/* Subroutine */ int sgbsvx_(char *fact, char *trans, integer *n, integer *kl, integer *ku, integer *nrhs, real *ab, integer *ldab, real *afb, integer *ldafb, integer *ipiv, char *equed, real *r__, real *c__, real *b, integer *ldb, real *x, integer *ldx, real *rcond, real *ferr, real *berr, real *work, integer *iwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5; real r__1, r__2, r__3; /* Local variables */ integer i__, j, j1, j2; real amax; char norm[1]; real rcmin, rcmax, anorm; logical equil; real colcnd; logical nofact; real bignum; integer infequ; logical colequ; real rowcnd; logical notran; real smlnum; logical rowequ; real rpvgrw; /* -- LAPACK driver routine (version 3.2) -- */ /* November 2006 */ /* Purpose */ /* ======= */ /* SGBSVX uses the LU factorization to compute the solution to a real */ /* system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */ /* where A is a band matrix of order N with KL subdiagonals and KU */ /* superdiagonals, and X and B are N-by-NRHS matrices. */ /* Error bounds on the solution and a condition estimate are also */ /* provided. */ /* Description */ /* =========== */ /* The following steps are performed by this subroutine: */ /* 1. If FACT = 'E', real scaling factors are computed to equilibrate */ /* the system: */ /* TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */ /* TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */ /* TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */ /* Whether or not the system will be equilibrated depends on the */ /* scaling of the matrix A, but if equilibration is used, A is */ /* overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */ /* or diag(C)*B (if TRANS = 'T' or 'C'). */ /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */ /* matrix A (after equilibration if FACT = 'E') as */ /* A = L * U, */ /* where L is a product of permutation and unit lower triangular */ /* matrices with KL subdiagonals, and U is upper triangular with */ /* KL+KU superdiagonals. */ /* 3. If some U(i,i)=0, so that U is exactly singular, then the routine */ /* returns with INFO = i. Otherwise, the factored form of A is used */ /* to estimate the condition number of the matrix A. If the */ /* reciprocal of the condition number is less than machine precision, */ /* INFO = N+1 is returned as a warning, but the routine still goes on */ /* to solve for X and compute error bounds as described below. */ /* 4. The system of equations is solved for X using the factored form */ /* of A. */ /* 5. Iterative refinement is applied to improve the computed solution */ /* matrix and calculate error bounds and backward error estimates */ /* for it. */ /* 6. If equilibration was used, the matrix X is premultiplied by */ /* diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */ /* that it solves the original system before equilibration. */ /* Arguments */ /* ========= */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of the matrix A is */ /* supplied on entry, and if not, whether the matrix A should be */ /* equilibrated before it is factored. */ /* = 'F': On entry, AFB and IPIV contain the factored form of */ /* A. If EQUED is not 'N', the matrix A has been */ /* equilibrated with scaling factors given by R and C. */ /* AB, AFB, and IPIV are not modified. */ /* = 'N': The matrix A will be copied to AFB and factored. */ /* = 'E': The matrix A will be equilibrated if necessary, then */ /* copied to AFB and factored. */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations. */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Transpose) */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals within the band of A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals within the band of A. KU >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* AB (input/output) REAL array, dimension (LDAB,N) */ /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ /* The j-th column of A is stored in the j-th column of the */ /* array AB as follows: */ /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ /* If FACT = 'F' and EQUED is not 'N', then A must have been */ /* equilibrated by the scaling factors in R and/or C. AB is not */ /* modified if FACT = 'F' or 'N', or if FACT = 'E' and */ /* EQUED = 'N' on exit. */ /* On exit, if EQUED .ne. 'N', A is scaled as follows: */ /* EQUED = 'R': A := diag(R) * A */ /* EQUED = 'C': A := A * diag(C) */ /* EQUED = 'B': A := diag(R) * A * diag(C). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KL+KU+1. */ /* AFB (input or output) REAL array, dimension (LDAFB,N) */ /* If FACT = 'F', then AFB is an input argument and on entry */ /* contains details of the LU factorization of the band matrix */ /* A, as computed by SGBTRF. U is stored as an upper triangular */ /* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */ /* and the multipliers used during the factorization are stored */ /* in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */ /* the factored form of the equilibrated matrix A. */ /* If FACT = 'N', then AFB is an output argument and on exit */ /* returns details of the LU factorization of A. */ /* If FACT = 'E', then AFB is an output argument and on exit */ /* returns details of the LU factorization of the equilibrated */ /* matrix A (see the description of AB for the form of the */ /* equilibrated matrix). */ /* LDAFB (input) INTEGER */ /* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */ /* IPIV (input or output) INTEGER array, dimension (N) */ /* If FACT = 'F', then IPIV is an input argument and on entry */ /* contains the pivot indices from the factorization A = L*U */ /* as computed by SGBTRF; row i of the matrix was interchanged */ /* with row IPIV(i). */ /* If FACT = 'N', then IPIV is an output argument and on exit */ /* contains the pivot indices from the factorization A = L*U */ /* of the original matrix A. */ /* If FACT = 'E', then IPIV is an output argument and on exit */ /* contains the pivot indices from the factorization A = L*U */ /* of the equilibrated matrix A. */ /* EQUED (input or output) CHARACTER*1 */ /* Specifies the form of equilibration that was done. */ /* = 'N': No equilibration (always true if FACT = 'N'). */ /* = 'R': Row equilibration, i.e., A has been premultiplied by */ /* diag(R). */ /* = 'C': Column equilibration, i.e., A has been postmultiplied */ /* by diag(C). */ /* = 'B': Both row and column equilibration, i.e., A has been */ /* replaced by diag(R) * A * diag(C). */ /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ /* output argument. */ /* R (input or output) REAL array, dimension (N) */ /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ /* is not accessed. R is an input argument if FACT = 'F'; */ /* otherwise, R is an output argument. If FACT = 'F' and */ /* EQUED = 'R' or 'B', each element of R must be positive. */ /* C (input or output) REAL array, dimension (N) */ /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ /* is not accessed. C is an input argument if FACT = 'F'; */ /* otherwise, C is an output argument. If FACT = 'F' and */ /* EQUED = 'C' or 'B', each element of C must be positive. */ /* B (input/output) REAL array, dimension (LDB,NRHS) */ /* On entry, the right hand side matrix B. */ /* On exit, */ /* if EQUED = 'N', B is not modified; */ /* if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */ /* diag(R)*B; */ /* if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */ /* overwritten by diag(C)*B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) REAL array, dimension (LDX,NRHS) */ /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */ /* to the original system of equations. Note that A and B are */ /* modified on exit if EQUED .ne. 'N', and the solution to the */ /* equilibrated system is inv(diag(C))*X if TRANS = 'N' and */ /* EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */ /* and EQUED = 'R' or 'B'. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) REAL */ /* The estimate of the reciprocal condition number of the matrix */ /* A after equilibration (if done). If RCOND is less than the */ /* machine precision (in particular, if RCOND = 0), the matrix */ /* is singular to working precision. This condition is */ /* indicated by a return code of INFO > 0. */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace/output) REAL array, dimension (3*N) */ /* On exit, WORK(1) contains the reciprocal pivot growth */ /* factor norm(A)/norm(U). The "max absolute element" norm is */ /* used. If WORK(1) is much less than 1, then the stability */ /* of the LU factorization of the (equilibrated) matrix A */ /* could be poor. This also means that the solution X, condition */ /* estimator RCOND, and forward error bound FERR could be */ /* unreliable. If factorization fails with 0<INFO<=N, then */ /* WORK(1) contains the reciprocal pivot growth factor for the */ /* leading INFO columns of A. */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is */ /* <= N: U(i,i) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, so the solution and error bounds */ /* could not be computed. RCOND = 0 is returned. */ /* = N+1: U is nonsingular, but RCOND is less than machine */ /* precision, meaning that the matrix is singular */ /* to working precision. Nevertheless, the */ /* solution and error bounds are computed because */ /* there are a number of situations where the */ /* computed solution can be more accurate than the */ /* value of RCOND would suggest. */ /* ===================================================================== */ /* Moved setting of INFO = N+1 so INFO does not subsequently get */ /* overwritten. Sven, 17 Mar 05. */ /* ===================================================================== */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; afb_dim1 = *ldafb; afb_offset = 1 + afb_dim1; afb -= afb_offset; --ipiv; --r__; --c__; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); notran = lsame_(trans, "N"); if (nofact || equil) { *(unsigned char *)equed = 'N'; rowequ = FALSE_; colequ = FALSE_; } else { rowequ = lsame_(equed, "R") || lsame_(equed, "B"); colequ = lsame_(equed, "C") || lsame_(equed, "B"); smlnum = slamch_("Safe minimum"); bignum = 1.f / smlnum; } /* Test the input parameters. */ if (! nofact && ! equil && ! lsame_(fact, "F")) { *info = -1; } else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kl < 0) { *info = -4; } else if (*ku < 0) { *info = -5; } else if (*nrhs < 0) { *info = -6; } else if (*ldab < *kl + *ku + 1) { *info = -8; } else if (*ldafb < (*kl << 1) + *ku + 1) { *info = -10; } else if (lsame_(fact, "F") && ! (rowequ || colequ || lsame_(equed, "N"))) { *info = -12; } else { if (rowequ) { rcmin = bignum; rcmax = 0.f; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ r__1 = rcmin, r__2 = r__[j]; rcmin = dmin(r__1,r__2); /* Computing MAX */ r__1 = rcmax, r__2 = r__[j]; rcmax = dmax(r__1,r__2); } if (rcmin <= 0.f) { *info = -13; } else if (*n > 0) { rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); } else { rowcnd = 1.f; } } if (colequ && *info == 0) { rcmin = bignum; rcmax = 0.f; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ r__1 = rcmin, r__2 = c__[j]; rcmin = dmin(r__1,r__2); /* Computing MAX */ r__1 = rcmax, r__2 = c__[j]; rcmax = dmax(r__1,r__2); } if (rcmin <= 0.f) { *info = -14; } else if (*n > 0) { colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); } else { colcnd = 1.f; } } if (*info == 0) { if (*ldb < max(1,*n)) { *info = -16; } else if (*ldx < max(1,*n)) { *info = -18; } } } if (*info != 0) { i__1 = -(*info); xerbla_("SGBSVX", &i__1); return 0; } if (equil) { /* Compute row and column scalings to equilibrate the matrix A. */ sgbequ_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &rowcnd, &colcnd, &amax, &infequ); if (infequ == 0) { /* Equilibrate the matrix. */ slaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], & rowcnd, &colcnd, &amax, equed); rowequ = lsame_(equed, "R") || lsame_(equed, "B"); colequ = lsame_(equed, "C") || lsame_(equed, "B"); } } /* Scale the right hand side. */ if (notran) { if (rowequ) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = r__[i__] * b[i__ + j * b_dim1]; } } } } else if (colequ) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { b[i__ + j * b_dim1] = c__[i__] * b[i__ + j * b_dim1]; } } } if (nofact || equil) { /* Compute the LU factorization of the band matrix A. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = j - *ku; j1 = max(i__2,1); /* Computing MIN */ i__2 = j + *kl; j2 = min(i__2,*n); i__2 = j2 - j1 + 1; scopy_(&i__2, &ab[*ku + 1 - j + j1 + j * ab_dim1], &c__1, &afb[* kl + *ku + 1 - j + j1 + j * afb_dim1], &c__1); } sgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info); /* Return if INFO is non-zero. */ if (*info > 0) { /* Compute the reciprocal pivot growth factor of the */ /* leading rank-deficient INFO columns of A. */ anorm = 0.f; i__1 = *info; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = *ku + 2 - j; /* Computing MIN */ i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1; i__3 = min(i__4,i__5); for (i__ = max(i__2,1); i__ <= i__3; ++i__) { /* Computing MAX */ r__2 = anorm, r__3 = (r__1 = ab[i__ + j * ab_dim1], dabs( r__1)); anorm = dmax(r__2,r__3); } } /* Computing MIN */ i__3 = *info - 1, i__2 = *kl + *ku; i__1 = min(i__3,i__2); /* Computing MAX */ i__4 = 1, i__5 = *kl + *ku + 2 - *info; rpvgrw = slantb_("M", "U", "N", info, &i__1, &afb[max(i__4, i__5) + afb_dim1], ldafb, &work[1]); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = anorm / rpvgrw; } work[1] = rpvgrw; *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A and the */ /* reciprocal pivot growth factor RPVGRW. */ if (notran) { *(unsigned char *)norm = '1'; } else { *(unsigned char *)norm = 'I'; } anorm = slangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &work[1]); i__1 = *kl + *ku; rpvgrw = slantb_("M", "U", "N", n, &i__1, &afb[afb_offset], ldafb, &work[ 1]); if (rpvgrw == 0.f) { rpvgrw = 1.f; } else { rpvgrw = slangb_("M", n, kl, ku, &ab[ab_offset], ldab, &work[1]) / rpvgrw; } /* Compute the reciprocal of the condition number of A. */ sgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond, &work[1], &iwork[1], info); /* Compute the solution matrix X. */ slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); sgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[ x_offset], ldx, info); /* Use iterative refinement to improve the computed solution and */ /* compute error bounds and backward error estimates for it. */ sgbrfs_(trans, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], & berr[1], &work[1], &iwork[1], info); /* Transform the solution matrix X to a solution of the original */ /* system. */ if (notran) { if (colequ) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { x[i__ + j * x_dim1] = c__[i__] * x[i__ + j * x_dim1]; } } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] /= colcnd; } } } else if (rowequ) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { x[i__ + j * x_dim1] = r__[i__] * x[i__ + j * x_dim1]; } } i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] /= rowcnd; } } /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } work[1] = rpvgrw; return 0; /* End of SGBSVX */ } /* sgbsvx_ */
/* Subroutine */ int serrge_(char *path, integer *nunit) { /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ real a[16] /* was [4][4] */, b[4], c__[4]; integer i__, j; real r__[4], w[12], x[4]; char c2[2]; real r1[4], r2[4], af[16] /* was [4][4] */; char eq[1]; integer ip[4], iw[4]; real err_bnds_c__[12] /* was [4][3] */; integer n_err_bnds__; real err_bnds_n__[12] /* was [4][3] */, berr; integer info; real anrm, ccond, rcond; extern /* Subroutine */ int sgbtf2_(integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *), sgetf2_( integer *, integer *, real *, integer *, integer *, integer *), alaesm_(char *, logical *, integer *), sgbcon_(char *, integer *, integer *, integer *, real *, integer *, integer *, real *, real *, real *, integer *, integer *), sgecon_( char *, integer *, real *, integer *, real *, real *, real *, integer *, integer *); extern logical lsamen_(integer *, char *, char *); real params[1]; extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical *, logical *), sgbequ_(integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), sgbrfs_(char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, real *, integer *, real *, integer *, real *, real *, real *, integer *, integer *), sgbtrf_(integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *), sgeequ_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), sgerfs_(char *, integer *, integer *, real *, integer *, real *, integer *, integer *, real * , integer *, real *, integer *, real *, real *, real *, integer *, integer *), sgetrf_(integer *, integer *, real *, integer *, integer *, integer *), sgetri_(integer *, real *, integer *, integer *, real *, integer *, integer *), sgbtrs_(char *, integer *, integer *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), sgetrs_(char *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), sgbequb_(integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), sgeequb_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *); integer nparams; extern /* Subroutine */ int sgbrfsx_(char *, char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, real *, real *, real *, integer *, real *, integer *, real *, real *, integer *, real *, real *, integer *, real *, real *, integer *, integer *), sgerfsx_(char *, char *, integer *, integer *, real *, integer *, real *, integer * , integer *, real *, real *, real *, integer *, real *, integer *, real *, real *, integer *, real *, real *, integer *, real *, real *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SERRGE tests the error exits for the REAL routines */ /* for general matrices. */ /* Note that this file is used only when the XBLAS are available, */ /* otherwise serrge.f defines this subroutine. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { a[i__ + (j << 2) - 5] = 1.f / (real) (i__ + j); af[i__ + (j << 2) - 5] = 1.f / (real) (i__ + j); /* L10: */ } b[j - 1] = 0.f; r1[j - 1] = 0.f; r2[j - 1] = 0.f; w[j - 1] = 0.f; x[j - 1] = 0.f; c__[j - 1] = 0.f; r__[j - 1] = 0.f; ip[j - 1] = j; iw[j - 1] = j; /* L20: */ } infoc_1.ok = TRUE_; if (lsamen_(&c__2, c2, "GE")) { /* Test error exits of the routines that use the LU decomposition */ /* of a general matrix. */ /* SGETRF */ s_copy(srnamc_1.srnamt, "SGETRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgetrf_(&c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgetrf_(&c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgetrf_(&c__2, &c__1, a, &c__1, ip, &info); chkxer_("SGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGETF2 */ s_copy(srnamc_1.srnamt, "SGETF2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgetf2_(&c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgetf2_(&c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgetf2_(&c__2, &c__1, a, &c__1, ip, &info); chkxer_("SGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGETRI */ s_copy(srnamc_1.srnamt, "SGETRI", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgetri_(&c_n1, a, &c__1, ip, w, &c__12, &info); chkxer_("SGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgetri_(&c__2, a, &c__1, ip, w, &c__12, &info); chkxer_("SGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGETRS */ s_copy(srnamc_1.srnamt, "SGETRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgetrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgetrs_("N", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgetrs_("N", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgetrs_("N", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sgetrs_("N", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGERFS */ s_copy(srnamc_1.srnamt, "SGERFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgerfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgerfs_("N", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgerfs_("N", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgerfs_("N", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, & c__2, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, & c__2, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, & c__2, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGERFSX */ n_err_bnds__ = 3; nparams = 0; s_copy(srnamc_1.srnamt, "SGERFSX", (ftnlen)32, (ftnlen)7); infoc_1.infot = 1; sgerfsx_("/", eq, &c__0, &c__0, a, &c__1, af, &c__1, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; *(unsigned char *)eq = '/'; sgerfsx_("N", eq, &c__2, &c__1, a, &c__1, af, &c__2, ip, r__, c__, b, &c__2, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; *(unsigned char *)eq = 'R'; sgerfsx_("N", eq, &c_n1, &c__0, a, &c__1, af, &c__1, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgerfsx_("N", eq, &c__0, &c_n1, a, &c__1, af, &c__1, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgerfsx_("N", eq, &c__2, &c__1, a, &c__1, af, &c__2, ip, r__, c__, b, &c__2, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sgerfsx_("N", eq, &c__2, &c__1, a, &c__2, af, &c__1, ip, r__, c__, b, &c__2, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 13; *(unsigned char *)eq = 'C'; sgerfsx_("N", eq, &c__2, &c__1, a, &c__2, af, &c__2, ip, r__, c__, b, &c__1, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 15; sgerfsx_("N", eq, &c__2, &c__1, a, &c__2, af, &c__2, ip, r__, c__, b, &c__2, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGERFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGECON */ s_copy(srnamc_1.srnamt, "SGECON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgecon_("/", &c__0, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("SGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgecon_("1", &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("SGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgecon_("1", &c__2, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("SGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEEQU */ s_copy(srnamc_1.srnamt, "SGEEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgeequ_(&c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeequ_(&c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeequ_(&c__2, &c__2, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEEQUB */ s_copy(srnamc_1.srnamt, "SGEEQUB", (ftnlen)32, (ftnlen)7); infoc_1.infot = 1; sgeequb_(&c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info) ; chkxer_("SGEEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeequb_(&c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info) ; chkxer_("SGEEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeequb_(&c__2, &c__2, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info) ; chkxer_("SGEEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } else if (lsamen_(&c__2, c2, "GB")) { /* Test error exits of the routines that use the LU decomposition */ /* of a general band matrix. */ /* SGBTRF */ s_copy(srnamc_1.srnamt, "SGBTRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgbtrf_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbtrf_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbtrf_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbtrf_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbtrf_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBTF2 */ s_copy(srnamc_1.srnamt, "SGBTF2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgbtf2_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbtf2_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbtf2_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbtf2_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbtf2_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBTRS */ s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgbtrs_("/", &c__0, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbtrs_("N", &c_n1, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbtrs_("N", &c__1, &c_n1, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbtrs_("N", &c__1, &c__0, &c_n1, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgbtrs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgbtrs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, ip, b, &c__2, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgbtrs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBRFS */ s_copy(srnamc_1.srnamt, "SGBRFS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgbrfs_("/", &c__0, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbrfs_("N", &c_n1, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbrfs_("N", &c__1, &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbrfs_("N", &c__1, &c__0, &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgbrfs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__2, af, &c__4, ip, b, & c__2, x, &c__2, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; sgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__3, ip, b, & c__2, x, &c__2, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__2, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 14; sgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, & c__2, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBRFSX */ n_err_bnds__ = 3; nparams = 0; s_copy(srnamc_1.srnamt, "SGBRFSX", (ftnlen)32, (ftnlen)7); infoc_1.infot = 1; sgbrfsx_("/", eq, &c__0, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; *(unsigned char *)eq = '/'; sgbrfsx_("N", eq, &c__2, &c__1, &c__1, &c__1, a, &c__1, af, &c__2, ip, r__, c__, b, &c__2, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; *(unsigned char *)eq = 'R'; sgbrfsx_("N", eq, &c_n1, &c__1, &c__1, &c__0, a, &c__1, af, &c__1, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; *(unsigned char *)eq = 'R'; sgbrfsx_("N", eq, &c__2, &c_n1, &c__1, &c__1, a, &c__3, af, &c__4, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; *(unsigned char *)eq = 'R'; sgbrfsx_("N", eq, &c__2, &c__1, &c_n1, &c__1, a, &c__3, af, &c__4, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbrfsx_("N", eq, &c__0, &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, ip, r__, c__, b, &c__1, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sgbrfsx_("N", eq, &c__2, &c__1, &c__1, &c__1, a, &c__1, af, &c__2, ip, r__, c__, b, &c__2, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgbrfsx_("N", eq, &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__3, ip, r__, c__, b, &c__2, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 13; *(unsigned char *)eq = 'C'; sgbrfsx_("N", eq, &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__5, ip, r__, c__, b, &c__1, x, &c__2, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 15; sgbrfsx_("N", eq, &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__5, ip, r__, c__, b, &c__2, x, &c__1, &rcond, &berr, &n_err_bnds__, err_bnds_n__, err_bnds_c__, &nparams, params, w, iw, &info); chkxer_("SGBRFSX", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBCON */ s_copy(srnamc_1.srnamt, "SGBCON", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgbcon_("/", &c__0, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbcon_("1", &c_n1, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbcon_("1", &c__1, &c_n1, &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbcon_("1", &c__1, &c__0, &c_n1, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbcon_("1", &c__2, &c__1, &c__1, a, &c__3, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBEQU */ s_copy(srnamc_1.srnamt, "SGBEQU", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; sgbequ_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbequ_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbequ_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbequ_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbequ_(&c__2, &c__2, &c__1, &c__1, a, &c__2, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBEQUB */ s_copy(srnamc_1.srnamt, "SGBEQUB", (ftnlen)32, (ftnlen)7); infoc_1.infot = 1; sgbequb_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbequb_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbequb_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbequb_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbequb_(&c__2, &c__2, &c__1, &c__1, a, &c__2, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQUB", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of SERRGE */ } /* serrge_ */
/* Subroutine */ int serrge_(char *path, integer *nunit) { /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static real anrm, a[16] /* was [4][4] */, b[4]; static integer i__, j; static real ccond, w[12], x[4], rcond; static char c2[2]; static real r1[4], r2[4]; extern /* Subroutine */ int sgbtf2_(integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *), sgetf2_( integer *, integer *, real *, integer *, integer *, integer *); static real af[16] /* was [4][4] */; static integer ip[4], iw[4]; extern /* Subroutine */ int alaesm_(char *, logical *, integer *), sgbcon_(char *, integer *, integer *, integer *, real *, integer *, integer *, real *, real *, real *, integer *, integer *), sgecon_(char *, integer *, real *, integer *, real *, real *, real *, integer *, integer *); extern logical lsamen_(integer *, char *, char *); extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical *, logical *), sgbequ_(integer *, integer *, integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), sgbrfs_(char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, real *, integer *, real *, integer *, real *, real *, real *, integer *, integer *), sgbtrf_(integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *), sgeequ_(integer *, integer *, real *, integer *, real *, real *, real *, real *, real *, integer *), sgerfs_(char *, integer *, integer *, real *, integer *, real *, integer *, integer *, real * , integer *, real *, integer *, real *, real *, real *, integer *, integer *), sgetrf_(integer *, integer *, real *, integer *, integer *, integer *), sgetri_(integer *, real *, integer *, integer *, real *, integer *, integer *), sgbtrs_(char *, integer *, integer *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), sgetrs_(char *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; #define a_ref(a_1,a_2) a[(a_2)*4 + a_1 - 5] #define af_ref(a_1,a_2) af[(a_2)*4 + a_1 - 5] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SERRGE tests the error exits for the REAL routines for general matrices. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name for the routines to be tested. NUNIT (input) INTEGER The unit number for output. ===================================================================== */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { a_ref(i__, j) = 1.f / (real) (i__ + j); af_ref(i__, j) = 1.f / (real) (i__ + j); /* L10: */ } b[j - 1] = 0.f; r1[j - 1] = 0.f; r2[j - 1] = 0.f; w[j - 1] = 0.f; x[j - 1] = 0.f; ip[j - 1] = j; iw[j - 1] = j; /* L20: */ } infoc_1.ok = TRUE_; if (lsamen_(&c__2, c2, "GE")) { /* Test error exits of the routines that use the LU decomposition of a general matrix. SGETRF */ s_copy(srnamc_1.srnamt, "SGETRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgetrf_(&c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgetrf_(&c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgetrf_(&c__2, &c__1, a, &c__1, ip, &info); chkxer_("SGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGETF2 */ s_copy(srnamc_1.srnamt, "SGETF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgetf2_(&c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgetf2_(&c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgetf2_(&c__2, &c__1, a, &c__1, ip, &info); chkxer_("SGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGETRI */ s_copy(srnamc_1.srnamt, "SGETRI", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgetri_(&c_n1, a, &c__1, ip, w, &c__12, &info); chkxer_("SGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgetri_(&c__2, a, &c__1, ip, w, &c__12, &info); chkxer_("SGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGETRS */ s_copy(srnamc_1.srnamt, "SGETRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgetrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgetrs_("N", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgetrs_("N", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgetrs_("N", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; sgetrs_("N", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info); chkxer_("SGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGERFS */ s_copy(srnamc_1.srnamt, "SGERFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgerfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgerfs_("N", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgerfs_("N", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgerfs_("N", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, & c__2, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, & c__2, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, & c__2, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, & c__1, r1, r2, w, iw, &info); chkxer_("SGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGECON */ s_copy(srnamc_1.srnamt, "SGECON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgecon_("/", &c__0, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("SGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgecon_("1", &c_n1, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("SGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgecon_("1", &c__2, a, &c__1, &anrm, &rcond, w, iw, &info); chkxer_("SGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGEEQU */ s_copy(srnamc_1.srnamt, "SGEEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgeequ_(&c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgeequ_(&c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgeequ_(&c__2, &c__2, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } else if (lsamen_(&c__2, c2, "GB")) { /* Test error exits of the routines that use the LU decomposition of a general band matrix. SGBTRF */ s_copy(srnamc_1.srnamt, "SGBTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgbtrf_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbtrf_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbtrf_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbtrf_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbtrf_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info); chkxer_("SGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBTF2 */ s_copy(srnamc_1.srnamt, "SGBTF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgbtf2_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbtf2_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbtf2_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbtf2_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbtf2_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info); chkxer_("SGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBTRS */ s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgbtrs_("/", &c__0, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbtrs_("N", &c_n1, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbtrs_("N", &c__1, &c_n1, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbtrs_("N", &c__1, &c__0, &c_n1, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgbtrs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgbtrs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, ip, b, &c__2, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; sgbtrs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("SGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBRFS */ s_copy(srnamc_1.srnamt, "SGBRFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgbrfs_("/", &c__0, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbrfs_("N", &c_n1, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbrfs_("N", &c__1, &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbrfs_("N", &c__1, &c__0, &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; sgbrfs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; sgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__2, af, &c__4, ip, b, & c__2, x, &c__2, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; sgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__3, ip, b, & c__2, x, &c__2, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; sgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__2, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 14; sgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, & c__2, x, &c__1, r1, r2, w, iw, &info); chkxer_("SGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBCON */ s_copy(srnamc_1.srnamt, "SGBCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgbcon_("/", &c__0, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbcon_("1", &c_n1, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbcon_("1", &c__1, &c_n1, &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbcon_("1", &c__1, &c__0, &c_n1, a, &c__1, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbcon_("1", &c__2, &c__1, &c__1, a, &c__3, ip, &anrm, &rcond, w, iw, &info); chkxer_("SGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* SGBEQU */ s_copy(srnamc_1.srnamt, "SGBEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; sgbequ_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; sgbequ_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; sgbequ_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; sgbequ_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; sgbequ_(&c__2, &c__2, &c__1, &c__1, a, &c__2, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("SGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of SERRGE */ } /* serrge_ */
/* Subroutine */ int schkgb_(logical *dotype, integer *nm, integer *mval, integer *nn, integer *nval, integer *nnb, integer *nbval, integer * nns, integer *nsval, real *thresh, logical *tsterr, real *a, integer * la, real *afac, integer *lafac, real *b, real *x, real *xact, real * work, real *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 *** In SCHKGB, LA=\002,i5,\002 is too sm" "all for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU=\002" ",i4,/\002 ==> Increase LA to at least \002,i5)"; static char fmt_9998[] = "(\002 *** In SCHKGB, LAFAC=\002,i5,\002 is too" " small for M=\002,i5,\002, N=\002,i5,\002, KL=\002,i4,\002, KU" "=\002,i4,/\002 ==> Increase LAFAC to at least \002,i5)"; static char fmt_9997[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, KL=" "\002,i5,\002, KU=\002,i5,\002, NB =\002,i4,\002, type \002,i1" ",\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9996[] = "(\002 TRANS='\002,a1,\002', N=\002,i5,\002, " "KL=\002,i5,\002, KU=\002,i5,\002, NRHS=\002,i3,\002, type \002,i" "1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9995[] = "(\002 NORM ='\002,a1,\002', N=\002,i5,\002, " "KL=\002,i5,\002, KU=\002,i5,\002,\002,10x,\002 type \002,i1,\002" ", test(\002,i1,\002)=\002,g12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, m, n, i1, i2, nb, im, in, kl, ku, lda, ldb, inb, ikl, nkl, iku, nku, ioff, mode, koff, imat, info; char path[3], dist[1]; integer irhs, nrhs; char norm[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern /* Subroutine */ int sgbt01_(integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, real * , real *), sgbt02_(char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real * , integer *, real *), sgbt05_(char *, integer *, integer * , integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, real *, real *); real rcond; extern /* Subroutine */ int sget04_(integer *, integer *, real *, integer *, real *, integer *, real *, real *); integer nimat, klval[4]; extern doublereal sget06_(real *, real *); real anorm; integer itran, kuval[4]; char trans[1]; integer izero, nerrs; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); logical zerot; char xtype[1]; extern /* Subroutine */ int slatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, real *, integer *, real *, char * ); integer ldafac; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); extern doublereal slangb_(char *, integer *, integer *, integer *, real *, integer *, real *); real rcondc; extern doublereal slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int sgbcon_(char *, integer *, integer *, integer *, real *, integer *, integer *, real *, real *, real *, integer * , integer *); real rcondi; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); real cndnum, anormi, rcondo; extern /* Subroutine */ int serrge_(char *, integer *); real ainvnm; extern /* Subroutine */ int sgbrfs_(char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, real *, integer *, real *, integer *, real *, real *, real *, integer *, integer *), sgbtrf_(integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *); logical trfcon; real anormo; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer * , integer *, integer *), slaset_( char *, integer *, integer *, real *, real *, real *, integer *), xlaenv_(integer *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, real *, integer *, real *, integer *), sgbtrs_(char *, integer *, integer *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *); real result[7]; /* Fortran I/O blocks */ static cilist io___25 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___26 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9995, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SCHKGB tests SGBTRF, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NM (input) INTEGER */ /* The number of values of M contained in the vector MVAL. */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix column dimension N. */ /* NNB (input) INTEGER */ /* The number of values of NB contained in the vector NBVAL. */ /* NBVAL (input) INTEGER array, dimension (NNB) */ /* The values of the blocksize NB. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) REAL */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* A (workspace) REAL array, dimension (LA) */ /* LA (input) INTEGER */ /* The length of the array A. LA >= (KLMAX+KUMAX+1)*NMAX */ /* where KLMAX is the largest entry in the local array KLVAL, */ /* KUMAX is the largest entry in the local array KUVAL and */ /* NMAX is the largest entry in the input array NVAL. */ /* AFAC (workspace) REAL array, dimension (LAFAC) */ /* LAFAC (input) INTEGER */ /* The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX */ /* where KLMAX is the largest entry in the local array KLVAL, */ /* KUMAX is the largest entry in the local array KUVAL and */ /* NMAX is the largest entry in the input array NVAL. */ /* B (workspace) REAL array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) REAL array, dimension (NMAX*NSMAX) */ /* XACT (workspace) REAL array, dimension (NMAX*NSMAX) */ /* WORK (workspace) REAL array, dimension */ /* (NMAX*max(3,NSMAX,NMAX)) */ /* RWORK (workspace) REAL array, dimension */ /* (max(NMAX,2*NSMAX)) */ /* IWORK (workspace) INTEGER array, dimension (2*NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --afac; --a; --nsval; --nbval; --nval; --mval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "GB", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { serrge_(path, nout); } infoc_1.infot = 0; xlaenv_(&c__2, &c__2); /* Initialize the first value for the lower and upper bandwidths. */ klval[0] = 0; kuval[0] = 0; /* Do for each value of M in MVAL */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; /* Set values to use for the lower bandwidth. */ klval[1] = m + (m + 1) / 4; /* KLVAL( 2 ) = MAX( M-1, 0 ) */ klval[2] = (m * 3 - 1) / 4; klval[3] = (m + 1) / 4; /* Do for each value of N in NVAL */ i__2 = *nn; for (in = 1; in <= i__2; ++in) { n = nval[in]; *(unsigned char *)xtype = 'N'; /* Set values to use for the upper bandwidth. */ kuval[1] = n + (n + 1) / 4; /* KUVAL( 2 ) = MAX( N-1, 0 ) */ kuval[2] = (n * 3 - 1) / 4; kuval[3] = (n + 1) / 4; /* Set limits on the number of loop iterations. */ /* Computing MIN */ i__3 = m + 1; nkl = min(i__3,4); if (n == 0) { nkl = 2; } /* Computing MIN */ i__3 = n + 1; nku = min(i__3,4); if (m == 0) { nku = 2; } nimat = 8; if (m <= 0 || n <= 0) { nimat = 1; } i__3 = nkl; for (ikl = 1; ikl <= i__3; ++ikl) { /* Do for KL = 0, (5*M+1)/4, (3M-1)/4, and (M+1)/4. This */ /* order makes it easier to skip redundant values for small */ /* values of M. */ kl = klval[ikl - 1]; i__4 = nku; for (iku = 1; iku <= i__4; ++iku) { /* Do for KU = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This */ /* order makes it easier to skip redundant values for */ /* small values of N. */ ku = kuval[iku - 1]; /* Check that A and AFAC are big enough to generate this */ /* matrix. */ lda = kl + ku + 1; ldafac = (kl << 1) + ku + 1; if (lda * n > *la || ldafac * n > *lafac) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } if (n * (kl + ku + 1) > *la) { io___25.ciunit = *nout; s_wsfe(&io___25); do_fio(&c__1, (char *)&(*la), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer) ); i__5 = n * (kl + ku + 1); do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof( integer)); e_wsfe(); ++nerrs; } if (n * ((kl << 1) + ku + 1) > *lafac) { io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, (char *)&(*lafac), (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&kl, (ftnlen)sizeof(integer) ); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof(integer) ); i__5 = n * ((kl << 1) + ku + 1); do_fio(&c__1, (char *)&i__5, (ftnlen)sizeof( integer)); e_wsfe(); ++nerrs; } goto L130; } i__5 = nimat; for (imat = 1; imat <= i__5; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L120; } /* Skip types 2, 3, or 4 if the matrix size is too */ /* small. */ zerot = imat >= 2 && imat <= 4; if (zerot && n < imat - 1) { goto L120; } if (! zerot || ! dotype[1]) { /* Set up parameters with SLATB4 and generate a */ /* test matrix with SLATMS. */ slatb4_(path, &imat, &m, &n, type__, &kl, &ku, & anorm, &mode, &cndnum, dist); /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - n; koff = max(i__6,i__7); i__6 = koff - 1; for (i__ = 1; i__ <= i__6; ++i__) { a[i__] = 0.f; /* L20: */ } s_copy(srnamc_1.srnamt, "SLATMS", (ftnlen)6, ( ftnlen)6); slatms_(&m, &n, dist, iseed, type__, &rwork[1], & mode, &cndnum, &anorm, &kl, &ku, "Z", &a[ koff], &lda, &work[1], &info); /* Check the error code from SLATMS. */ if (info != 0) { alaerh_(path, "SLATMS", &info, &c__0, " ", &m, &n, &kl, &ku, &c_n1, &imat, &nfail, & nerrs, nout); goto L120; } } else if (izero > 0) { /* Use the same matrix for types 3 and 4 as for */ /* type 2 by copying back the zeroed out column. */ i__6 = i2 - i1 + 1; scopy_(&i__6, &b[1], &c__1, &a[ioff + i1], &c__1); } /* For types 2, 3, and 4, zero one or more columns of */ /* the matrix to test that INFO is returned correctly. */ izero = 0; if (zerot) { if (imat == 2) { izero = 1; } else if (imat == 3) { izero = min(m,n); } else { izero = min(m,n) / 2 + 1; } ioff = (izero - 1) * lda; if (imat < 4) { /* Store the column to be zeroed out in B. */ /* Computing MAX */ i__6 = 1, i__7 = ku + 2 - izero; i1 = max(i__6,i__7); /* Computing MIN */ i__6 = kl + ku + 1, i__7 = ku + 1 + (m - izero); i2 = min(i__6,i__7); i__6 = i2 - i1 + 1; scopy_(&i__6, &a[ioff + i1], &c__1, &b[1], & c__1); i__6 = i2; for (i__ = i1; i__ <= i__6; ++i__) { a[ioff + i__] = 0.f; /* L30: */ } } else { i__6 = n; for (j = izero; j <= i__6; ++j) { /* Computing MAX */ i__7 = 1, i__8 = ku + 2 - j; /* Computing MIN */ i__10 = kl + ku + 1, i__11 = ku + 1 + (m - j); i__9 = min(i__10,i__11); for (i__ = max(i__7,i__8); i__ <= i__9; ++i__) { a[ioff + i__] = 0.f; /* L40: */ } ioff += lda; /* L50: */ } } } /* These lines, if used in place of the calls in the */ /* loop over INB, cause the code to bomb on a Sun */ /* SPARCstation. */ /* ANORMO = SLANGB( 'O', N, KL, KU, A, LDA, RWORK ) */ /* ANORMI = SLANGB( 'I', N, KL, KU, A, LDA, RWORK ) */ /* Do for each blocksize in NBVAL */ i__6 = *nnb; for (inb = 1; inb <= i__6; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); /* Compute the LU factorization of the band matrix. */ if (m > 0 && n > 0) { i__9 = kl + ku + 1; slacpy_("Full", &i__9, &n, &a[1], &lda, &afac[ kl + 1], &ldafac); } s_copy(srnamc_1.srnamt, "SGBTRF", (ftnlen)6, ( ftnlen)6); sgbtrf_(&m, &n, &kl, &ku, &afac[1], &ldafac, & iwork[1], &info); /* Check error code from SGBTRF. */ if (info != izero) { alaerh_(path, "SGBTRF", &info, &izero, " ", & m, &n, &kl, &ku, &nb, &imat, &nfail, & nerrs, nout); } trfcon = FALSE_; /* + TEST 1 */ /* Reconstruct matrix from factors and compute */ /* residual. */ sgbt01_(&m, &n, &kl, &ku, &a[1], &lda, &afac[1], & ldafac, &iwork[1], &work[1], result); /* Print information about the tests so far that */ /* did not pass the threshold. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, (char *)&m, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nb, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[0], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } ++nrun; /* Skip the remaining tests if this is not the */ /* first block size or if M .ne. N. */ if (inb > 1 || m != n) { goto L110; } anormo = slangb_("O", &n, &kl, &ku, &a[1], &lda, & rwork[1]); anormi = slangb_("I", &n, &kl, &ku, &a[1], &lda, & rwork[1]); if (info == 0) { /* Form the inverse of A so we can get a good */ /* estimate of CNDNUM = norm(A) * norm(inv(A)). */ ldb = max(1,n); slaset_("Full", &n, &n, &c_b63, &c_b64, &work[ 1], &ldb); s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen)6, ( ftnlen)6); sgbtrs_("No transpose", &n, &kl, &ku, &n, & afac[1], &ldafac, &iwork[1], &work[1], &ldb, &info); /* Compute the 1-norm condition number of A. */ ainvnm = slange_("O", &n, &n, &work[1], &ldb, &rwork[1]); if (anormo <= 0.f || ainvnm <= 0.f) { rcondo = 1.f; } else { rcondo = 1.f / anormo / ainvnm; } /* Compute the infinity-norm condition number of */ /* A. */ ainvnm = slange_("I", &n, &n, &work[1], &ldb, &rwork[1]); if (anormi <= 0.f || ainvnm <= 0.f) { rcondi = 1.f; } else { rcondi = 1.f / anormi / ainvnm; } } else { /* Do only the condition estimate if INFO.NE.0. */ trfcon = TRUE_; rcondo = 0.f; rcondi = 0.f; } /* Skip the solve tests if the matrix is singular. */ if (trfcon) { goto L90; } i__9 = *nns; for (irhs = 1; irhs <= i__9; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; if (itran == 1) { rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { rcondc = rcondi; *(unsigned char *)norm = 'I'; } /* + TEST 2: */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "SLARHS", (ftnlen) 6, (ftnlen)6); slarhs_(path, xtype, " ", trans, &n, &n, & kl, &ku, &nrhs, &a[1], &lda, & xact[1], &ldb, &b[1], &ldb, iseed, &info); *(unsigned char *)xtype = 'C'; slacpy_("Full", &n, &nrhs, &b[1], &ldb, & x[1], &ldb); s_copy(srnamc_1.srnamt, "SGBTRS", (ftnlen) 6, (ftnlen)6); sgbtrs_(trans, &n, &kl, &ku, &nrhs, &afac[ 1], &ldafac, &iwork[1], &x[1], & ldb, &info); /* Check error code from SGBTRS. */ if (info != 0) { alaerh_(path, "SGBTRS", &info, &c__0, trans, &n, &n, &kl, &ku, & c_n1, &imat, &nfail, &nerrs, nout); } slacpy_("Full", &n, &nrhs, &b[1], &ldb, & work[1], &ldb); sgbt02_(trans, &m, &n, &kl, &ku, &nrhs, & a[1], &lda, &x[1], &ldb, &work[1], &ldb, &result[1]); /* + TEST 3: */ /* Check solution from generated exact */ /* solution. */ sget04_(&n, &nrhs, &x[1], &ldb, &xact[1], &ldb, &rcondc, &result[2]); /* + TESTS 4, 5, 6: */ /* Use iterative refinement to improve the */ /* solution. */ s_copy(srnamc_1.srnamt, "SGBRFS", (ftnlen) 6, (ftnlen)6); sgbrfs_(trans, &n, &kl, &ku, &nrhs, &a[1], &lda, &afac[1], &ldafac, &iwork[ 1], &b[1], &ldb, &x[1], &ldb, & rwork[1], &rwork[nrhs + 1], &work[ 1], &iwork[n + 1], &info); /* Check error code from SGBRFS. */ if (info != 0) { alaerh_(path, "SGBRFS", &info, &c__0, trans, &n, &n, &kl, &ku, & nrhs, &imat, &nfail, &nerrs, nout); } sget04_(&n, &nrhs, &x[1], &ldb, &xact[1], &ldb, &rcondc, &result[3]); sgbt05_(trans, &n, &kl, &ku, &nrhs, &a[1], &lda, &b[1], &ldb, &x[1], &ldb, & xact[1], &ldb, &rwork[1], &rwork[ nrhs + 1], &result[4]); for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___59.ciunit = *nout; s_wsfe(&io___59); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&kl, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ku, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&nrhs, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, ( ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(real)); e_wsfe(); ++nfail; } /* L60: */ } nrun += 5; /* L70: */ } /* L80: */ } /* + TEST 7: */ /* Get an estimate of RCOND = 1/CNDNUM. */ L90: for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { anorm = anormo; rcondc = rcondo; *(unsigned char *)norm = 'O'; } else { anorm = anormi; rcondc = rcondi; *(unsigned char *)norm = 'I'; } s_copy(srnamc_1.srnamt, "SGBCON", (ftnlen)6, ( ftnlen)6); sgbcon_(norm, &n, &kl, &ku, &afac[1], &ldafac, &iwork[1], &anorm, &rcond, &work[1], &iwork[n + 1], &info); /* Check error code from SGBCON. */ if (info != 0) { alaerh_(path, "SGBCON", &info, &c__0, norm, &n, &n, &kl, &ku, &c_n1, & imat, &nfail, &nerrs, nout); } result[6] = sget06_(&rcond, &rcondc); /* Print information about the tests that did */ /* not pass the threshold. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___61.ciunit = *nout; s_wsfe(&io___61); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&kl, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ku, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen) sizeof(real)); e_wsfe(); ++nfail; } ++nrun; /* L100: */ } L110: ; } L120: ; } L130: ; } /* L140: */ } /* L150: */ } /* L160: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of SCHKGB */ } /* schkgb_ */