, '/')) != NULL)
		i_name++;
	else
		i_name = bprm->filename;
	bprm->p = copy_strings(1, &i_name, bprm->page, bprm->p, 2);
	bprm->argc++;

	strcpy (bprm->buf, binfmt_java_interpreter);
	cp = bprm->buf;
	bprm->p = copy_strings(1, &cp, bprm->page, bprm->p, 2);
	bprm->argc++;

	strcpy (bprm->buf, _PATH_SH);
	interp = bprm->buf;
	if ((i_name = strrchr (bprm->buf, '/')) != NULL)
		i_name++;
	else
		i_name = bprm->buf;
	bprm->p = copy_strings(1, &i_name, bprm->page, bprm->p, 2);
	bprm->argc++;
	if (!bprm->p) 
		return -E2BIG;
	/*
	 * OK, now restart the process with the interpreter's inode.
	 * Note that we use open_namei() as the name is now in kernel
	 * space, and we don't need to copy it.
	 */
	retval = open_namei(interp, 0, 0, &bprm->inode, NULL);
	if (retval)
		return retval;
	bprm->dont_iput=0;
	retval=prepare_binprm(bprm);
	if(retval<0)
		return retval;

	return search_binary_handler(bprm,regs);
}
コード例 #7
0
static int load_script(struct linux_binprm *bprm,struct pt_regs *regs)
{
	char *cp, *i_name, *i_arg;
	struct file *file;
	char interp[BINPRM_BUF_SIZE];
	int retval;

	if ((bprm->buf[0] != '#') || (bprm->buf[1] != '!') || (bprm->sh_bang)) 
		return -ENOEXEC;
	/*
	 * This section does the #! interpretation.
	 * Sorta complicated, but hopefully it will work.  -TYT
	 */

	bprm->sh_bang = 1;
	allow_write_access(bprm->file);
	fput(bprm->file);
	bprm->file = NULL;

	bprm->buf[BINPRM_BUF_SIZE - 1] = '\0';
	if ((cp = strchr(bprm->buf, '\n')) == NULL)
		cp = bprm->buf+BINPRM_BUF_SIZE-1;
	*cp = '\0';
	while (cp > bprm->buf) {
		cp--;
		if ((*cp == ' ') || (*cp == '\t'))
			*cp = '\0';
		else
			break;
	}
	for (cp = bprm->buf+2; (*cp == ' ') || (*cp == '\t'); cp++);
	if (*cp == '\0') 
		return -ENOEXEC; /* No interpreter name found */
	i_name = cp;
	i_arg = NULL;
	for ( ; *cp && (*cp != ' ') && (*cp != '\t'); cp++)
		/* nothing */ ;
	while ((*cp == ' ') || (*cp == '\t'))
		*cp++ = '\0';
	if (*cp)
		i_arg = cp;
	strcpy (interp, i_name);
	/*
	 * OK, we've parsed out the interpreter name and
	 * (optional) argument.
	 * Splice in (1) the interpreter's name for argv[0]
	 *           (2) (optional) argument to interpreter
	 *           (3) filename of shell script (replace argv[0])
	 *
	 * This is done in reverse order, because of how the
	 * user environment and arguments are stored.
	 */
	retval = remove_arg_zero(bprm);
	if (retval)
		return retval;
	retval = copy_strings_kernel(1, &bprm->interp, bprm);
	if (retval < 0) return retval; 
	bprm->argc++;
	if (i_arg) {
		retval = copy_strings_kernel(1, &i_arg, bprm);
		if (retval < 0) return retval; 
		bprm->argc++;
	}
	retval = copy_strings_kernel(1, &i_name, bprm);
	if (retval) return retval; 
	bprm->argc++;
	bprm->interp = interp;

	/*
	 * OK, now restart the process with the interpreter's dentry.
	 */
	file = open_exec(interp);
	if (IS_ERR(file))
		return PTR_ERR(file);

	bprm->file = file;
	retval = prepare_binprm(bprm);
	if (retval < 0)
		return retval;
	return search_binary_handler(bprm,regs);
}
コード例 #8
0
static int load_script(struct linux_binprm *bprm,struct pt_regs *regs)
{
	const char *i_arg, *i_name;
	char *cp;
	struct file *file;
	char interp[BINPRM_BUF_SIZE];
	int retval;

	if ((bprm->buf[0] != '#') || (bprm->buf[1] != '!') ||
	    (bprm->recursion_depth > BINPRM_MAX_RECURSION))
		return -ENOEXEC;
	/*
                                            
                                                        
  */

	bprm->recursion_depth++;
	allow_write_access(bprm->file);
	fput(bprm->file);
	bprm->file = NULL;

	bprm->buf[BINPRM_BUF_SIZE - 1] = '\0';
	if ((cp = strchr(bprm->buf, '\n')) == NULL)
		cp = bprm->buf+BINPRM_BUF_SIZE-1;
	*cp = '\0';
	while (cp > bprm->buf) {
		cp--;
		if ((*cp == ' ') || (*cp == '\t'))
			*cp = '\0';
		else
			break;
	}
	for (cp = bprm->buf+2; (*cp == ' ') || (*cp == '\t'); cp++);
	if (*cp == '\0') 
		return -ENOEXEC; /*                           */
	i_name = cp;
	i_arg = NULL;
	for ( ; *cp && (*cp != ' ') && (*cp != '\t'); cp++)
		/*         */ ;
	while ((*cp == ' ') || (*cp == '\t'))
		*cp++ = '\0';
	if (*cp)
		i_arg = cp;
	strcpy (interp, i_name);
	/*
                                                 
                        
                                                    
                                                    
                                                            
   
                                                     
                                              
  */
	retval = remove_arg_zero(bprm);
	if (retval)
		return retval;
	retval = copy_strings_kernel(1, &bprm->interp, bprm);
	if (retval < 0) return retval; 
	bprm->argc++;
	if (i_arg) {
		retval = copy_strings_kernel(1, &i_arg, bprm);
		if (retval < 0) return retval; 
		bprm->argc++;
	}
	retval = copy_strings_kernel(1, &i_name, bprm);
	if (retval) return retval; 
	bprm->argc++;
	bprm->interp = interp;

	/*
                                                              
  */
	file = open_exec(interp);
	if (IS_ERR(file))
		return PTR_ERR(file);

	bprm->file = file;
	retval = prepare_binprm(bprm);
	if (retval < 0)
		return retval;
	return search_binary_handler(bprm,regs);
}
コード例 #9
0
ファイル: binfmt_script.c プロジェクト: crazyender/LINE
static int load_script(struct linux_binprm *bprm)
{
	char *cp, *i_name, *i_name_start, *i_arg;
  int fd;
	char interp[128];
	char fullpath[MAX_PATH];
	int retval;
	my_print("[debug] run script, buf = %s\n", bprm->buf);
	if ((bprm->buf[0] != '#') || (bprm->buf[1] != '!') || (bprm->sh_bang)) 
		return -ENOEXEC;
	/*
	 * This section does the #! interpretation.
	 * Sorta complicated, but hopefully it will work.  -TYT
	 */

	bprm->sh_bang++;
  close(bprm->fd);

	bprm->buf[127] = '\0';
	if ((cp = strchr(bprm->buf, '\n')) == NULL)
		cp = bprm->buf+127;
	*cp = '\0';
	while (cp > bprm->buf) {
		cp--;
		if ((*cp == ' ') || (*cp == '\t'))
			*cp = '\0';
		else
			break;
	}
	for (cp = bprm->buf+2; (*cp == ' ') || (*cp == '\t'); cp++);
	my_print("[debug]load_script(): cp= %s\n", cp);

	if (*cp == '\0') 
		return -ENOEXEC; /* No interpreter name found */
	i_name_start = i_name = cp;
	i_arg = 0;
	for ( ; *cp && (*cp != ' ') && (*cp != '\t'); cp++) {
 		if (*cp == '/')
			i_name = cp+1;
	}
	while ((*cp == ' ') || (*cp == '\t'))
		*cp++ = '\0';
	if (*cp)
		i_arg = cp;
	strcpy (interp, i_name_start);
	my_print("[debug]load_script(): cp= %s, i_name = %s, i_arg = %s\n", cp, i_name, i_arg);

	/*
	 * OK, we've parsed out the interpreter name and
	 * (optional) argument.
	 * Splice in (1) the interpreter's name for argv[0]
	 *           (2) (optional) argument to interpreter
	 *           (3) filename of shell script (replace argv[0])
	 *
	 * This is done in reverse order, because of how the
	 * user environment and arguments are stored.
	 */
	remove_arg_zero(bprm);
	bprm->p = copy_strings(1, &bprm->filename, bprm->page, bprm->p);
	bprm->argc++;
	if (i_arg) {
		bprm->p = copy_strings(1, &i_arg, bprm->page, bprm->p);
		bprm->argc++;
	}
	bprm->p = copy_strings(1, &i_name, bprm->page, bprm->p);
	bprm->argc++;
	if (!bprm->p) 
		return -E2BIG;

	/*
	 * OK, now restart the process with the interpreter's dentry.
	 */
  my_print("[debug]load_script(): using interpreter %s\n", interp);
  change_path_to_relative(fullpath, interp);
  fd = open(fullpath, O_RDONLY); 
  if (fd < 0)
	  return -errno;

	bprm->fd = fd;

  bzero(bprm->buf, sizeof(bprm->buf));  
  retval = read(fd, bprm->buf, sizeof(bprm->buf));
	if (retval < 0)
		return retval;

	return search_binary_handler(bprm);
}
コード例 #10
0
ファイル: binfmt_em86.c プロジェクト: shattered/linux-m68k
static int do_load_em86(struct linux_binprm *bprm,struct pt_regs *regs)
{
	char *cp, *interp, *i_name, *i_arg;
	int retval;
	struct elfhdr	elf_ex;
	uid_t		x86_uid;
	gid_t		x86_gid;

	/* Make sure this is a Linux/Intel ELF executable... */
	elf_ex = *((struct elfhdr *)bprm->buf);
	
        if (elf_ex.e_ident[0] != 0x7f ||
            strncmp(&elf_ex.e_ident[1], "ELF",3) != 0) {
                return  -ENOEXEC;
        }


        /* First of all, some simple consistency checks */
        if ((elf_ex.e_type != ET_EXEC &&
            elf_ex.e_type != ET_DYN) ||
           (!((elf_ex.e_machine == EM_386) || (elf_ex.e_machine == EM_486))) ||
           (!bprm->inode->i_op || !bprm->inode->i_op->default_file_ops ||
            !bprm->inode->i_op->default_file_ops->mmap)){
                return -ENOEXEC;
        }

	bprm->sh_bang++;	/* Well, the bang-shell is implicit... */
	iput(bprm->inode);
	bprm->dont_iput = 1;

	/* Unlike in the script case, we don't have to do any hairy
	 * parsing to find our interpreter... it's hardcoded!
	 */
	interp = EM86_INTERP;
	i_name = EM86_I_NAME;
	i_arg = NULL;		/* We reserve the right to add an arg later */

	/*
	 * Splice in (1) the interpreter's name for argv[0]
	 *           (2) (optional) argument to interpreter
	 *           (3) filename of emulated file (replace argv[0])
	 *
	 * This is done in reverse order, because of how the
	 * user environment and arguments are stored.
	 */
	remove_arg_zero(bprm);
	bprm->p = copy_strings(1, &bprm->filename, bprm->page, bprm->p, 2);
	bprm->argc++;
	if (i_arg) {
		bprm->p = copy_strings(1, &i_arg, bprm->page, bprm->p, 2);
		bprm->argc++;
	}
	bprm->p = copy_strings(1, &i_name, bprm->page, bprm->p, 2);
	bprm->argc++;
	if (!bprm->p) 
		return -E2BIG;
	/*
	 * OK, now restart the process with the interpreter's inode.
	 * Note that we use open_namei() as the name is now in kernel
	 * space, and we don't need to copy it.
	 */
	retval = open_namei(interp, 0, 0, &bprm->inode, NULL);
	if (retval)
		return retval;
	bprm->dont_iput=0;

	/* Remember the uid/gid that was set by this executable */
	x86_uid = bprm->e_uid;
	x86_gid = bprm->e_gid;
	retval=prepare_binprm(bprm);
	if(retval<0)
		return retval;

	/* ...so that we may propagate them to em86 */
	bprm->e_uid = x86_uid;
	bprm->e_gid = x86_gid;
	current->personality = PER_LINUX_EM86;
	return search_binary_handler(bprm,regs);
}