コード例 #1
0
ファイル: Particle.cpp プロジェクト: thealkimist/kim_algo2013
Particle::Particle(){
    setInitCondition(ofGetWindowWidth()/2, ofGetWindowHeight()/2, 0, 0);
    damping = 0.03f;
    size = ofRandom(1, 3);
    a = ofRandom(40, 110);
    r = 255;
    g = 255;
    b = 255;
   
}
コード例 #2
0
ファイル: heateqn3dfma.c プロジェクト: zoexwang/heateqn3D
void solverDFeqn(double alpha, double dt, int dim, int N, int *nx, int L, double **domain, double ***S, double ***T, int type, int solver){
/* solver = 1: SOR | solver = 2: FMA 
   type = 1: BE | type = 2: Crank Nocolson */

	double dx = (double)L/nx[1];
	/* double C = alpha*dt/pow(dx,2);   /* none steady state equation */
	double C = alpha/pow(dx,2);         /* steady state equation f( u_t+1 ) = rho */
	int x, y, z, k;
	unsigned long i, j, h;
	unsigned long X = pow(nx[1],dim);                 /* dimension of the matrix */
	double *b = dvector(1, X);
	double *u = dvector(1, X);
	double ***ufma = dmatrix3d(1,nx[3]+2,1,nx[1]+2,1,nx[2]+2);
	setCartesianDomain(dim, nx, L, domain);			  /* set up cartesian domain */
	printf("  Domain created ...\n");

	setInitCondition(dim, nx, domain, T);
	printf("  Initional condition set...\n");

	setBoundCondition(nx, T);
	printf("  Boundary condition set...\n");

	/*printmat(Ap, X, dim*2+1, "matAp.csv", "w");
	printmat(Afp, X, X, "matAfp.csv", "w");*/

	for(i=1; i<=N; i++){
		printf("    timestep loop #%ld", i);
		j = 1;
		if (type==1){                           /* backward Euler */
			for(z=2; z<=nx[3]+1; z++) 	 	    /* prepare coefficient matrix A and RHS b */
				for(x=2; x<=nx[1]+1; x++)
					for(y=2; y<=nx[2]+1; y++, j++){
						b[j] = C + S[z][x][y];  /* steady state rho */
						ufma[x][y][z] = b[j];
					}
		}else{                                       /* Crank Nicolson */
			for(z=2; z<=nx[3]+1; z++) 		         /* prepare coefficient matrix A and RHS b */
				for(x=2; x<=nx[1]+1; x++)
					for(y=2; y<=nx[2]+1; y++, j++){  /* steady state rho */
						b[j] = C - (T[z][x-1][y] + T[z][x+1][y]
						+     T[z][x][y-1] + T[z][x][y+1]
						+     T[z-1][x][y] + T[z+1][x][y]
						-     6*T[z][x][y])+ S[z][x][y];
						ufma[x][y][z] = b[j];
					}
		}

		/* sloving for diagonal system */
		if (solver==1){ 				/* SOR:=1 */
			printf("    solving linear equation with SOR...\n");
			printf("  make coefficient matrix...\n");
			double **Afp = dmatrix(1, X, 1, X);		/* coefficient matrix as diagnols */
			makeMatrix(Afp, X, nx[1], C, dim);      /* to fill the coefficient matrix Afp to diagnols from the sparce matrix Ap */
			
			/*printvec(b, X, "matb.csv", "w");
			printmat(Af, X, X, "matAf.csv", "w");*/

			int k;
			for (k=1; k<=X; k++)		/* seed SOR */
				u[k] = 0;
			int bs = linearSolver_SOR(Afp, b, u, X);
			free_dmatrix(Afp, 1, X, 1, X);
			if(bs==1){
				printf("    SOR failed with 200 iteration...\n");
			}
			j = 1;
			for(z=2; z<=nx[3]+1; z++)	/* T(t+1) */
				for(x=2; x<=nx[1]+1; x++)
					for(y=2; y<=nx[2]+1; y++, j++)
						T[z][x][y] = u[j];
			
			free_dvector(b, 1, X);
			free_dvector(u, 1, X);
		}else{                         /* FMA:=2 */
			printf("    solving linear equation with FMA...\n");
			printf("        dimension = %ld\n", X);
			mglin(ufma, nx[1], NCYCLE_);
			j = 1;
			for(z=2; z<=nx[3]+1; z++)  /* T(t+1) */
				for(x=2; x<=nx[1]+1; x++)
					for(y=2; y<=nx[2]+1; y++, j++)
						T[z][x][y] = ufma[z][x][y];
			free_dmatrix3d(ufma,1,nx[3]+2,1,nx[1]+2,1,nx[2]+2);
		}
		printf("    linear diag solved...\n"); 
		
		setBoundCondition(nx, T);
		printf("    Boundary condition set...\n");
	}
}