/* Processing of gains */ void silk_process_gains_FIX( silk_encoder_state_FIX *psEnc, /* I/O Encoder state */ silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control */ opus_int condCoding /* I The type of conditional coding to use */ ) { silk_shape_state_FIX *psShapeSt = &psEnc->sShape; opus_int k; opus_int32 s_Q16, InvMaxSqrVal_Q16, gain, gain_squared, ResNrg, ResNrgPart, quant_offset_Q10; /* Gain reduction when LTP coding gain is high */ if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { /*s = -0.5f * silk_sigmoid( 0.25f * ( psEncCtrl->LTPredCodGain - 12.0f ) ); */ s_Q16 = -silk_sigm_Q15( silk_RSHIFT_ROUND( psEncCtrl->LTPredCodGain_Q7 - SILK_FIX_CONST( 12.0, 7 ), 4 ) ); for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { psEncCtrl->Gains_Q16[ k ] = silk_SMLAWB( psEncCtrl->Gains_Q16[ k ], psEncCtrl->Gains_Q16[ k ], s_Q16 ); } } /* Limit the quantized signal */ /* InvMaxSqrVal = pow( 2.0f, 0.33f * ( 21.0f - SNR_dB ) ) / subfr_length; */ InvMaxSqrVal_Q16 = silk_DIV32_16( silk_log2lin( silk_SMULWB( SILK_FIX_CONST( 21 + 16 / 0.33, 7 ) - psEnc->sCmn.SNR_dB_Q7, SILK_FIX_CONST( 0.33, 16 ) ) ), psEnc->sCmn.subfr_length ); for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { /* Soft limit on ratio residual energy and squared gains */ ResNrg = psEncCtrl->ResNrg[ k ]; ResNrgPart = silk_SMULWW( ResNrg, InvMaxSqrVal_Q16 ); if( psEncCtrl->ResNrgQ[ k ] > 0 ) { ResNrgPart = silk_RSHIFT_ROUND( ResNrgPart, psEncCtrl->ResNrgQ[ k ] ); } else { if( ResNrgPart >= silk_RSHIFT( silk_int32_MAX, -psEncCtrl->ResNrgQ[ k ] ) ) { ResNrgPart = silk_int32_MAX; } else { ResNrgPart = silk_LSHIFT( ResNrgPart, -psEncCtrl->ResNrgQ[ k ] ); } } gain = psEncCtrl->Gains_Q16[ k ]; gain_squared = silk_ADD_SAT32( ResNrgPart, silk_SMMUL( gain, gain ) ); if( gain_squared < silk_int16_MAX ) { /* recalculate with higher precision */ gain_squared = silk_SMLAWW( silk_LSHIFT( ResNrgPart, 16 ), gain, gain ); silk_assert( gain_squared > 0 ); gain = silk_SQRT_APPROX( gain_squared ); /* Q8 */ gain = silk_min( gain, silk_int32_MAX >> 8 ); psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( gain, 8 ); /* Q16 */ } else {
static OPUS_INLINE void silk_PLC_conceal( silk_decoder_state *psDec, /* I/O Decoder state */ silk_decoder_control *psDecCtrl, /* I/O Decoder control */ opus_int16 frame[], /* O LPC residual signal */ int arch /* I Run-time architecture */ ) { opus_int i, j, k; opus_int lag, idx, sLTP_buf_idx, shift1, shift2; opus_int32 rand_seed, harm_Gain_Q15, rand_Gain_Q15, inv_gain_Q30; opus_int32 energy1, energy2, *rand_ptr, *pred_lag_ptr; opus_int32 LPC_pred_Q10, LTP_pred_Q12; opus_int16 rand_scale_Q14; opus_int16 *B_Q14; opus_int32 *sLPC_Q14_ptr; opus_int16 A_Q12[ MAX_LPC_ORDER ]; #ifdef SMALL_FOOTPRINT opus_int16 *sLTP; #else VARDECL( opus_int16, sLTP ); #endif VARDECL( opus_int32, sLTP_Q14 ); silk_PLC_struct *psPLC = &psDec->sPLC; opus_int32 prevGain_Q10[2]; SAVE_STACK; ALLOC( sLTP_Q14, psDec->ltp_mem_length + psDec->frame_length, opus_int32 ); #ifdef SMALL_FOOTPRINT /* Ugly hack that breaks aliasing rules to save stack: put sLTP at the very end of sLTP_Q14. */ sLTP = ((opus_int16*)&sLTP_Q14[psDec->ltp_mem_length + psDec->frame_length])-psDec->ltp_mem_length; #else ALLOC( sLTP, psDec->ltp_mem_length, opus_int16 ); #endif prevGain_Q10[0] = silk_RSHIFT( psPLC->prevGain_Q16[ 0 ], 6); prevGain_Q10[1] = silk_RSHIFT( psPLC->prevGain_Q16[ 1 ], 6); if( psDec->first_frame_after_reset ) { silk_memset( psPLC->prevLPC_Q12, 0, sizeof( psPLC->prevLPC_Q12 ) ); } silk_PLC_energy(&energy1, &shift1, &energy2, &shift2, psDec->exc_Q14, prevGain_Q10, psDec->subfr_length, psDec->nb_subfr); if( silk_RSHIFT( energy1, shift2 ) < silk_RSHIFT( energy2, shift1 ) ) { /* First sub-frame has lowest energy */ rand_ptr = &psDec->exc_Q14[ silk_max_int( 0, ( psPLC->nb_subfr - 1 ) * psPLC->subfr_length - RAND_BUF_SIZE ) ]; } else { /* Second sub-frame has lowest energy */ rand_ptr = &psDec->exc_Q14[ silk_max_int( 0, psPLC->nb_subfr * psPLC->subfr_length - RAND_BUF_SIZE ) ]; } /* Set up Gain to random noise component */ B_Q14 = psPLC->LTPCoef_Q14; rand_scale_Q14 = psPLC->randScale_Q14; /* Set up attenuation gains */ harm_Gain_Q15 = HARM_ATT_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ]; if( psDec->prevSignalType == TYPE_VOICED ) { rand_Gain_Q15 = PLC_RAND_ATTENUATE_V_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ]; } else { rand_Gain_Q15 = PLC_RAND_ATTENUATE_UV_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ]; } /* LPC concealment. Apply BWE to previous LPC */ silk_bwexpander( psPLC->prevLPC_Q12, psDec->LPC_order, SILK_FIX_CONST( BWE_COEF, 16 ) ); /* Preload LPC coeficients to array on stack. Gives small performance gain */ silk_memcpy( A_Q12, psPLC->prevLPC_Q12, psDec->LPC_order * sizeof( opus_int16 ) ); /* First Lost frame */ if( psDec->lossCnt == 0 ) { rand_scale_Q14 = 1 << 14; /* Reduce random noise Gain for voiced frames */ if( psDec->prevSignalType == TYPE_VOICED ) { for( i = 0; i < LTP_ORDER; i++ ) { rand_scale_Q14 -= B_Q14[ i ]; } rand_scale_Q14 = silk_max_16( 3277, rand_scale_Q14 ); /* 0.2 */ rand_scale_Q14 = (opus_int16)silk_RSHIFT( silk_SMULBB( rand_scale_Q14, psPLC->prevLTP_scale_Q14 ), 14 ); } else { /* Reduce random noise for unvoiced frames with high LPC gain */ opus_int32 invGain_Q30, down_scale_Q30; invGain_Q30 = silk_LPC_inverse_pred_gain( psPLC->prevLPC_Q12, psDec->LPC_order, arch ); down_scale_Q30 = silk_min_32( silk_RSHIFT( (opus_int32)1 << 30, LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 ); down_scale_Q30 = silk_max_32( silk_RSHIFT( (opus_int32)1 << 30, LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 ); down_scale_Q30 = silk_LSHIFT( down_scale_Q30, LOG2_INV_LPC_GAIN_HIGH_THRES ); rand_Gain_Q15 = silk_RSHIFT( silk_SMULWB( down_scale_Q30, rand_Gain_Q15 ), 14 ); } } rand_seed = psPLC->rand_seed; lag = silk_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 ); sLTP_buf_idx = psDec->ltp_mem_length; /* Rewhiten LTP state */ idx = psDec->ltp_mem_length - lag - psDec->LPC_order - LTP_ORDER / 2; silk_assert( idx > 0 ); silk_LPC_analysis_filter( &sLTP[ idx ], &psDec->outBuf[ idx ], A_Q12, psDec->ltp_mem_length - idx, psDec->LPC_order, arch ); /* Scale LTP state */ inv_gain_Q30 = silk_INVERSE32_varQ( psPLC->prevGain_Q16[ 1 ], 46 ); inv_gain_Q30 = silk_min( inv_gain_Q30, silk_int32_MAX >> 1 ); for( i = idx + psDec->LPC_order; i < psDec->ltp_mem_length; i++ ) { sLTP_Q14[ i ] = silk_SMULWB( inv_gain_Q30, sLTP[ i ] ); } /***************************/ /* LTP synthesis filtering */ /***************************/ for( k = 0; k < psDec->nb_subfr; k++ ) { /* Set up pointer */ pred_lag_ptr = &sLTP_Q14[ sLTP_buf_idx - lag + LTP_ORDER / 2 ]; for( i = 0; i < psDec->subfr_length; i++ ) { /* Unrolled loop */ /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ LTP_pred_Q12 = 2; LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ 0 ], B_Q14[ 0 ] ); LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -1 ], B_Q14[ 1 ] ); LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -2 ], B_Q14[ 2 ] ); LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -3 ], B_Q14[ 3 ] ); LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -4 ], B_Q14[ 4 ] ); pred_lag_ptr++; /* Generate LPC excitation */ rand_seed = silk_RAND( rand_seed ); idx = silk_RSHIFT( rand_seed, 25 ) & RAND_BUF_MASK; sLTP_Q14[ sLTP_buf_idx ] = silk_LSHIFT32( silk_SMLAWB( LTP_pred_Q12, rand_ptr[ idx ], rand_scale_Q14 ), 2 ); sLTP_buf_idx++; } /* Gradually reduce LTP gain */ for( j = 0; j < LTP_ORDER; j++ ) { B_Q14[ j ] = silk_RSHIFT( silk_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 ); } if ( psDec->indices.signalType != TYPE_NO_VOICE_ACTIVITY ) { /* Gradually reduce excitation gain */ rand_scale_Q14 = silk_RSHIFT( silk_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 ); } /* Slowly increase pitch lag */ psPLC->pitchL_Q8 = silk_SMLAWB( psPLC->pitchL_Q8, psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 ); psPLC->pitchL_Q8 = silk_min_32( psPLC->pitchL_Q8, silk_LSHIFT( silk_SMULBB( MAX_PITCH_LAG_MS, psDec->fs_kHz ), 8 ) ); lag = silk_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 ); } /***************************/ /* LPC synthesis filtering */ /***************************/ sLPC_Q14_ptr = &sLTP_Q14[ psDec->ltp_mem_length - MAX_LPC_ORDER ]; /* Copy LPC state */ silk_memcpy( sLPC_Q14_ptr, psDec->sLPC_Q14_buf, MAX_LPC_ORDER * sizeof( opus_int32 ) ); silk_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */ for( i = 0; i < psDec->frame_length; i++ ) { /* partly unrolled */ /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ LPC_pred_Q10 = silk_RSHIFT( psDec->LPC_order, 1 ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 1 ], A_Q12[ 0 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 2 ], A_Q12[ 1 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 3 ], A_Q12[ 2 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 4 ], A_Q12[ 3 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 5 ], A_Q12[ 4 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 6 ], A_Q12[ 5 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 7 ], A_Q12[ 6 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 8 ], A_Q12[ 7 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 9 ], A_Q12[ 8 ] ); LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 10 ], A_Q12[ 9 ] ); for( j = 10; j < psDec->LPC_order; j++ ) { LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - j - 1 ], A_Q12[ j ] ); } /* Add prediction to LPC excitation */ sLPC_Q14_ptr[ MAX_LPC_ORDER + i ] = silk_ADD_SAT32( sLPC_Q14_ptr[ MAX_LPC_ORDER + i ], silk_LSHIFT_SAT32( LPC_pred_Q10, 4 )); /* Scale with Gain */ frame[ i ] = (opus_int16)silk_SAT16( silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( sLPC_Q14_ptr[ MAX_LPC_ORDER + i ], prevGain_Q10[ 1 ] ), 8 ) ) ); } /* Save LPC state */ silk_memcpy( psDec->sLPC_Q14_buf, &sLPC_Q14_ptr[ psDec->frame_length ], MAX_LPC_ORDER * sizeof( opus_int32 ) ); /**************************************/ /* Update states */ /**************************************/ psPLC->rand_seed = rand_seed; psPLC->randScale_Q14 = rand_scale_Q14; for( i = 0; i < MAX_NB_SUBFR; i++ ) { psDecCtrl->pitchL[ i ] = lag; } RESTORE_STACK; }
opus_int silk_VAD_GetSA_Q8( /* O Return value, 0 if success */ silk_encoder_state *psEncC, /* I/O Encoder state */ const opus_int16 pIn[] /* I PCM input */ ) { opus_int SA_Q15, pSNR_dB_Q7, input_tilt; opus_int decimated_framelength1, decimated_framelength2; opus_int decimated_framelength; opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s; opus_int32 sumSquared, smooth_coef_Q16; opus_int16 HPstateTmp; VARDECL( opus_int16, X ); opus_int32 Xnrg[ VAD_N_BANDS ]; opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ]; opus_int32 speech_nrg, x_tmp; opus_int X_offset[ VAD_N_BANDS ]; opus_int ret = 0; silk_VAD_state *psSilk_VAD = &psEncC->sVAD; SAVE_STACK; /* Safety checks */ silk_assert( VAD_N_BANDS == 4 ); silk_assert( MAX_FRAME_LENGTH >= psEncC->frame_length ); silk_assert( psEncC->frame_length <= 512 ); silk_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) ); /***********************/ /* Filter and Decimate */ /***********************/ decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 ); decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 ); decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 ); /* Decimate into 4 bands: 0 L 3L L 3L 5L - -- - -- -- 8 8 2 4 4 [0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz | They're arranged to allow the minimal ( frame_length / 4 ) extra scratch space during the downsampling process */ X_offset[ 0 ] = 0; X_offset[ 1 ] = decimated_framelength + decimated_framelength2; X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength; X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2; ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 ); /* 0-8 kHz to 0-4 kHz and 4-8 kHz */ silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ], X, &X[ X_offset[ 3 ] ], psEncC->frame_length ); /* 0-4 kHz to 0-2 kHz and 2-4 kHz */ silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ], X, &X[ X_offset[ 2 ] ], decimated_framelength1 ); /* 0-2 kHz to 0-1 kHz and 1-2 kHz */ silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ], X, &X[ X_offset[ 1 ] ], decimated_framelength2 ); /*********************************************/ /* HP filter on lowest band (differentiator) */ /*********************************************/ X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 ); HPstateTmp = X[ decimated_framelength - 1 ]; for( i = decimated_framelength - 1; i > 0; i-- ) { X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 ); X[ i ] -= X[ i - 1 ]; } X[ 0 ] -= psSilk_VAD->HPstate; psSilk_VAD->HPstate = HPstateTmp; /*************************************/ /* Calculate the energy in each band */ /*************************************/ for( b = 0; b < VAD_N_BANDS; b++ ) { /* Find the decimated framelength in the non-uniformly divided bands */ decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) ); /* Split length into subframe lengths */ dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 ); dec_subframe_offset = 0; /* Compute energy per sub-frame */ /* initialize with summed energy of last subframe */ Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ]; for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) { sumSquared = 0; for( i = 0; i < dec_subframe_length; i++ ) { /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */ /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */ x_tmp = silk_RSHIFT( X[ X_offset[ b ] + i + dec_subframe_offset ], 3 ); sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp ); /* Safety check */ silk_assert( sumSquared >= 0 ); } /* Add/saturate summed energy of current subframe */ if( s < VAD_INTERNAL_SUBFRAMES - 1 ) { Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared ); } else { /* Look-ahead subframe */ Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) ); } dec_subframe_offset += dec_subframe_length; } psSilk_VAD->XnrgSubfr[ b ] = sumSquared; } /********************/ /* Noise estimation */ /********************/ silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD ); /***********************************************/ /* Signal-plus-noise to noise ratio estimation */ /***********************************************/ sumSquared = 0; input_tilt = 0; for( b = 0; b < VAD_N_BANDS; b++ ) { speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ]; if( speech_nrg > 0 ) { /* Divide, with sufficient resolution */ if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) { NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 ); } else { NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 ); } /* Convert to log domain */ SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128; /* Sum-of-squares */ sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */ /* Tilt measure */ if( speech_nrg < ( (opus_int32)1 << 20 ) ) { /* Scale down SNR value for small subband speech energies */ SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 ); } input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 ); } else { NrgToNoiseRatio_Q8[ b ] = 256; } } /* Mean-of-squares */ sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */ /* Root-mean-square approximation, scale to dBs, and write to output pointer */ pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */ /*********************************/ /* Speech Probability Estimation */ /*********************************/ SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 ); /**************************/ /* Frequency Tilt Measure */ /**************************/ psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 ); /**************************************************/ /* Scale the sigmoid output based on power levels */ /**************************************************/ speech_nrg = 0; for( b = 0; b < VAD_N_BANDS; b++ ) { /* Accumulate signal-without-noise energies, higher frequency bands have more weight */ speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 ); } /* Power scaling */ if( speech_nrg <= 0 ) { SA_Q15 = silk_RSHIFT( SA_Q15, 1 ); } else if( speech_nrg < 32768 ) { if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 16 ); } else { speech_nrg = silk_LSHIFT_SAT32( speech_nrg, 15 ); } /* square-root */ speech_nrg = silk_SQRT_APPROX( speech_nrg ); SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 ); } /* Copy the resulting speech activity in Q8 */ psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX ); /***********************************/ /* Energy Level and SNR estimation */ /***********************************/ /* Smoothing coefficient */ smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) ); if( psEncC->frame_length == 10 * psEncC->fs_kHz ) { smooth_coef_Q16 >>= 1; }
void silk_find_LTP_FIX( opus_int16 b_Q14[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ opus_int32 WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ opus_int *LTPredCodGain_Q7, /* O LTP coding gain */ const opus_int16 r_lpc[], /* I residual signal after LPC signal + state for first 10 ms */ const opus_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ const opus_int32 Wght_Q15[ MAX_NB_SUBFR ], /* I weights */ const opus_int subfr_length, /* I subframe length */ const opus_int nb_subfr, /* I number of subframes */ const opus_int mem_offset, /* I number of samples in LTP memory */ opus_int corr_rshifts[ MAX_NB_SUBFR ] /* O right shifts applied to correlations */ ) { opus_int i, k, lshift; const opus_int16 *r_ptr, *lag_ptr; opus_int16 *b_Q14_ptr; opus_int32 regu; opus_int32 *WLTP_ptr; opus_int32 b_Q16[ LTP_ORDER ], delta_b_Q14[ LTP_ORDER ], d_Q14[ MAX_NB_SUBFR ], nrg[ MAX_NB_SUBFR ], g_Q26; opus_int32 w[ MAX_NB_SUBFR ], WLTP_max, max_abs_d_Q14, max_w_bits; opus_int32 temp32, denom32; opus_int extra_shifts; opus_int rr_shifts, maxRshifts, maxRshifts_wxtra, LZs; opus_int32 LPC_res_nrg, LPC_LTP_res_nrg, div_Q16; opus_int32 Rr[ LTP_ORDER ], rr[ MAX_NB_SUBFR ]; opus_int32 wd, m_Q12; b_Q14_ptr = b_Q14; WLTP_ptr = WLTP; r_ptr = &r_lpc[ mem_offset ]; for( k = 0; k < nb_subfr; k++ ) { lag_ptr = r_ptr - ( lag[ k ] + LTP_ORDER / 2 ); silk_sum_sqr_shift( &rr[ k ], &rr_shifts, r_ptr, subfr_length ); /* rr[ k ] in Q( -rr_shifts ) */ /* Assure headroom */ LZs = silk_CLZ32( rr[k] ); if( LZs < LTP_CORRS_HEAD_ROOM ) { rr[ k ] = silk_RSHIFT_ROUND( rr[ k ], LTP_CORRS_HEAD_ROOM - LZs ); rr_shifts += ( LTP_CORRS_HEAD_ROOM - LZs ); } corr_rshifts[ k ] = rr_shifts; silk_corrMatrix_FIX( lag_ptr, subfr_length, LTP_ORDER, LTP_CORRS_HEAD_ROOM, WLTP_ptr, &corr_rshifts[ k ] ); /* WLTP_fix_ptr in Q( -corr_rshifts[ k ] ) */ /* The correlation vector always has lower max abs value than rr and/or RR so head room is assured */ silk_corrVector_FIX( lag_ptr, r_ptr, subfr_length, LTP_ORDER, Rr, corr_rshifts[ k ] ); /* Rr_fix_ptr in Q( -corr_rshifts[ k ] ) */ if( corr_rshifts[ k ] > rr_shifts ) { rr[ k ] = silk_RSHIFT( rr[ k ], corr_rshifts[ k ] - rr_shifts ); /* rr[ k ] in Q( -corr_rshifts[ k ] ) */ } silk_assert( rr[ k ] >= 0 ); regu = 1; regu = silk_SMLAWB( regu, rr[ k ], SILK_FIX_CONST( LTP_DAMPING/3, 16 ) ); regu = silk_SMLAWB( regu, matrix_ptr( WLTP_ptr, 0, 0, LTP_ORDER ), SILK_FIX_CONST( LTP_DAMPING/3, 16 ) ); regu = silk_SMLAWB( regu, matrix_ptr( WLTP_ptr, LTP_ORDER-1, LTP_ORDER-1, LTP_ORDER ), SILK_FIX_CONST( LTP_DAMPING/3, 16 ) ); silk_regularize_correlations_FIX( WLTP_ptr, &rr[k], regu, LTP_ORDER ); silk_solve_LDL_FIX( WLTP_ptr, LTP_ORDER, Rr, b_Q16 ); /* WLTP_fix_ptr and Rr_fix_ptr both in Q(-corr_rshifts[k]) */ /* Limit and store in Q14 */ silk_fit_LTP( b_Q16, b_Q14_ptr ); /* Calculate residual energy */ nrg[ k ] = silk_residual_energy16_covar_FIX( b_Q14_ptr, WLTP_ptr, Rr, rr[ k ], LTP_ORDER, 14 ); /* nrg_fix in Q( -corr_rshifts[ k ] ) */ /* temp = Wght[ k ] / ( nrg[ k ] * Wght[ k ] + 0.01f * subfr_length ); */ extra_shifts = silk_min_int( corr_rshifts[ k ], LTP_CORRS_HEAD_ROOM ); denom32 = silk_LSHIFT_SAT32( silk_SMULWB( nrg[ k ], Wght_Q15[ k ] ), 1 + extra_shifts ) + /* Q( -corr_rshifts[ k ] + extra_shifts ) */ silk_RSHIFT( silk_SMULWB( subfr_length, 655 ), corr_rshifts[ k ] - extra_shifts ); /* Q( -corr_rshifts[ k ] + extra_shifts ) */ denom32 = silk_max( denom32, 1 ); silk_assert( ((opus_int64)Wght_Q15[ k ] << 16 ) < silk_int32_MAX ); /* Wght always < 0.5 in Q0 */ temp32 = silk_DIV32( silk_LSHIFT( (opus_int32)Wght_Q15[ k ], 16 ), denom32 ); /* Q( 15 + 16 + corr_rshifts[k] - extra_shifts ) */ temp32 = silk_RSHIFT( temp32, 31 + corr_rshifts[ k ] - extra_shifts - 26 ); /* Q26 */ /* Limit temp such that the below scaling never wraps around */ WLTP_max = 0; for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) { WLTP_max = silk_max( WLTP_ptr[ i ], WLTP_max ); } lshift = silk_CLZ32( WLTP_max ) - 1 - 3; /* keep 3 bits free for vq_nearest_neighbor_fix */ silk_assert( 26 - 18 + lshift >= 0 ); if( 26 - 18 + lshift < 31 ) { temp32 = silk_min_32( temp32, silk_LSHIFT( (opus_int32)1, 26 - 18 + lshift ) ); } silk_scale_vector32_Q26_lshift_18( WLTP_ptr, temp32, LTP_ORDER * LTP_ORDER ); /* WLTP_ptr in Q( 18 - corr_rshifts[ k ] ) */ w[ k ] = matrix_ptr( WLTP_ptr, LTP_ORDER/2, LTP_ORDER/2, LTP_ORDER ); /* w in Q( 18 - corr_rshifts[ k ] ) */ silk_assert( w[k] >= 0 ); r_ptr += subfr_length; b_Q14_ptr += LTP_ORDER; WLTP_ptr += LTP_ORDER * LTP_ORDER; } maxRshifts = 0; for( k = 0; k < nb_subfr; k++ ) { maxRshifts = silk_max_int( corr_rshifts[ k ], maxRshifts ); } /* Compute LTP coding gain */ if( LTPredCodGain_Q7 != NULL ) { LPC_LTP_res_nrg = 0; LPC_res_nrg = 0; silk_assert( LTP_CORRS_HEAD_ROOM >= 2 ); /* Check that no overflow will happen when adding */ for( k = 0; k < nb_subfr; k++ ) { LPC_res_nrg = silk_ADD32( LPC_res_nrg, silk_RSHIFT( silk_ADD32( silk_SMULWB( rr[ k ], Wght_Q15[ k ] ), 1 ), 1 + ( maxRshifts - corr_rshifts[ k ] ) ) ); /* Q( -maxRshifts ) */ LPC_LTP_res_nrg = silk_ADD32( LPC_LTP_res_nrg, silk_RSHIFT( silk_ADD32( silk_SMULWB( nrg[ k ], Wght_Q15[ k ] ), 1 ), 1 + ( maxRshifts - corr_rshifts[ k ] ) ) ); /* Q( -maxRshifts ) */ } LPC_LTP_res_nrg = silk_max( LPC_LTP_res_nrg, 1 ); /* avoid division by zero */ div_Q16 = silk_DIV32_varQ( LPC_res_nrg, LPC_LTP_res_nrg, 16 ); *LTPredCodGain_Q7 = ( opus_int )silk_SMULBB( 3, silk_lin2log( div_Q16 ) - ( 16 << 7 ) ); silk_assert( *LTPredCodGain_Q7 == ( opus_int )silk_SAT16( silk_MUL( 3, silk_lin2log( div_Q16 ) - ( 16 << 7 ) ) ) ); } /* smoothing */ /* d = sum( B, 1 ); */ b_Q14_ptr = b_Q14; for( k = 0; k < nb_subfr; k++ ) { d_Q14[ k ] = 0; for( i = 0; i < LTP_ORDER; i++ ) { d_Q14[ k ] += b_Q14_ptr[ i ]; } b_Q14_ptr += LTP_ORDER; } /* m = ( w * d' ) / ( sum( w ) + 1e-3 ); */ /* Find maximum absolute value of d_Q14 and the bits used by w in Q0 */ max_abs_d_Q14 = 0; max_w_bits = 0; for( k = 0; k < nb_subfr; k++ ) { max_abs_d_Q14 = silk_max_32( max_abs_d_Q14, silk_abs( d_Q14[ k ] ) ); /* w[ k ] is in Q( 18 - corr_rshifts[ k ] ) */ /* Find bits needed in Q( 18 - maxRshifts ) */ max_w_bits = silk_max_32( max_w_bits, 32 - silk_CLZ32( w[ k ] ) + corr_rshifts[ k ] - maxRshifts ); } /* max_abs_d_Q14 = (5 << 15); worst case, i.e. LTP_ORDER * -silk_int16_MIN */ silk_assert( max_abs_d_Q14 <= ( 5 << 15 ) ); /* How many bits is needed for w*d' in Q( 18 - maxRshifts ) in the worst case, of all d_Q14's being equal to max_abs_d_Q14 */ extra_shifts = max_w_bits + 32 - silk_CLZ32( max_abs_d_Q14 ) - 14; /* Subtract what we got available; bits in output var plus maxRshifts */ extra_shifts -= ( 32 - 1 - 2 + maxRshifts ); /* Keep sign bit free as well as 2 bits for accumulation */ extra_shifts = silk_max_int( extra_shifts, 0 ); maxRshifts_wxtra = maxRshifts + extra_shifts; temp32 = silk_RSHIFT( 262, maxRshifts + extra_shifts ) + 1; /* 1e-3f in Q( 18 - (maxRshifts + extra_shifts) ) */ wd = 0; for( k = 0; k < nb_subfr; k++ ) { /* w has at least 2 bits of headroom so no overflow should happen */ temp32 = silk_ADD32( temp32, silk_RSHIFT( w[ k ], maxRshifts_wxtra - corr_rshifts[ k ] ) ); /* Q( 18 - maxRshifts_wxtra ) */ wd = silk_ADD32( wd, silk_LSHIFT( silk_SMULWW( silk_RSHIFT( w[ k ], maxRshifts_wxtra - corr_rshifts[ k ] ), d_Q14[ k ] ), 2 ) ); /* Q( 18 - maxRshifts_wxtra ) */ } m_Q12 = silk_DIV32_varQ( wd, temp32, 12 ); b_Q14_ptr = b_Q14; for( k = 0; k < nb_subfr; k++ ) { /* w_fix[ k ] from Q( 18 - corr_rshifts[ k ] ) to Q( 16 ) */ if( 2 - corr_rshifts[k] > 0 ) { temp32 = silk_RSHIFT( w[ k ], 2 - corr_rshifts[ k ] ); } else { temp32 = silk_LSHIFT_SAT32( w[ k ], corr_rshifts[ k ] - 2 ); } g_Q26 = silk_MUL( silk_DIV32( SILK_FIX_CONST( LTP_SMOOTHING, 26 ), silk_RSHIFT( SILK_FIX_CONST( LTP_SMOOTHING, 26 ), 10 ) + temp32 ), /* Q10 */ silk_LSHIFT_SAT32( silk_SUB_SAT32( (opus_int32)m_Q12, silk_RSHIFT( d_Q14[ k ], 2 ) ), 4 ) ); /* Q16 */ temp32 = 0; for( i = 0; i < LTP_ORDER; i++ ) { delta_b_Q14[ i ] = silk_max_16( b_Q14_ptr[ i ], 1638 ); /* 1638_Q14 = 0.1_Q0 */ temp32 += delta_b_Q14[ i ]; /* Q14 */ } temp32 = silk_DIV32( g_Q26, temp32 ); /* Q14 -> Q12 */ for( i = 0; i < LTP_ORDER; i++ ) { b_Q14_ptr[ i ] = silk_LIMIT_32( (opus_int32)b_Q14_ptr[ i ] + silk_SMULWB( silk_LSHIFT_SAT32( temp32, 4 ), delta_b_Q14[ i ] ), -16000, 28000 ); } b_Q14_ptr += LTP_ORDER; } }
opus_int silk_encode_frame_FLP( silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ opus_int32 *pnBytesOut, /* O Number of payload bytes; */ ec_enc *psRangeEnc, /* I/O compressor data structure */ opus_int condCoding, /* I The type of conditional coding to use */ opus_int maxBits, /* I If > 0: maximum number of output bits */ opus_int useCBR /* I Flag to force constant-bitrate operation */ ) { silk_encoder_control_FLP sEncCtrl; opus_int i, iter, maxIter, found_upper, found_lower, ret = 0; silk_float *x_frame, *res_pitch_frame; silk_float xfw[ MAX_FRAME_LENGTH ]; silk_float res_pitch[ 2 * MAX_FRAME_LENGTH + LA_PITCH_MAX ]; ec_enc sRangeEnc_copy, sRangeEnc_copy2; silk_nsq_state sNSQ_copy, sNSQ_copy2; opus_int32 seed_copy, nBits, nBits_lower, nBits_upper, gainMult_lower, gainMult_upper; opus_int32 gainsID, gainsID_lower, gainsID_upper; opus_int16 gainMult_Q8; opus_int16 ec_prevLagIndex_copy; opus_int ec_prevSignalType_copy; opus_int8 LastGainIndex_copy2; opus_int32 pGains_Q16[ MAX_NB_SUBFR ]; opus_uint8 ec_buf_copy[ 1275 ]; /* This is totally unnecessary but many compilers (including gcc) are too dumb to realise it */ LastGainIndex_copy2 = nBits_lower = nBits_upper = gainMult_lower = gainMult_upper = 0; psEnc->sCmn.indices.Seed = psEnc->sCmn.frameCounter++ & 3; /**************************************************************/ /* Set up Input Pointers, and insert frame in input buffer */ /**************************************************************/ /* pointers aligned with start of frame to encode */ x_frame = psEnc->x_buf + psEnc->sCmn.ltp_mem_length; /* start of frame to encode */ res_pitch_frame = res_pitch + psEnc->sCmn.ltp_mem_length; /* start of pitch LPC residual frame */ /***************************************/ /* Ensure smooth bandwidth transitions */ /***************************************/ silk_LP_variable_cutoff( &psEnc->sCmn.sLP, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length ); /*******************************************/ /* Copy new frame to front of input buffer */ /*******************************************/ silk_short2float_array( x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length ); /* Add tiny signal to avoid high CPU load from denormalized floating point numbers */ for( i = 0; i < 8; i++ ) { x_frame[ LA_SHAPE_MS * psEnc->sCmn.fs_kHz + i * ( psEnc->sCmn.frame_length >> 3 ) ] += ( 1 - ( i & 2 ) ) * 1e-6f; } if( !psEnc->sCmn.prefillFlag ) { /*****************************************/ /* Find pitch lags, initial LPC analysis */ /*****************************************/ silk_find_pitch_lags_FLP( psEnc, &sEncCtrl, res_pitch, x_frame ); /************************/ /* Noise shape analysis */ /************************/ silk_noise_shape_analysis_FLP( psEnc, &sEncCtrl, res_pitch_frame, x_frame ); /***************************************************/ /* Find linear prediction coefficients (LPC + LTP) */ /***************************************************/ silk_find_pred_coefs_FLP( psEnc, &sEncCtrl, res_pitch, x_frame, condCoding ); /****************************************/ /* Process gains */ /****************************************/ silk_process_gains_FLP( psEnc, &sEncCtrl, condCoding ); /*****************************************/ /* Prefiltering for noise shaper */ /*****************************************/ silk_prefilter_FLP( psEnc, &sEncCtrl, xfw, x_frame ); /****************************************/ /* Low Bitrate Redundant Encoding */ /****************************************/ silk_LBRR_encode_FLP( psEnc, &sEncCtrl, xfw, condCoding ); /* Loop over quantizer and entroy coding to control bitrate */ maxIter = 6; gainMult_Q8 = SILK_FIX_CONST( 1, 8 ); found_lower = 0; found_upper = 0; gainsID = silk_gains_ID( psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr ); gainsID_lower = -1; gainsID_upper = -1; /* Copy part of the input state */ silk_memcpy( &sRangeEnc_copy, psRangeEnc, sizeof( ec_enc ) ); silk_memcpy( &sNSQ_copy, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) ); seed_copy = psEnc->sCmn.indices.Seed; ec_prevLagIndex_copy = psEnc->sCmn.ec_prevLagIndex; ec_prevSignalType_copy = psEnc->sCmn.ec_prevSignalType; for( iter = 0; ; iter++ ) { if( gainsID == gainsID_lower ) { nBits = nBits_lower; } else if( gainsID == gainsID_upper ) { nBits = nBits_upper; } else { /* Restore part of the input state */ if( iter > 0 ) { silk_memcpy( psRangeEnc, &sRangeEnc_copy, sizeof( ec_enc ) ); silk_memcpy( &psEnc->sCmn.sNSQ, &sNSQ_copy, sizeof( silk_nsq_state ) ); psEnc->sCmn.indices.Seed = seed_copy; psEnc->sCmn.ec_prevLagIndex = ec_prevLagIndex_copy; psEnc->sCmn.ec_prevSignalType = ec_prevSignalType_copy; } /*****************************************/ /* Noise shaping quantization */ /*****************************************/ silk_NSQ_wrapper_FLP( psEnc, &sEncCtrl, &psEnc->sCmn.indices, &psEnc->sCmn.sNSQ, psEnc->sCmn.pulses, xfw ); /****************************************/ /* Encode Parameters */ /****************************************/ silk_encode_indices( &psEnc->sCmn, psRangeEnc, psEnc->sCmn.nFramesEncoded, 0, condCoding ); /****************************************/ /* Encode Excitation Signal */ /****************************************/ silk_encode_pulses( psRangeEnc, psEnc->sCmn.indices.signalType, psEnc->sCmn.indices.quantOffsetType, psEnc->sCmn.pulses, psEnc->sCmn.frame_length ); nBits = ec_tell( psRangeEnc ); if( useCBR == 0 && iter == 0 && nBits <= maxBits ) { break; } } if( iter == maxIter ) { if( found_lower && ( gainsID == gainsID_lower || nBits > maxBits ) ) { /* Restore output state from earlier iteration that did meet the bitrate budget */ silk_memcpy( psRangeEnc, &sRangeEnc_copy2, sizeof( ec_enc ) ); silk_assert( sRangeEnc_copy2.offs <= 1275 ); silk_memcpy( psRangeEnc->buf, ec_buf_copy, sRangeEnc_copy2.offs ); silk_memcpy( &psEnc->sCmn.sNSQ, &sNSQ_copy2, sizeof( silk_nsq_state ) ); psEnc->sShape.LastGainIndex = LastGainIndex_copy2; } break; } if( nBits > maxBits ) { if( found_lower == 0 && iter >= 2 ) { /* Adjust the quantizer's rate/distortion tradeoff and discard previous "upper" results */ sEncCtrl.Lambda *= 1.5f; found_upper = 0; gainsID_upper = -1; } else { found_upper = 1; nBits_upper = nBits; gainMult_upper = gainMult_Q8; gainsID_upper = gainsID; } } else if( nBits < maxBits - 5 ) { found_lower = 1; nBits_lower = nBits; gainMult_lower = gainMult_Q8; if( gainsID != gainsID_lower ) { gainsID_lower = gainsID; /* Copy part of the output state */ silk_memcpy( &sRangeEnc_copy2, psRangeEnc, sizeof( ec_enc ) ); silk_assert( psRangeEnc->offs <= 1275 ); silk_memcpy( ec_buf_copy, psRangeEnc->buf, psRangeEnc->offs ); silk_memcpy( &sNSQ_copy2, &psEnc->sCmn.sNSQ, sizeof( silk_nsq_state ) ); LastGainIndex_copy2 = psEnc->sShape.LastGainIndex; } } else { /* Within 5 bits of budget: close enough */ break; } if( ( found_lower & found_upper ) == 0 ) { /* Adjust gain according to high-rate rate/distortion curve */ opus_int32 gain_factor_Q16; gain_factor_Q16 = silk_log2lin( silk_LSHIFT( nBits - maxBits, 7 ) / psEnc->sCmn.frame_length + SILK_FIX_CONST( 16, 7 ) ); gain_factor_Q16 = silk_min_32( gain_factor_Q16, SILK_FIX_CONST( 2, 16 ) ); if( nBits > maxBits ) { gain_factor_Q16 = silk_max_32( gain_factor_Q16, SILK_FIX_CONST( 1.3, 16 ) ); } gainMult_Q8 = silk_SMULWB( gain_factor_Q16, gainMult_Q8 ); } else { /* Adjust gain by interpolating */ gainMult_Q8 = gainMult_lower + ( ( gainMult_upper - gainMult_lower ) * ( maxBits - nBits_lower ) ) / ( nBits_upper - nBits_lower ); /* New gain multplier must be between 25% and 75% of old range (note that gainMult_upper < gainMult_lower) */ if( gainMult_Q8 > silk_ADD_RSHIFT32( gainMult_lower, gainMult_upper - gainMult_lower, 2 ) ) { gainMult_Q8 = silk_ADD_RSHIFT32( gainMult_lower, gainMult_upper - gainMult_lower, 2 ); } else if( gainMult_Q8 < silk_SUB_RSHIFT32( gainMult_upper, gainMult_upper - gainMult_lower, 2 ) ) { gainMult_Q8 = silk_SUB_RSHIFT32( gainMult_upper, gainMult_upper - gainMult_lower, 2 ); } } for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { pGains_Q16[ i ] = silk_LSHIFT_SAT32( silk_SMULWB( sEncCtrl.GainsUnq_Q16[ i ], gainMult_Q8 ), 8 ); } /* Quantize gains */ psEnc->sShape.LastGainIndex = sEncCtrl.lastGainIndexPrev; silk_gains_quant( psEnc->sCmn.indices.GainsIndices, pGains_Q16, &psEnc->sShape.LastGainIndex, condCoding == CODE_CONDITIONALLY, psEnc->sCmn.nb_subfr ); /* Unique identifier of gains vector */ gainsID = silk_gains_ID( psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr ); /* Overwrite unquantized gains with quantized gains and convert back to Q0 from Q16 */ for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) { sEncCtrl.Gains[ i ] = pGains_Q16[ i ] / 65536.0f; } } } /* Update input buffer */ silk_memmove( psEnc->x_buf, &psEnc->x_buf[ psEnc->sCmn.frame_length ], ( psEnc->sCmn.ltp_mem_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz ) * sizeof( silk_float ) ); /* Parameters needed for next frame */ psEnc->sCmn.prevLag = sEncCtrl.pitchL[ psEnc->sCmn.nb_subfr - 1 ]; psEnc->sCmn.prevSignalType = psEnc->sCmn.indices.signalType; /* Exit without entropy coding */ if( psEnc->sCmn.prefillFlag ) { /* No payload */ *pnBytesOut = 0; return ret; } /****************************************/ /* Finalize payload */ /****************************************/ psEnc->sCmn.first_frame_after_reset = 0; /* Payload size */ *pnBytesOut = silk_RSHIFT( ec_tell( psRangeEnc ) + 7, 3 ); return ret; }
ResNrgPart = silk_LSHIFT( ResNrgPart, -psEncCtrl->ResNrgQ[ k ] ); } } gain = psEncCtrl->Gains_Q16[ k ]; gain_squared = silk_ADD_SAT32( ResNrgPart, silk_SMMUL( gain, gain ) ); if( gain_squared < silk_int16_MAX ) { /* recalculate with higher precision */ gain_squared = silk_SMLAWW( silk_LSHIFT( ResNrgPart, 16 ), gain, gain ); silk_assert( gain_squared > 0 ); gain = silk_SQRT_APPROX( gain_squared ); /* Q8 */ gain = silk_min( gain, silk_int32_MAX >> 8 ); psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( gain, 8 ); /* Q16 */ } else { gain = silk_SQRT_APPROX( gain_squared ); /* Q0 */ gain = silk_min( gain, silk_int32_MAX >> 16 ); psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( gain, 16 ); /* Q16 */ } } /* Save unquantized gains and gain Index */ silk_memcpy( psEncCtrl->GainsUnq_Q16, psEncCtrl->Gains_Q16, psEnc->sCmn.nb_subfr * sizeof( opus_int32 ) ); psEncCtrl->lastGainIndexPrev = psShapeSt->LastGainIndex; /* Quantize gains */ silk_gains_quant( psEnc->sCmn.indices.GainsIndices, psEncCtrl->Gains_Q16, &psShapeSt->LastGainIndex, condCoding == CODE_CONDITIONALLY, psEnc->sCmn.nb_subfr ); /* Set quantizer offset for voiced signals. Larger offset when LTP coding gain is low or tilt is high (ie low-pass) */ if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { if( psEncCtrl->LTPredCodGain_Q7 + silk_RSHIFT( psEnc->sCmn.input_tilt_Q15, 8 ) > SILK_FIX_CONST( 1.0, 7 ) ) { psEnc->sCmn.indices.quantOffsetType = 0;
int silk_encode_frame_FIX(silk_encoder_state_FIX * psEnc, /* I/O Pointer to Silk FIX encoder state */ int32_t * pnBytesOut, /* O Pointer to number of payload bytes; */ ec_enc * psRangeEnc, /* I/O compressor data structure */ int condCoding, /* I The type of conditional coding to use */ int maxBits, /* I If > 0: maximum number of output bits */ int useCBR /* I Flag to force constant-bitrate operation */ ) { silk_encoder_control_FIX sEncCtrl; int i, iter, maxIter, found_upper, found_lower, ret = 0; int16_t *x_frame; ec_enc sRangeEnc_copy, sRangeEnc_copy2; silk_nsq_state sNSQ_copy, sNSQ_copy2; int32_t seed_copy, nBits, nBits_lower, nBits_upper, gainMult_lower, gainMult_upper; int32_t gainsID, gainsID_lower, gainsID_upper; int16_t gainMult_Q8; int16_t ec_prevLagIndex_copy; int ec_prevSignalType_copy; int8_t LastGainIndex_copy2; /* This is totally unnecessary but many compilers (including gcc) are too dumb to realise it */ LastGainIndex_copy2 = nBits_lower = nBits_upper = gainMult_lower = gainMult_upper = 0; psEnc->sCmn.indices.Seed = psEnc->sCmn.frameCounter++ & 3; /**************************************************************/ /* Set up Input Pointers, and insert frame in input buffer */ /*************************************************************/ /* start of frame to encode */ x_frame = psEnc->x_buf + psEnc->sCmn.ltp_mem_length; /***************************************/ /* Ensure smooth bandwidth transitions */ /***************************************/ silk_LP_variable_cutoff(&psEnc->sCmn.sLP, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length); /*******************************************/ /* Copy new frame to front of input buffer */ /*******************************************/ memcpy(x_frame + LA_SHAPE_MS * psEnc->sCmn.fs_kHz, psEnc->sCmn.inputBuf + 1, psEnc->sCmn.frame_length * sizeof(int16_t)); if (!psEnc->sCmn.prefillFlag) { int16_t *res_pitch_frame; int16_t res_pitch[psEnc->sCmn.la_pitch + psEnc->sCmn.frame_length + psEnc->sCmn.ltp_mem_length]; /* start of pitch LPC residual frame */ res_pitch_frame = res_pitch + psEnc->sCmn.ltp_mem_length; /*****************************************/ /* Find pitch lags, initial LPC analysis */ /*****************************************/ silk_find_pitch_lags_FIX(psEnc, &sEncCtrl, res_pitch, x_frame, psEnc->sCmn.arch); /************************/ /* Noise shape analysis */ /************************/ silk_noise_shape_analysis_FIX(psEnc, &sEncCtrl, res_pitch_frame, x_frame, psEnc->sCmn.arch); /***************************************************/ /* Find linear prediction coefficients (LPC + LTP) */ /***************************************************/ silk_find_pred_coefs_FIX(psEnc, &sEncCtrl, res_pitch, x_frame, condCoding); /****************************************/ /* Process gains */ /****************************************/ silk_process_gains_FIX(psEnc, &sEncCtrl, condCoding); /*****************************************/ /* Prefiltering for noise shaper */ /*****************************************/ int32_t xfw_Q3[psEnc->sCmn.frame_length]; silk_prefilter_FIX(psEnc, &sEncCtrl, xfw_Q3, x_frame); /****************************************/ /* Low Bitrate Redundant Encoding */ /****************************************/ silk_LBRR_encode_FIX(psEnc, &sEncCtrl, xfw_Q3, condCoding); /* Loop over quantizer and entropy coding to control bitrate */ maxIter = 6; gainMult_Q8 = SILK_FIX_CONST(1, 8); found_lower = 0; found_upper = 0; gainsID = silk_gains_ID(psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr); gainsID_lower = -1; gainsID_upper = -1; /* Copy part of the input state */ memcpy(&sRangeEnc_copy, psRangeEnc, sizeof(ec_enc)); memcpy(&sNSQ_copy, &psEnc->sCmn.sNSQ, sizeof(silk_nsq_state)); seed_copy = psEnc->sCmn.indices.Seed; ec_prevLagIndex_copy = psEnc->sCmn.ec_prevLagIndex; ec_prevSignalType_copy = psEnc->sCmn.ec_prevSignalType; uint8_t ec_buf_copy[1275]; for (iter = 0;; iter++) { if (gainsID == gainsID_lower) { nBits = nBits_lower; } else if (gainsID == gainsID_upper) { nBits = nBits_upper; } else { /* Restore part of the input state */ if (iter > 0) { memcpy(psRangeEnc, &sRangeEnc_copy, sizeof(ec_enc)); memcpy(&psEnc->sCmn.sNSQ, &sNSQ_copy, sizeof(silk_nsq_state)); psEnc->sCmn.indices.Seed = seed_copy; psEnc->sCmn.ec_prevLagIndex = ec_prevLagIndex_copy; psEnc->sCmn.ec_prevSignalType = ec_prevSignalType_copy; } /*****************************************/ /* Noise shaping quantization */ /*****************************************/ if (psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0) { silk_NSQ_del_dec(&psEnc->sCmn, &psEnc->sCmn.sNSQ, &psEnc->sCmn.indices, xfw_Q3, psEnc->sCmn.pulses, sEncCtrl. PredCoef_Q12[0], sEncCtrl.LTPCoef_Q14, sEncCtrl.AR2_Q13, sEncCtrl. HarmShapeGain_Q14, sEncCtrl.Tilt_Q14, sEncCtrl.LF_shp_Q14, sEncCtrl.Gains_Q16, sEncCtrl.pitchL, sEncCtrl.Lambda_Q10, sEncCtrl. LTP_scale_Q14); } else { silk_NSQ(&psEnc->sCmn, &psEnc->sCmn.sNSQ, &psEnc->sCmn.indices, xfw_Q3, psEnc->sCmn.pulses, sEncCtrl.PredCoef_Q12[0], sEncCtrl.LTPCoef_Q14, sEncCtrl.AR2_Q13, sEncCtrl.HarmShapeGain_Q14, sEncCtrl.Tilt_Q14, sEncCtrl.LF_shp_Q14, sEncCtrl.Gains_Q16, sEncCtrl.pitchL, sEncCtrl.Lambda_Q10, sEncCtrl.LTP_scale_Q14); } /****************************************/ /* Encode Parameters */ /****************************************/ silk_encode_indices(&psEnc->sCmn, psRangeEnc, psEnc->sCmn.nFramesEncoded, 0, condCoding); /****************************************/ /* Encode Excitation Signal */ /****************************************/ silk_encode_pulses(psRangeEnc, psEnc->sCmn.indices. signalType, psEnc->sCmn.indices. quantOffsetType, psEnc->sCmn.pulses, psEnc->sCmn.frame_length); nBits = ec_tell(psRangeEnc); if (useCBR == 0 && iter == 0 && nBits <= maxBits) { break; } } if (iter == maxIter) { if (found_lower && (gainsID == gainsID_lower || nBits > maxBits)) { /* Restore output state from earlier iteration that did meet the bitrate budget */ memcpy(psRangeEnc, &sRangeEnc_copy2, sizeof(ec_enc)); assert(sRangeEnc_copy2.offs <= 1275); memcpy(psRangeEnc->buf, ec_buf_copy, sRangeEnc_copy2.offs); memcpy(&psEnc->sCmn.sNSQ, &sNSQ_copy2, sizeof(silk_nsq_state)); psEnc->sShape.LastGainIndex = LastGainIndex_copy2; } break; } if (nBits > maxBits) { if (found_lower == 0 && iter >= 2) { /* Adjust the quantizer's rate/distortion tradeoff and discard previous "upper" results */ sEncCtrl.Lambda_Q10 = silk_ADD_RSHIFT32(sEncCtrl. Lambda_Q10, sEncCtrl. Lambda_Q10, 1); found_upper = 0; gainsID_upper = -1; } else { found_upper = 1; nBits_upper = nBits; gainMult_upper = gainMult_Q8; gainsID_upper = gainsID; } } else if (nBits < maxBits - 5) { found_lower = 1; nBits_lower = nBits; gainMult_lower = gainMult_Q8; if (gainsID != gainsID_lower) { gainsID_lower = gainsID; /* Copy part of the output state */ memcpy(&sRangeEnc_copy2, psRangeEnc, sizeof(ec_enc)); assert(psRangeEnc->offs <= 1275); memcpy(ec_buf_copy, psRangeEnc->buf, psRangeEnc->offs); memcpy(&sNSQ_copy2, &psEnc->sCmn.sNSQ, sizeof(silk_nsq_state)); LastGainIndex_copy2 = psEnc->sShape.LastGainIndex; } } else { /* Within 5 bits of budget: close enough */ break; } if ((found_lower & found_upper) == 0) { /* Adjust gain according to high-rate rate/distortion curve */ int32_t gain_factor_Q16; gain_factor_Q16 = silk_log2lin(silk_LSHIFT(nBits - maxBits, 7) / psEnc->sCmn.frame_length + SILK_FIX_CONST(16, 7)); gain_factor_Q16 = silk_min_32(gain_factor_Q16, SILK_FIX_CONST(2, 16)); if (nBits > maxBits) { gain_factor_Q16 = silk_max_32(gain_factor_Q16, SILK_FIX_CONST(1.3, 16)); } gainMult_Q8 = silk_SMULWB(gain_factor_Q16, gainMult_Q8); } else { /* Adjust gain by interpolating */ assert(nBits_upper != nBits_lower); gainMult_Q8 = gainMult_lower + silk_DIV32_16(silk_MUL (gainMult_upper - gainMult_lower, maxBits - nBits_lower), nBits_upper - nBits_lower); /* New gain multplier must be between 25% and 75% of old range (note that gainMult_upper < gainMult_lower) */ if (gainMult_Q8 > silk_ADD_RSHIFT32(gainMult_lower, gainMult_upper - gainMult_lower, 2)) { gainMult_Q8 = silk_ADD_RSHIFT32(gainMult_lower, gainMult_upper - gainMult_lower, 2); } else if (gainMult_Q8 < silk_SUB_RSHIFT32(gainMult_upper, gainMult_upper - gainMult_lower, 2)) { gainMult_Q8 = silk_SUB_RSHIFT32(gainMult_upper, gainMult_upper - gainMult_lower, 2); } } for (i = 0; i < psEnc->sCmn.nb_subfr; i++) { sEncCtrl.Gains_Q16[i] = silk_LSHIFT_SAT32(silk_SMULWB (sEncCtrl.GainsUnq_Q16[i], gainMult_Q8), 8); } /* Quantize gains */ psEnc->sShape.LastGainIndex = sEncCtrl.lastGainIndexPrev; silk_gains_quant(psEnc->sCmn.indices.GainsIndices, sEncCtrl.Gains_Q16, &psEnc->sShape.LastGainIndex, condCoding == CODE_CONDITIONALLY, psEnc->sCmn.nb_subfr); /* Unique identifier of gains vector */ gainsID = silk_gains_ID(psEnc->sCmn.indices.GainsIndices, psEnc->sCmn.nb_subfr); } } /* Update input buffer */ memmove(psEnc->x_buf, &psEnc->x_buf[psEnc->sCmn.frame_length], (psEnc->sCmn.ltp_mem_length + LA_SHAPE_MS * psEnc->sCmn.fs_kHz) * sizeof(int16_t)); /* Exit without entropy coding */ if (psEnc->sCmn.prefillFlag) { /* No payload */ *pnBytesOut = 0; return ret; } /* Parameters needed for next frame */ psEnc->sCmn.prevLag = sEncCtrl.pitchL[psEnc->sCmn.nb_subfr - 1]; psEnc->sCmn.prevSignalType = psEnc->sCmn.indices.signalType; /****************************************/ /* Finalize payload */ /****************************************/ psEnc->sCmn.first_frame_after_reset = 0; /* Payload size */ *pnBytesOut = silk_RSHIFT(ec_tell(psRangeEnc) + 7, 3); return ret; }