/* Autocorrelations for a warped frequency axis */ void silk_warped_autocorrelation_FIX( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ const opus_int warping_Q16, /* I Warping coefficient */ const opus_int length, /* I Length of input */ const opus_int order /* I Correlation order (even) */ ) { opus_int n, i, lsh; opus_int32 tmp1_QS, tmp2_QS; opus_int32 state_QS[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; opus_int64 corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* Order must be even */ silk_assert( ( order & 1 ) == 0 ); silk_assert( 2 * QS - QC >= 0 ); /* Loop over samples */ for( n = 0; n < length; n++ ) { tmp1_QS = silk_LSHIFT32( (opus_int32)input[ n ], QS ); /* Loop over allpass sections */ for( i = 0; i < order; i += 2 ) { /* Output of allpass section */ tmp2_QS = silk_SMLAWB( state_QS[ i ], state_QS[ i + 1 ] - tmp1_QS, warping_Q16 ); state_QS[ i ] = tmp1_QS; corr_QC[ i ] += silk_RSHIFT64( silk_SMULL( tmp1_QS, state_QS[ 0 ] ), 2 * QS - QC ); /* Output of allpass section */ tmp1_QS = silk_SMLAWB( state_QS[ i + 1 ], state_QS[ i + 2 ] - tmp2_QS, warping_Q16 ); state_QS[ i + 1 ] = tmp2_QS; corr_QC[ i + 1 ] += silk_RSHIFT64( silk_SMULL( tmp2_QS, state_QS[ 0 ] ), 2 * QS - QC ); } state_QS[ order ] = tmp1_QS; corr_QC[ order ] += silk_RSHIFT64( silk_SMULL( tmp1_QS, state_QS[ 0 ] ), 2 * QS - QC ); } lsh = silk_CLZ64( corr_QC[ 0 ] ) - 35; lsh = silk_LIMIT( lsh, -12 - QC, 30 - QC ); *scale = -( QC + lsh ); silk_assert( *scale >= -30 && *scale <= 12 ); if( lsh >= 0 ) { for( i = 0; i < order + 1; i++ ) { corr[ i ] = (opus_int32)silk_CHECK_FIT32( silk_LSHIFT64( corr_QC[ i ], lsh ) ); } } else { for( i = 0; i < order + 1; i++ ) { corr[ i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr_QC[ i ], -lsh ) ); } } silk_assert( corr_QC[ 0 ] >= 0 ); /* If breaking, decrease QC*/ }
/* Compute autocorrelation */ void silk_autocorr( opus_int32 *results, /* O Result (length correlationCount) */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *inputData, /* I Input data to correlate */ const opus_int inputDataSize, /* I Length of input */ const opus_int correlationCount /* I Number of correlation taps to compute */ ) { opus_int i, lz, nRightShifts, corrCount; opus_int64 corr64; corrCount = silk_min_int( inputDataSize, correlationCount ); /* compute energy (zero-lag correlation) */ corr64 = silk_inner_prod16_aligned_64( inputData, inputData, inputDataSize ); /* deal with all-zero input data */ corr64 += 1; /* number of leading zeros */ lz = silk_CLZ64( corr64 ); /* scaling: number of right shifts applied to correlations */ nRightShifts = 35 - lz; *scale = nRightShifts; if( nRightShifts <= 0 ) { results[ 0 ] = silk_LSHIFT( (opus_int32)silk_CHECK_FIT32( corr64 ), -nRightShifts ); /* compute remaining correlations based on int32 inner product */ for( i = 1; i < corrCount; i++ ) { results[ i ] = silk_LSHIFT( silk_inner_prod_aligned( inputData, inputData + i, inputDataSize - i ), -nRightShifts ); } } else { results[ 0 ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr64, nRightShifts ) ); /* compute remaining correlations based on int64 inner product */ for( i = 1; i < corrCount; i++ ) { results[ i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( silk_inner_prod16_aligned_64( inputData, inputData + i, inputDataSize - i ), nRightShifts ) ); } } }
/* Multiply a vector by a constant */ void silk_scale_vector32_Q26_lshift_18( opus_int32 *data1, /* I/O Q0/Q18 */ opus_int32 gain_Q26, /* I Q26 */ opus_int dataSize /* I length */ ) { opus_int i; for(i = 0; i < dataSize; i++) { data1[ i ] = (opus_int32)silk_CHECK_FIT32(silk_RSHIFT64(silk_SMULL(data1[ i ], gain_Q26), 8)); /* OUTPUT: Q18 */ } }
void silk_warped_autocorrelation_FIX_neon( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ const opus_int warping_Q16, /* I Warping coefficient */ const opus_int length, /* I Length of input */ const opus_int order /* I Correlation order (even) */ ) { if( ( MAX_SHAPE_LPC_ORDER > 24 ) || ( order < 6 ) ) { silk_warped_autocorrelation_FIX_c( corr, scale, input, warping_Q16, length, order ); } else { opus_int n, i, lsh; opus_int64 corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* In reverse order */ opus_int64 corr_QC_orderT; int64x2_t lsh_s64x2; const opus_int orderT = ( order + 3 ) & ~3; opus_int64 *corr_QCT; opus_int32 *input_QS; VARDECL( opus_int32, input_QST ); VARDECL( opus_int32, state ); SAVE_STACK; /* Order must be even */ silk_assert( ( order & 1 ) == 0 ); silk_assert( 2 * QS - QC >= 0 ); ALLOC( input_QST, length + 2 * MAX_SHAPE_LPC_ORDER, opus_int32 ); input_QS = input_QST; /* input_QS has zero paddings in the beginning and end. */ vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; /* Loop over samples */ for( n = 0; n < length - 7; n += 8, input_QS += 8 ) { const int16x8_t t0_s16x4 = vld1q_s16( input + n ); vst1q_s32( input_QS + 0, vshll_n_s16( vget_low_s16( t0_s16x4 ), QS ) ); vst1q_s32( input_QS + 4, vshll_n_s16( vget_high_s16( t0_s16x4 ), QS ) ); } for( ; n < length; n++, input_QS++ ) { input_QS[ 0 ] = silk_LSHIFT32( (opus_int32)input[ n ], QS ); } vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS = input_QST + MAX_SHAPE_LPC_ORDER - orderT; /* The following loop runs ( length + order ) times, with ( order ) extra epilogues. */ /* The zero paddings in input_QS guarantee corr_QC's correctness even with the extra epilogues. */ /* The values of state_QS will be polluted by the extra epilogues, however they are temporary values. */ /* Keep the C code here to help understand the intrinsics optimization. */ /* { opus_int32 state_QS[ 2 ][ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; opus_int32 *state_QST[ 3 ]; state_QST[ 0 ] = state_QS[ 0 ]; state_QST[ 1 ] = state_QS[ 1 ]; for( n = 0; n < length + order; n++, input_QS++ ) { state_QST[ 0 ][ orderT ] = input_QS[ orderT ]; for( i = 0; i < orderT; i++ ) { corr_QC[ i ] += silk_RSHIFT64( silk_SMULL( state_QST[ 0 ][ i ], input_QS[ i ] ), 2 * QS - QC ); state_QST[ 1 ][ i ] = silk_SMLAWB( state_QST[ 1 ][ i + 1 ], state_QST[ 0 ][ i ] - state_QST[ 0 ][ i + 1 ], warping_Q16 ); } state_QST[ 2 ] = state_QST[ 0 ]; state_QST[ 0 ] = state_QST[ 1 ]; state_QST[ 1 ] = state_QST[ 2 ]; } } */ { const int32x4_t warping_Q16_s32x4 = vdupq_n_s32( warping_Q16 << 15 ); const opus_int32 *in = input_QS + orderT; opus_int o = orderT; int32x4_t state_QS_s32x4[ 3 ][ 2 ]; ALLOC( state, length + orderT, opus_int32 ); state_QS_s32x4[ 2 ][ 1 ] = vdupq_n_s32( 0 ); /* Calculate 8 taps of all inputs in each loop. */ do { state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 0 ][ 1 ] = state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 1 ][ 1 ] = vdupq_n_s32( 0 ); n = 0; do { calc_corr( input_QS + n, corr_QC, o - 8, state_QS_s32x4[ 0 ][ 0 ] ); calc_corr( input_QS + n, corr_QC, o - 4, state_QS_s32x4[ 0 ][ 1 ] ); state_QS_s32x4[ 2 ][ 1 ] = vld1q_s32( in + n ); vst1q_lane_s32( state + n, state_QS_s32x4[ 0 ][ 0 ], 0 ); state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 0 ][ 1 ], 1 ); state_QS_s32x4[ 2 ][ 1 ] = vextq_s32( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], 1 ); state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 ); state_QS_s32x4[ 0 ][ 1 ] = calc_state( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], state_QS_s32x4[ 1 ][ 1 ], warping_Q16_s32x4 ); state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ]; state_QS_s32x4[ 1 ][ 1 ] = state_QS_s32x4[ 2 ][ 1 ]; } while( ++n < ( length + order ) ); in = state; o -= 8; } while( o > 4 ); if( o ) { /* Calculate the last 4 taps of all inputs. */ opus_int32 *stateT = state; silk_assert( o == 4 ); state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 1 ][ 0 ] = vdupq_n_s32( 0 ); n = length + order; do { calc_corr( input_QS, corr_QC, 0, state_QS_s32x4[ 0 ][ 0 ] ); state_QS_s32x4[ 2 ][ 0 ] = vld1q_s32( stateT ); vst1q_lane_s32( stateT, state_QS_s32x4[ 0 ][ 0 ], 0 ); state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], 1 ); state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 ); state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ]; input_QS++; stateT++; } while( --n ); } } { const opus_int16 *inputT = input; int32x4_t t_s32x4; int64x1_t t_s64x1; int64x2_t t_s64x2 = vdupq_n_s64( 0 ); for( n = 0; n <= length - 8; n += 8 ) { int16x8_t input_s16x8 = vld1q_s16( inputT ); t_s32x4 = vmull_s16( vget_low_s16( input_s16x8 ), vget_low_s16( input_s16x8 ) ); t_s32x4 = vmlal_s16( t_s32x4, vget_high_s16( input_s16x8 ), vget_high_s16( input_s16x8 ) ); t_s64x2 = vaddw_s32( t_s64x2, vget_low_s32( t_s32x4 ) ); t_s64x2 = vaddw_s32( t_s64x2, vget_high_s32( t_s32x4 ) ); inputT += 8; } t_s64x1 = vadd_s64( vget_low_s64( t_s64x2 ), vget_high_s64( t_s64x2 ) ); corr_QC_orderT = vget_lane_s64( t_s64x1, 0 ); for( ; n < length; n++ ) { corr_QC_orderT += silk_SMULL( input[ n ], input[ n ] ); } corr_QC_orderT = silk_LSHIFT64( corr_QC_orderT, QC ); corr_QC[ orderT ] = corr_QC_orderT; } corr_QCT = corr_QC + orderT - order; lsh = silk_CLZ64( corr_QC_orderT ) - 35; lsh = silk_LIMIT( lsh, -12 - QC, 30 - QC ); *scale = -( QC + lsh ); silk_assert( *scale >= -30 && *scale <= 12 ); lsh_s64x2 = vdupq_n_s64( lsh ); for( i = 0; i <= order - 3; i += 4 ) { int32x4_t corr_s32x4; int64x2_t corr_QC0_s64x2, corr_QC1_s64x2; corr_QC0_s64x2 = vld1q_s64( corr_QCT + i ); corr_QC1_s64x2 = vld1q_s64( corr_QCT + i + 2 ); corr_QC0_s64x2 = vshlq_s64( corr_QC0_s64x2, lsh_s64x2 ); corr_QC1_s64x2 = vshlq_s64( corr_QC1_s64x2, lsh_s64x2 ); corr_s32x4 = vcombine_s32( vmovn_s64( corr_QC1_s64x2 ), vmovn_s64( corr_QC0_s64x2 ) ); corr_s32x4 = vrev64q_s32( corr_s32x4 ); vst1q_s32( corr + order - i - 3, corr_s32x4 ); } if( lsh >= 0 ) { for( ; i < order + 1; i++ ) { corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_LSHIFT64( corr_QCT[ i ], lsh ) ); } } else { for( ; i < order + 1; i++ ) { corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr_QCT[ i ], -lsh ) ); } } silk_assert( corr_QCT[ order ] >= 0 ); /* If breaking, decrease QC*/ RESTORE_STACK; } #ifdef OPUS_CHECK_ASM { opus_int32 corr_c[ MAX_SHAPE_LPC_ORDER + 1 ]; opus_int scale_c; silk_warped_autocorrelation_FIX_c( corr_c, &scale_c, input, warping_Q16, length, order ); silk_assert( !memcmp( corr_c, corr, sizeof( corr_c[ 0 ] ) * ( order + 1 ) ) ); silk_assert( scale_c == *scale ); } #endif }