/* Autocorrelations for a warped frequency axis */ void silk_warped_autocorrelation_FIX( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ const opus_int warping_Q16, /* I Warping coefficient */ const opus_int length, /* I Length of input */ const opus_int order /* I Correlation order (even) */ ) { opus_int n, i, lsh; opus_int32 tmp1_QS, tmp2_QS; opus_int32 state_QS[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; opus_int64 corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* Order must be even */ silk_assert( ( order & 1 ) == 0 ); silk_assert( 2 * QS - QC >= 0 ); /* Loop over samples */ for( n = 0; n < length; n++ ) { tmp1_QS = silk_LSHIFT32( (opus_int32)input[ n ], QS ); /* Loop over allpass sections */ for( i = 0; i < order; i += 2 ) { /* Output of allpass section */ tmp2_QS = silk_SMLAWB( state_QS[ i ], state_QS[ i + 1 ] - tmp1_QS, warping_Q16 ); state_QS[ i ] = tmp1_QS; corr_QC[ i ] += silk_RSHIFT64( silk_SMULL( tmp1_QS, state_QS[ 0 ] ), 2 * QS - QC ); /* Output of allpass section */ tmp1_QS = silk_SMLAWB( state_QS[ i + 1 ], state_QS[ i + 2 ] - tmp2_QS, warping_Q16 ); state_QS[ i + 1 ] = tmp2_QS; corr_QC[ i + 1 ] += silk_RSHIFT64( silk_SMULL( tmp2_QS, state_QS[ 0 ] ), 2 * QS - QC ); } state_QS[ order ] = tmp1_QS; corr_QC[ order ] += silk_RSHIFT64( silk_SMULL( tmp1_QS, state_QS[ 0 ] ), 2 * QS - QC ); } lsh = silk_CLZ64( corr_QC[ 0 ] ) - 35; lsh = silk_LIMIT( lsh, -12 - QC, 30 - QC ); *scale = -( QC + lsh ); silk_assert( *scale >= -30 && *scale <= 12 ); if( lsh >= 0 ) { for( i = 0; i < order + 1; i++ ) { corr[ i ] = (opus_int32)silk_CHECK_FIT32( silk_LSHIFT64( corr_QC[ i ], lsh ) ); } } else { for( i = 0; i < order + 1; i++ ) { corr[ i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr_QC[ i ], -lsh ) ); } } silk_assert( corr_QC[ 0 ] >= 0 ); /* If breaking, decrease QC*/ }
/* Compute autocorrelation */ void silk_autocorr( opus_int32 *results, /* O Result (length correlationCount) */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *inputData, /* I Input data to correlate */ const opus_int inputDataSize, /* I Length of input */ const opus_int correlationCount /* I Number of correlation taps to compute */ ) { opus_int i, lz, nRightShifts, corrCount; opus_int64 corr64; corrCount = silk_min_int( inputDataSize, correlationCount ); /* compute energy (zero-lag correlation) */ corr64 = silk_inner_prod16_aligned_64( inputData, inputData, inputDataSize ); /* deal with all-zero input data */ corr64 += 1; /* number of leading zeros */ lz = silk_CLZ64( corr64 ); /* scaling: number of right shifts applied to correlations */ nRightShifts = 35 - lz; *scale = nRightShifts; if( nRightShifts <= 0 ) { results[ 0 ] = silk_LSHIFT( (opus_int32)silk_CHECK_FIT32( corr64 ), -nRightShifts ); /* compute remaining correlations based on int32 inner product */ for( i = 1; i < corrCount; i++ ) { results[ i ] = silk_LSHIFT( silk_inner_prod_aligned( inputData, inputData + i, inputDataSize - i ), -nRightShifts ); } } else { results[ 0 ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr64, nRightShifts ) ); /* compute remaining correlations based on int64 inner product */ for( i = 1; i < corrCount; i++ ) { results[ i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( silk_inner_prod16_aligned_64( inputData, inputData + i, inputDataSize - i ), nRightShifts ) ); } } }
/* Multiply a vector by a constant */ void silk_scale_vector32_Q26_lshift_18( opus_int32 *data1, /* I/O Q0/Q18 */ opus_int32 gain_Q26, /* I Q26 */ opus_int dataSize /* I length */ ) { opus_int i; for(i = 0; i < dataSize; i++) { data1[ i ] = (opus_int32)silk_CHECK_FIT32(silk_RSHIFT64(silk_SMULL(data1[ i ], gain_Q26), 8)); /* OUTPUT: Q18 */ } }
/* Compute reflection coefficients from input signal */ void silk_burg_modified( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceeding samples) */ const opus_int nb_subfr, /* I Number of subframes stacked in x */ const opus_int32 WhiteNoiseFrac_Q32, /* I Fraction added to zero-lag autocorrelation */ const opus_int D /* I Order */ ) { opus_int k, n, s, lz, rshifts, rshifts_extra; opus_int32 C0, num, nrg, rc_Q31, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; const opus_int16 *x_ptr; opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); silk_assert( nb_subfr <= MAX_NB_SUBFR ); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); if( rshifts > MAX_RSHIFTS ) { C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS ); silk_assert( C0 > 0 ); rshifts = MAX_RSHIFTS; } else { lz = silk_CLZ32( C0 ) - 1; rshifts_extra = N_BITS_HEAD_ROOM - lz; if( rshifts_extra > 0 ) { rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts ); C0 = silk_RSHIFT32( C0, rshifts_extra ); } else { rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts ); C0 = silk_LSHIFT32( C0, -rshifts_extra ); } rshifts += rshifts_extra; } silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); if( rshifts > 0 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts ); } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts ); } } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( WhiteNoiseFrac_Q32, C0 ) + 1; /* Q(-rshifts)*/ for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ if( rshifts > -2 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts)*/ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts)*/ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16)*/ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16)*/ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts )*/ C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/ Atmp_QA = Af_QA[ k ]; tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16)*/ tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16)*/ } tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts)*/ tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts)*/ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift )*/ CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift )*/ } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts )*/ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts )*/ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17*/ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17*/ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts )*/ C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/ Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17*/ tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17*/ tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17*/ } tmp1 = -tmp1; /* Q17*/ tmp2 = -tmp2; /* Q17*/ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift )*/ CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift )*/ } } } /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ tmp1 = C_first_row[ n ]; /* Q( -rshifts )*/ tmp2 = C_last_row[ n ]; /* Q( -rshifts )*/ num = 0; /* Q( -rshifts )*/ nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts )*/ for( k = 0; k < n; k++ ) { Atmp_QA = Af_QA[ k ]; lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; lz = silk_min( 32 - QA, lz ); Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz )*/ tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts )*/ tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts )*/ num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts )*/ nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts )*/ } CAf[ n + 1 ] = tmp1; /* Q( -rshifts )*/ CAb[ n + 1 ] = tmp2; /* Q( -rshifts )*/ num = silk_ADD32( num, tmp2 ); /* Q( -rshifts )*/ num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts )*/ /* Calculate the next order reflection (parcor) coefficient */ if( silk_abs( num ) < nrg ) { rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); } else { /* Negative energy or ratio too high; set remaining coefficients to zero and exit loop */ silk_memset( &Af_QA[ n ], 0, ( D - n ) * sizeof( opus_int32 ) ); silk_assert( 0 ); break; } /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af_QA[ k ]; /* QA*/ tmp2 = Af_QA[ n - k - 1 ]; /* QA*/ Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA*/ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA*/ } Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA*/ /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; /* Q( -rshifts )*/ tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts )*/ CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts )*/ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts )*/ } } /* Return residual energy */ nrg = CAf[ 0 ]; /* Q( -rshifts )*/ tmp1 = 1 << 16; /* Q16*/ for( k = 0; k < D; k++ ) { Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16*/ nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts )*/ tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16*/ A_Q16[ k ] = -Atmp1; } *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( WhiteNoiseFrac_Q32, C0 ), -tmp1 ); /* Q( -rshifts )*/ *res_nrg_Q = -rshifts; }
/* Compute reflection coefficients from input signal */ void silk_burg_modified_sse4_1( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ const opus_int16 x[], /* I Input signal, length: nb_subfr * (D + subfr_length) */ const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ const opus_int nb_subfr, /* I Number of subframes stacked in x */ const opus_int D, /* I Order */ int arch /* I Run-time architecture */ ) { opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain; opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; const opus_int16 *x_ptr; opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 xcorr[ SILK_MAX_ORDER_LPC ]; __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210; __m128i CONST1 = _mm_set1_epi32(1); silk_assert(subfr_length * nb_subfr <= MAX_FRAME_SIZE); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift(&C0, &rshifts, x, nb_subfr * subfr_length); if(rshifts > MAX_RSHIFTS) { C0 = silk_LSHIFT32(C0, rshifts - MAX_RSHIFTS); silk_assert(C0 > 0); rshifts = MAX_RSHIFTS; } else { lz = silk_CLZ32(C0) - 1; rshifts_extra = N_BITS_HEAD_ROOM - lz; if(rshifts_extra > 0) { rshifts_extra = silk_min(rshifts_extra, MAX_RSHIFTS - rshifts); C0 = silk_RSHIFT32(C0, rshifts_extra); } else { rshifts_extra = silk_max(rshifts_extra, MIN_RSHIFTS - rshifts); C0 = silk_LSHIFT32(C0, -rshifts_extra); } rshifts += rshifts_extra; } CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0) + 1; /* Q(-rshifts) */ silk_memset(C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof(opus_int32)); if(rshifts > 0) { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; for(n = 1; n < D + 1; n++) { C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64(x_ptr, x_ptr + n, subfr_length - n, arch), rshifts); } } } else { for(s = 0; s < nb_subfr; s++) { int i; opus_int32 d; x_ptr = x + s * subfr_length; celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch); for(n = 1; n < D + 1; n++) { for (i = n + subfr_length - D, d = 0; i < subfr_length; i++) d = MAC16_16(d, x_ptr[ i ], x_ptr[ i - n ]); xcorr[ n - 1 ] += d; } for(n = 1; n < D + 1; n++) { C_first_row[ n - 1 ] += silk_LSHIFT32(xcorr[ n - 1 ], -rshifts); } } } silk_memcpy(C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof(opus_int32)); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0) + 1; /* Q(-rshifts) */ invGain_Q30 = (opus_int32)1 << 30; reached_max_gain = 0; for(n = 0; n < D; n++) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ if(rshifts > -2) { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32((opus_int32)x_ptr[ n ], 16 - rshifts); /* Q(16-rshifts) */ x2 = -silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts); /* Q(16-rshifts) */ tmp1 = silk_LSHIFT32((opus_int32)x_ptr[ n ], QA - 16); /* Q(QA-16) */ tmp2 = silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16); /* Q(QA-16) */ for(k = 0; k < n; k++) { C_first_row[ k ] = silk_SMLAWB(C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q(-rshifts) */ C_last_row[ k ] = silk_SMLAWB(C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ]); /* Q(-rshifts) */ Atmp_QA = Af_QA[ k ]; tmp1 = silk_SMLAWB(tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ tmp2 = silk_SMLAWB(tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ]); /* Q(QA-16) */ } tmp1 = silk_LSHIFT32(-tmp1, 32 - QA - rshifts); /* Q(16-rshifts) */ tmp2 = silk_LSHIFT32(-tmp2, 32 - QA - rshifts); /* Q(16-rshifts) */ for(k = 0; k <= n; k++) { CAf[ k ] = silk_SMLAWB(CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q(-rshift) */ CAb[ k ] = silk_SMLAWB(CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ]); /* Q(-rshift) */ } } } else { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32((opus_int32)x_ptr[ n ], -rshifts); /* Q(-rshifts) */ x2 = -silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts); /* Q(-rshifts) */ tmp1 = silk_LSHIFT32((opus_int32)x_ptr[ n ], 17); /* Q17 */ tmp2 = silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], 17); /* Q17 */ X1_3210 = _mm_set1_epi32(x1); X2_3210 = _mm_set1_epi32(x2); TMP1_3210 = _mm_setzero_si128(); TMP2_3210 = _mm_setzero_si128(); for(k = 0; k < n - 3; k += 4) { PTR_3210 = OP_CVTEPI16_EPI32_M64(&x_ptr[ n - k - 1 - 3 ]); SUBFR_3210 = OP_CVTEPI16_EPI32_M64(&x_ptr[ subfr_length - n + k ]); FIRST_3210 = _mm_loadu_si128((__m128i *)&C_first_row[ k ]); PTR_3210 = _mm_shuffle_epi32(PTR_3210, _MM_SHUFFLE(0, 1, 2, 3)); LAST_3210 = _mm_loadu_si128((__m128i *)&C_last_row[ k ]); ATMP_3210 = _mm_loadu_si128((__m128i *)&Af_QA[ k ]); T1_3210 = _mm_mullo_epi32(PTR_3210, X1_3210); T2_3210 = _mm_mullo_epi32(SUBFR_3210, X2_3210); ATMP_3210 = _mm_srai_epi32(ATMP_3210, 7); ATMP_3210 = _mm_add_epi32(ATMP_3210, CONST1); ATMP_3210 = _mm_srai_epi32(ATMP_3210, 1); FIRST_3210 = _mm_add_epi32(FIRST_3210, T1_3210); LAST_3210 = _mm_add_epi32(LAST_3210, T2_3210); PTR_3210 = _mm_mullo_epi32(ATMP_3210, PTR_3210); SUBFR_3210 = _mm_mullo_epi32(ATMP_3210, SUBFR_3210); _mm_storeu_si128((__m128i *)&C_first_row[ k ], FIRST_3210); _mm_storeu_si128((__m128i *)&C_last_row[ k ], LAST_3210); TMP1_3210 = _mm_add_epi32(TMP1_3210, PTR_3210); TMP2_3210 = _mm_add_epi32(TMP2_3210, SUBFR_3210); } TMP1_3210 = _mm_add_epi32(TMP1_3210, _mm_unpackhi_epi64(TMP1_3210, TMP1_3210)); TMP2_3210 = _mm_add_epi32(TMP2_3210, _mm_unpackhi_epi64(TMP2_3210, TMP2_3210)); TMP1_3210 = _mm_add_epi32(TMP1_3210, _mm_shufflelo_epi16(TMP1_3210, 0x0E)); TMP2_3210 = _mm_add_epi32(TMP2_3210, _mm_shufflelo_epi16(TMP2_3210, 0x0E)); tmp1 += _mm_cvtsi128_si32(TMP1_3210); tmp2 += _mm_cvtsi128_si32(TMP2_3210); for(; k < n; k++) { C_first_row[ k ] = silk_MLA(C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q(-rshifts) */ C_last_row[ k ] = silk_MLA(C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ]); /* Q(-rshifts) */ Atmp1 = silk_RSHIFT_ROUND(Af_QA[ k ], QA - 17); /* Q17 */ tmp1 = silk_MLA(tmp1, x_ptr[ n - k - 1 ], Atmp1); /* Q17 */ tmp2 = silk_MLA(tmp2, x_ptr[ subfr_length - n + k ], Atmp1); /* Q17 */ } tmp1 = -tmp1; /* Q17 */ tmp2 = -tmp2; /* Q17 */ { __m128i xmm_tmp1, xmm_tmp2; __m128i xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1; __m128i xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1; xmm_tmp1 = _mm_set1_epi32(tmp1); xmm_tmp2 = _mm_set1_epi32(tmp2); for(k = 0; k <= n - 3; k += 4) { xmm_x_ptr_n_k_x2x0 = OP_CVTEPI16_EPI32_M64(&x_ptr[ n - k - 3 ]); xmm_x_ptr_sub_x2x0 = OP_CVTEPI16_EPI32_M64(&x_ptr[ subfr_length - n + k - 1 ]); xmm_x_ptr_n_k_x2x0 = _mm_shuffle_epi32(xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE(0, 1, 2, 3)); xmm_x_ptr_n_k_x2x0 = _mm_slli_epi32(xmm_x_ptr_n_k_x2x0, -rshifts - 1); xmm_x_ptr_sub_x2x0 = _mm_slli_epi32(xmm_x_ptr_sub_x2x0, -rshifts - 1); /* equal shift right 4 bytes, xmm_x_ptr_n_k_x3x1 = _mm_srli_si128(xmm_x_ptr_n_k_x2x0, 4)*/ xmm_x_ptr_n_k_x3x1 = _mm_shuffle_epi32(xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE(0, 3, 2, 1)); xmm_x_ptr_sub_x3x1 = _mm_shuffle_epi32(xmm_x_ptr_sub_x2x0, _MM_SHUFFLE(0, 3, 2, 1)); xmm_x_ptr_n_k_x2x0 = _mm_mul_epi32(xmm_x_ptr_n_k_x2x0, xmm_tmp1); xmm_x_ptr_n_k_x3x1 = _mm_mul_epi32(xmm_x_ptr_n_k_x3x1, xmm_tmp1); xmm_x_ptr_sub_x2x0 = _mm_mul_epi32(xmm_x_ptr_sub_x2x0, xmm_tmp2); xmm_x_ptr_sub_x3x1 = _mm_mul_epi32(xmm_x_ptr_sub_x3x1, xmm_tmp2); xmm_x_ptr_n_k_x2x0 = _mm_srli_epi64(xmm_x_ptr_n_k_x2x0, 16); xmm_x_ptr_n_k_x3x1 = _mm_slli_epi64(xmm_x_ptr_n_k_x3x1, 16); xmm_x_ptr_sub_x2x0 = _mm_srli_epi64(xmm_x_ptr_sub_x2x0, 16); xmm_x_ptr_sub_x3x1 = _mm_slli_epi64(xmm_x_ptr_sub_x3x1, 16); xmm_x_ptr_n_k_x2x0 = _mm_blend_epi16(xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1, 0xCC); xmm_x_ptr_sub_x2x0 = _mm_blend_epi16(xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1, 0xCC); X1_3210 = _mm_loadu_si128((__m128i *)&CAf[ k ]); PTR_3210 = _mm_loadu_si128((__m128i *)&CAb[ k ]); X1_3210 = _mm_add_epi32(X1_3210, xmm_x_ptr_n_k_x2x0); PTR_3210 = _mm_add_epi32(PTR_3210, xmm_x_ptr_sub_x2x0); _mm_storeu_si128((__m128i *)&CAf[ k ], X1_3210); _mm_storeu_si128((__m128i *)&CAb[ k ], PTR_3210); } for(; k <= n; k++) { CAf[ k ] = silk_SMLAWW(CAf[ k ], tmp1, silk_LSHIFT32((opus_int32)x_ptr[ n - k ], -rshifts - 1)); /* Q(-rshift) */ CAb[ k ] = silk_SMLAWW(CAb[ k ], tmp2, silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1)); /* Q(-rshift) */ } } } } /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ tmp1 = C_first_row[ n ]; /* Q(-rshifts) */ tmp2 = C_last_row[ n ]; /* Q(-rshifts) */ num = 0; /* Q(-rshifts) */ nrg = silk_ADD32(CAb[ 0 ], CAf[ 0 ]); /* Q(1-rshifts) */ for(k = 0; k < n; k++) { Atmp_QA = Af_QA[ k ]; lz = silk_CLZ32(silk_abs(Atmp_QA)) - 1; lz = silk_min(32 - QA, lz); Atmp1 = silk_LSHIFT32(Atmp_QA, lz); /* Q(QA + lz) */ tmp1 = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(C_last_row[ n - k - 1 ], Atmp1), 32 - QA - lz); /* Q(-rshifts) */ tmp2 = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(C_first_row[ n - k - 1 ], Atmp1), 32 - QA - lz); /* Q(-rshifts) */ num = silk_ADD_LSHIFT32(num, silk_SMMUL(CAb[ n - k ], Atmp1), 32 - QA - lz); /* Q(-rshifts) */ nrg = silk_ADD_LSHIFT32(nrg, silk_SMMUL(silk_ADD32(CAb[ k + 1 ], CAf[ k + 1 ]), Atmp1), 32 - QA - lz); /* Q(1-rshifts) */ } CAf[ n + 1 ] = tmp1; /* Q(-rshifts) */ CAb[ n + 1 ] = tmp2; /* Q(-rshifts) */ num = silk_ADD32(num, tmp2); /* Q(-rshifts) */ num = silk_LSHIFT32(-num, 1); /* Q(1-rshifts) */ /* Calculate the next order reflection (parcor) coefficient */ if(silk_abs(num) < nrg) { rc_Q31 = silk_DIV32_varQ(num, nrg, 31); } else { rc_Q31 = (num > 0) ? silk_int32_MAX : silk_int32_MIN; } /* Update inverse prediction gain */ tmp1 = ((opus_int32)1 << 30) - silk_SMMUL(rc_Q31, rc_Q31); tmp1 = silk_LSHIFT(silk_SMMUL(invGain_Q30, tmp1), 2); if(tmp1 <= minInvGain_Q30) { /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ tmp2 = ((opus_int32)1 << 30) - silk_DIV32_varQ(minInvGain_Q30, invGain_Q30, 30); /* Q30 */ rc_Q31 = silk_SQRT_APPROX(tmp2); /* Q15 */ /* Newton-Raphson iteration */ rc_Q31 = silk_RSHIFT32(rc_Q31 + silk_DIV32(tmp2, rc_Q31), 1); /* Q15 */ rc_Q31 = silk_LSHIFT32(rc_Q31, 16); /* Q31 */ if(num < 0) { /* Ensure adjusted reflection coefficients has the original sign */ rc_Q31 = -rc_Q31; } invGain_Q30 = minInvGain_Q30; reached_max_gain = 1; } else { invGain_Q30 = tmp1; } /* Update the AR coefficients */ for(k = 0; k < (n + 1) >> 1; k++) { tmp1 = Af_QA[ k ]; /* QA */ tmp2 = Af_QA[ n - k - 1 ]; /* QA */ Af_QA[ k ] = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(tmp2, rc_Q31), 1); /* QA */ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(tmp1, rc_Q31), 1); /* QA */ } Af_QA[ n ] = silk_RSHIFT32(rc_Q31, 31 - QA); /* QA */ if(reached_max_gain) { /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ for(k = n + 1; k < D; k++) { Af_QA[ k ] = 0; } break; } /* Update C * Af and C * Ab */ for(k = 0; k <= n + 1; k++) { tmp1 = CAf[ k ]; /* Q(-rshifts) */ tmp2 = CAb[ n - k + 1 ]; /* Q(-rshifts) */ CAf[ k ] = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(tmp2, rc_Q31), 1); /* Q(-rshifts) */ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(tmp1, rc_Q31), 1); /* Q(-rshifts) */ } } if(reached_max_gain) { for(k = 0; k < D; k++) { /* Scale coefficients */ A_Q16[ k ] = -silk_RSHIFT_ROUND(Af_QA[ k ], QA - 16); } /* Subtract energy of preceding samples from C0 */ if(rshifts > 0) { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; C0 -= (opus_int32)silk_RSHIFT64(silk_inner_prod16_aligned_64(x_ptr, x_ptr, D, arch), rshifts); } } else { for(s = 0; s < nb_subfr; s++) { x_ptr = x + s * subfr_length; C0 -= silk_LSHIFT32(silk_inner_prod_aligned(x_ptr, x_ptr, D, arch), -rshifts); } } /* Approximate residual energy */ *res_nrg = silk_LSHIFT(silk_SMMUL(invGain_Q30, C0), 2); *res_nrg_Q = -rshifts; } else { /* Return residual energy */ nrg = CAf[ 0 ]; /* Q(-rshifts) */ tmp1 = (opus_int32)1 << 16; /* Q16 */ for(k = 0; k < D; k++) { Atmp1 = silk_RSHIFT_ROUND(Af_QA[ k ], QA - 16); /* Q16 */ nrg = silk_SMLAWW(nrg, CAf[ k + 1 ], Atmp1); /* Q(-rshifts) */ tmp1 = silk_SMLAWW(tmp1, Atmp1, Atmp1); /* Q16 */ A_Q16[ k ] = -Atmp1; } *res_nrg = silk_SMLAWW(nrg, silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0), -tmp1);/* Q(-rshifts) */ *res_nrg_Q = -rshifts; } }
void silk_warped_autocorrelation_FIX_neon( opus_int32 *corr, /* O Result [order + 1] */ opus_int *scale, /* O Scaling of the correlation vector */ const opus_int16 *input, /* I Input data to correlate */ const opus_int warping_Q16, /* I Warping coefficient */ const opus_int length, /* I Length of input */ const opus_int order /* I Correlation order (even) */ ) { if( ( MAX_SHAPE_LPC_ORDER > 24 ) || ( order < 6 ) ) { silk_warped_autocorrelation_FIX_c( corr, scale, input, warping_Q16, length, order ); } else { opus_int n, i, lsh; opus_int64 corr_QC[ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; /* In reverse order */ opus_int64 corr_QC_orderT; int64x2_t lsh_s64x2; const opus_int orderT = ( order + 3 ) & ~3; opus_int64 *corr_QCT; opus_int32 *input_QS; VARDECL( opus_int32, input_QST ); VARDECL( opus_int32, state ); SAVE_STACK; /* Order must be even */ silk_assert( ( order & 1 ) == 0 ); silk_assert( 2 * QS - QC >= 0 ); ALLOC( input_QST, length + 2 * MAX_SHAPE_LPC_ORDER, opus_int32 ); input_QS = input_QST; /* input_QS has zero paddings in the beginning and end. */ vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; /* Loop over samples */ for( n = 0; n < length - 7; n += 8, input_QS += 8 ) { const int16x8_t t0_s16x4 = vld1q_s16( input + n ); vst1q_s32( input_QS + 0, vshll_n_s16( vget_low_s16( t0_s16x4 ), QS ) ); vst1q_s32( input_QS + 4, vshll_n_s16( vget_high_s16( t0_s16x4 ), QS ) ); } for( ; n < length; n++, input_QS++ ) { input_QS[ 0 ] = silk_LSHIFT32( (opus_int32)input[ n ], QS ); } vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS += 4; vst1q_s32( input_QS, vdupq_n_s32( 0 ) ); input_QS = input_QST + MAX_SHAPE_LPC_ORDER - orderT; /* The following loop runs ( length + order ) times, with ( order ) extra epilogues. */ /* The zero paddings in input_QS guarantee corr_QC's correctness even with the extra epilogues. */ /* The values of state_QS will be polluted by the extra epilogues, however they are temporary values. */ /* Keep the C code here to help understand the intrinsics optimization. */ /* { opus_int32 state_QS[ 2 ][ MAX_SHAPE_LPC_ORDER + 1 ] = { 0 }; opus_int32 *state_QST[ 3 ]; state_QST[ 0 ] = state_QS[ 0 ]; state_QST[ 1 ] = state_QS[ 1 ]; for( n = 0; n < length + order; n++, input_QS++ ) { state_QST[ 0 ][ orderT ] = input_QS[ orderT ]; for( i = 0; i < orderT; i++ ) { corr_QC[ i ] += silk_RSHIFT64( silk_SMULL( state_QST[ 0 ][ i ], input_QS[ i ] ), 2 * QS - QC ); state_QST[ 1 ][ i ] = silk_SMLAWB( state_QST[ 1 ][ i + 1 ], state_QST[ 0 ][ i ] - state_QST[ 0 ][ i + 1 ], warping_Q16 ); } state_QST[ 2 ] = state_QST[ 0 ]; state_QST[ 0 ] = state_QST[ 1 ]; state_QST[ 1 ] = state_QST[ 2 ]; } } */ { const int32x4_t warping_Q16_s32x4 = vdupq_n_s32( warping_Q16 << 15 ); const opus_int32 *in = input_QS + orderT; opus_int o = orderT; int32x4_t state_QS_s32x4[ 3 ][ 2 ]; ALLOC( state, length + orderT, opus_int32 ); state_QS_s32x4[ 2 ][ 1 ] = vdupq_n_s32( 0 ); /* Calculate 8 taps of all inputs in each loop. */ do { state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 0 ][ 1 ] = state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 1 ][ 1 ] = vdupq_n_s32( 0 ); n = 0; do { calc_corr( input_QS + n, corr_QC, o - 8, state_QS_s32x4[ 0 ][ 0 ] ); calc_corr( input_QS + n, corr_QC, o - 4, state_QS_s32x4[ 0 ][ 1 ] ); state_QS_s32x4[ 2 ][ 1 ] = vld1q_s32( in + n ); vst1q_lane_s32( state + n, state_QS_s32x4[ 0 ][ 0 ], 0 ); state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 0 ][ 1 ], 1 ); state_QS_s32x4[ 2 ][ 1 ] = vextq_s32( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], 1 ); state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 ); state_QS_s32x4[ 0 ][ 1 ] = calc_state( state_QS_s32x4[ 0 ][ 1 ], state_QS_s32x4[ 2 ][ 1 ], state_QS_s32x4[ 1 ][ 1 ], warping_Q16_s32x4 ); state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ]; state_QS_s32x4[ 1 ][ 1 ] = state_QS_s32x4[ 2 ][ 1 ]; } while( ++n < ( length + order ) ); in = state; o -= 8; } while( o > 4 ); if( o ) { /* Calculate the last 4 taps of all inputs. */ opus_int32 *stateT = state; silk_assert( o == 4 ); state_QS_s32x4[ 0 ][ 0 ] = state_QS_s32x4[ 1 ][ 0 ] = vdupq_n_s32( 0 ); n = length + order; do { calc_corr( input_QS, corr_QC, 0, state_QS_s32x4[ 0 ][ 0 ] ); state_QS_s32x4[ 2 ][ 0 ] = vld1q_s32( stateT ); vst1q_lane_s32( stateT, state_QS_s32x4[ 0 ][ 0 ], 0 ); state_QS_s32x4[ 2 ][ 0 ] = vextq_s32( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], 1 ); state_QS_s32x4[ 0 ][ 0 ] = calc_state( state_QS_s32x4[ 0 ][ 0 ], state_QS_s32x4[ 2 ][ 0 ], state_QS_s32x4[ 1 ][ 0 ], warping_Q16_s32x4 ); state_QS_s32x4[ 1 ][ 0 ] = state_QS_s32x4[ 2 ][ 0 ]; input_QS++; stateT++; } while( --n ); } } { const opus_int16 *inputT = input; int32x4_t t_s32x4; int64x1_t t_s64x1; int64x2_t t_s64x2 = vdupq_n_s64( 0 ); for( n = 0; n <= length - 8; n += 8 ) { int16x8_t input_s16x8 = vld1q_s16( inputT ); t_s32x4 = vmull_s16( vget_low_s16( input_s16x8 ), vget_low_s16( input_s16x8 ) ); t_s32x4 = vmlal_s16( t_s32x4, vget_high_s16( input_s16x8 ), vget_high_s16( input_s16x8 ) ); t_s64x2 = vaddw_s32( t_s64x2, vget_low_s32( t_s32x4 ) ); t_s64x2 = vaddw_s32( t_s64x2, vget_high_s32( t_s32x4 ) ); inputT += 8; } t_s64x1 = vadd_s64( vget_low_s64( t_s64x2 ), vget_high_s64( t_s64x2 ) ); corr_QC_orderT = vget_lane_s64( t_s64x1, 0 ); for( ; n < length; n++ ) { corr_QC_orderT += silk_SMULL( input[ n ], input[ n ] ); } corr_QC_orderT = silk_LSHIFT64( corr_QC_orderT, QC ); corr_QC[ orderT ] = corr_QC_orderT; } corr_QCT = corr_QC + orderT - order; lsh = silk_CLZ64( corr_QC_orderT ) - 35; lsh = silk_LIMIT( lsh, -12 - QC, 30 - QC ); *scale = -( QC + lsh ); silk_assert( *scale >= -30 && *scale <= 12 ); lsh_s64x2 = vdupq_n_s64( lsh ); for( i = 0; i <= order - 3; i += 4 ) { int32x4_t corr_s32x4; int64x2_t corr_QC0_s64x2, corr_QC1_s64x2; corr_QC0_s64x2 = vld1q_s64( corr_QCT + i ); corr_QC1_s64x2 = vld1q_s64( corr_QCT + i + 2 ); corr_QC0_s64x2 = vshlq_s64( corr_QC0_s64x2, lsh_s64x2 ); corr_QC1_s64x2 = vshlq_s64( corr_QC1_s64x2, lsh_s64x2 ); corr_s32x4 = vcombine_s32( vmovn_s64( corr_QC1_s64x2 ), vmovn_s64( corr_QC0_s64x2 ) ); corr_s32x4 = vrev64q_s32( corr_s32x4 ); vst1q_s32( corr + order - i - 3, corr_s32x4 ); } if( lsh >= 0 ) { for( ; i < order + 1; i++ ) { corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_LSHIFT64( corr_QCT[ i ], lsh ) ); } } else { for( ; i < order + 1; i++ ) { corr[ order - i ] = (opus_int32)silk_CHECK_FIT32( silk_RSHIFT64( corr_QCT[ i ], -lsh ) ); } } silk_assert( corr_QCT[ order ] >= 0 ); /* If breaking, decrease QC*/ RESTORE_STACK; } #ifdef OPUS_CHECK_ASM { opus_int32 corr_c[ MAX_SHAPE_LPC_ORDER + 1 ]; opus_int scale_c; silk_warped_autocorrelation_FIX_c( corr_c, &scale_c, input, warping_Q16, length, order ); silk_assert( !memcmp( corr_c, corr, sizeof( corr_c[ 0 ] ) * ( order + 1 ) ) ); silk_assert( scale_c == *scale ); } #endif }
/* Compute reflection coefficients from input signal */ void silk_burg_modified( opus_int32 *res_nrg, /* O Residual energy */ opus_int *res_nrg_Q, /* O Residual energy Q value */ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ const opus_int nb_subfr, /* I Number of subframes stacked in x */ const opus_int D /* I Order */ ) { opus_int k, n, s, lz, rshifts, rshifts_extra, reached_max_gain; opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2; const opus_int16 *x_ptr; opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ]; opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ]; opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ]; opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ]; opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length ); if( rshifts > MAX_RSHIFTS ) { C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS ); silk_assert( C0 > 0 ); rshifts = MAX_RSHIFTS; } else { lz = silk_CLZ32( C0 ) - 1; rshifts_extra = N_BITS_HEAD_ROOM - lz; if( rshifts_extra > 0 ) { rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts ); C0 = silk_RSHIFT32( C0, rshifts_extra ); } else { rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts ); C0 = silk_LSHIFT32( C0, -rshifts_extra ); } rshifts += rshifts_extra; } CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); if( rshifts > 0 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts ); } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts ); } } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */ invGain_Q30 = (opus_int32)1 << 30; reached_max_gain = 0; for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ if( rshifts > -2 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ Atmp_QA = Af_QA[ k ]; tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */ tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */ } tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */ tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */ CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */ } } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */ x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */ tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */ tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */ for( k = 0; k < n; k++ ) { C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */ C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */ Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */ tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */ tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */ } tmp1 = -tmp1; /* Q17 */ tmp2 = -tmp2; /* Q17 */ for( k = 0; k <= n; k++ ) { CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1, silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */ CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2, silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */ } } } /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */ tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */ num = 0; /* Q( -rshifts ) */ nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */ for( k = 0; k < n; k++ ) { Atmp_QA = Af_QA[ k ]; lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1; lz = silk_min( 32 - QA, lz ); Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */ tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */ nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ), Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */ } CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */ CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */ num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */ num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */ /* Calculate the next order reflection (parcor) coefficient */ if( silk_abs( num ) < nrg ) { rc_Q31 = silk_DIV32_varQ( num, nrg, 31 ); } else { rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN; } /* Update inverse prediction gain */ tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 ); tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 ); if( tmp1 <= minInvGain_Q30 ) { /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */ rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */ /* Newton-Raphson iteration */ rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */ rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */ if( num < 0 ) { /* Ensure adjusted reflection coefficients has the original sign */ rc_Q31 = -rc_Q31; } invGain_Q30 = minInvGain_Q30; reached_max_gain = 1; } else { invGain_Q30 = tmp1; } /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af_QA[ k ]; /* QA */ tmp2 = Af_QA[ n - k - 1 ]; /* QA */ Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */ Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */ } Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */ if( reached_max_gain ) { /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ for( k = n + 1; k < D; k++ ) { Af_QA[ k ] = 0; } break; } /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; /* Q( -rshifts ) */ tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */ CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */ CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */ } } if( reached_max_gain ) { for( k = 0; k < D; k++ ) { /* Scale coefficients */ A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); } /* Subtract energy of preceding samples from C0 */ if( rshifts > 0 ) { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts ); } } else { for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts ); } } /* Approximate residual energy */ *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 ); *res_nrg_Q = -rshifts; } else { /* Return residual energy */ nrg = CAf[ 0 ]; /* Q( -rshifts ) */ tmp1 = (opus_int32)1 << 16; /* Q16 */ for( k = 0; k < D; k++ ) { Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */ nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */ tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */ A_Q16[ k ] = -Atmp1; } *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( FIND_LPC_COND_FAC, C0 ), -tmp1 ); /* Q( -rshifts ) */ *res_nrg_Q = -rshifts; } }