コード例 #1
0
/*
 * NAME: tp_soisdisconnected()
 *
 * CALLED FROM:
 *	tp.trans
 *
 * FUNCTION and ARGUMENTS:
 *  Set state of the socket (so) to reflect that fact that we're disconnectED
 *  Set the state of the reference structure to closed, and
 *  recycle the suffix.
 *  Start a reference timer.
 *
 * RETURNS:	Nada
 *
 * SIDE EFFECTS:
 *
 * NOTES:
 *  This differs from the regular soisdisconnected() in that the latter
 *  also sets the SS_CANTRECVMORE and SS_CANTSENDMORE flags.
 *  We don't want to set those flags because those flags will cause
 *  a SIGPIPE to be delivered in sosend() and we don't like that.
 *  If anyone else is sleeping on this socket, wake 'em up.
 */
void
tp_soisdisconnected(struct tp_pcb *tpcb)
{
	struct socket *so = tpcb->tp_sock;

	soisdisconnecting(so);
	so->so_state &= ~SS_CANTSENDMORE;
#ifdef TP_PERF_MEAS
	if (DOPERF(tpcb)) {
		struct tp_pcb *ttpcb = sototpcb(so);
		u_int           fsufx, lsufx;
		struct timeval	now;

		/* CHOKE */
		bcopy((void *) ttpcb->tp_fsuffix, (void *) &fsufx,
		      sizeof(u_int));
		bcopy((void *) ttpcb->tp_lsuffix, (void *) &lsufx,
		      sizeof(u_int));

		getmicrotime(&now);
		tpmeas(ttpcb->tp_lref, TPtime_close,
		       &now, &lsufx, &fsufx, ttpcb->tp_fref);
		tpcb->tp_perf_on = 0;	/* turn perf off */
	}
#endif

	tpcb->tp_refstate = REF_FROZEN;
	tp_recycle_tsuffix(tpcb);
	tp_etimeout(tpcb, TM_reference, (int) tpcb->tp_refer_ticks);
}
コード例 #2
0
/*
 * Initiate (or continue) disconnect.
 * If embryonic state, just send reset (once).
 * If in ``let data drain'' option and linger null, just drop.
 * Otherwise (hard), mark socket disconnecting and drop
 * current input data; switch states based on user close, and
 * send segment to peer (with FIN).
 */
static void
tcp_disconnect(struct tcpcb *tp)
{
	struct inpcb *inp = tp->t_inpcb;
	struct socket *so = inp->inp_socket;

	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
	INP_WLOCK_ASSERT(inp);

	/*
	 * Neither tcp_close() nor tcp_drop() should return NULL, as the
	 * socket is still open.
	 */
	if (tp->t_state < TCPS_ESTABLISHED) {
		tp = tcp_close(tp);
		KASSERT(tp != NULL,
		    ("tcp_disconnect: tcp_close() returned NULL"));
	} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
		tp = tcp_drop(tp, 0);
		KASSERT(tp != NULL,
		    ("tcp_disconnect: tcp_drop() returned NULL"));
	} else {
		soisdisconnecting(so);
		sbflush(&so->so_rcv);
		tcp_usrclosed(tp);
		if (!(inp->inp_flags & INP_DROPPED))
			tcp_output_disconnect(tp);
	}
}
コード例 #3
0
ファイル: rfcomm_socket.c プロジェクト: ryo/netbsd-src
static int
rfcomm_disconnect(struct socket *so)
{
	struct rfcomm_dlc *pcb = so->so_pcb;

	KASSERT(solocked(so));

	if (pcb == NULL)
		return EINVAL;

	soisdisconnecting(so);
	return rfcomm_disconnect_pcb(pcb, so->so_linger);
}
コード例 #4
0
ファイル: tcp_usr.c プロジェクト: fjanssen/Car2X
struct tcpcb * 
tcp_disconnect(struct tcpcb * tp)
{
   struct socket *   so =  tp->t_inpcb->inp_socket;

   if (tp->t_state < TCPS_ESTABLISHED)
      tp = tcp_close(tp);
   else if ((so->so_options & SO_LINGER) && so->so_linger == 0)
      tp = tcp_drop(tp, 0);
   else 
   {
      soisdisconnecting(so);
      sbflush(&so->so_rcv);
      tp = tcp_usrclosed(tp);
      if (tp)
         (void) tcp_output(tp);
   }
   return (tp);
}
コード例 #5
0
/*
 * Initiate (or continue) disconnect.
 * If embryonic state, just send reset (once).
 * If in ``let data drain'' option and linger null, just drop.
 * Otherwise (hard), mark socket disconnecting and drop
 * current input data; switch states based on user close, and
 * send segment to peer (with FIN).
 */
static struct tcpcb *
tcp_disconnect(struct tcpcb *tp)
{
	struct socket *so = tp->t_inpcb->inp_socket;

	if (tp->t_state < TCPS_ESTABLISHED) {
		tp = tcp_close(tp);
	} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
		tp = tcp_drop(tp, 0);
	} else {
		lwkt_gettoken(&so->so_rcv.ssb_token);
		soisdisconnecting(so);
		sbflush(&so->so_rcv.sb);
		tp = tcp_usrclosed(tp);
		if (tp)
			tcp_output(tp);
		lwkt_reltoken(&so->so_rcv.ssb_token);
	}
	return (tp);
}
コード例 #6
0
/*
 * NAME: 	tp_soisdisconnecting()
 *
 * CALLED FROM:
 *  tp.trans
 *
 * FUNCTION and ARGUMENTS:
 *  Set state of the socket (so) to reflect that fact that we're disconnectING
 *
 * RETURNS: 	Nada
 *
 * SIDE EFFECTS:
 *
 * NOTES:
 *  This differs from the regular soisdisconnecting() in that the latter
 *  also sets the SS_CANTRECVMORE and SS_CANTSENDMORE flags.
 *  We don't want to set those flags because those flags will cause
 *  a SIGPIPE to be delivered in sosend() and we don't like that.
 *  If anyone else is sleeping on this socket, wake 'em up.
 */
void
tp_soisdisconnecting(struct socket *so)
{
	soisdisconnecting(so);
	so->so_state &= ~SS_CANTSENDMORE;
#ifdef TP_PERF_MEAS
	if (DOPERF(sototpcb(so))) {
		struct tp_pcb *tpcb = sototpcb(so);
		u_int           fsufx, lsufx;
		struct timeval	now;

		bcopy((void *) tpcb->tp_fsuffix, (void *) &fsufx,
		      sizeof(u_int));
		bcopy((void *) tpcb->tp_lsuffix, (void *) &lsufx,
		      sizeof(u_int));

		getmicrotime(&now);
		tpmeas(tpcb->tp_lref, TPtime_close, &now, fsufx, lsufx,
		       tpcb->tp_fref);
		tpcb->tp_perf_on = 0;	/* turn perf off */
	}
#endif
}
コード例 #7
0
/*
 * User Request.
 * up is socket
 * m is either
 *	optional mbuf chain containing message
 *	ioctl command (PRU_CONTROL)
 * nam is either
 *	optional mbuf chain containing an address
 *	ioctl data (PRU_CONTROL)
 *	optionally protocol number (PRU_ATTACH)
 *	message flags (PRU_RCVD)
 * ctl is either
 *	optional mbuf chain containing socket options
 *	optional interface pointer (PRU_CONTROL, PRU_PURGEIF)
 * l is pointer to process requesting action (if any)
 *
 * we are responsible for disposing of m and ctl if
 * they are mbuf chains
 */
int
rfcomm_usrreq(struct socket *up, int req, struct mbuf *m,
		struct mbuf *nam, struct mbuf *ctl, struct lwp *l)
{
	struct rfcomm_dlc *pcb = up->so_pcb;
	struct sockaddr_bt *sa;
	struct mbuf *m0;
	int err = 0;

	DPRINTFN(2, "%s\n", prurequests[req]);

	switch (req) {
	case PRU_CONTROL:
		return EPASSTHROUGH;

	case PRU_PURGEIF:
		return EOPNOTSUPP;

	case PRU_ATTACH:
		if (up->so_lock == NULL) {
			mutex_obj_hold(bt_lock);
			up->so_lock = bt_lock;
			solock(up);
		}
		KASSERT(solocked(up));
		if (pcb != NULL)
			return EINVAL;
		/*
		 * Since we have nothing to add, we attach the DLC
		 * structure directly to our PCB pointer.
		 */
		err = soreserve(up, rfcomm_sendspace, rfcomm_recvspace);
		if (err)
			return err;

		err = rfcomm_attach((struct rfcomm_dlc **)&up->so_pcb,
					&rfcomm_proto, up);
		if (err)
			return err;

		err = rfcomm_rcvd(up->so_pcb, sbspace(&up->so_rcv));
		if (err) {
			rfcomm_detach((struct rfcomm_dlc **)&up->so_pcb);
			return err;
		}

		return 0;
	}

	if (pcb == NULL) {
		err = EINVAL;
		goto release;
	}

	switch(req) {
	case PRU_DISCONNECT:
		soisdisconnecting(up);
		return rfcomm_disconnect(pcb, up->so_linger);

	case PRU_ABORT:
		rfcomm_disconnect(pcb, 0);
		soisdisconnected(up);
		/* fall through to */
	case PRU_DETACH:
		return rfcomm_detach((struct rfcomm_dlc **)&up->so_pcb);

	case PRU_BIND:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);

		if (sa->bt_len != sizeof(struct sockaddr_bt))
			return EINVAL;

		if (sa->bt_family != AF_BLUETOOTH)
			return EAFNOSUPPORT;

		return rfcomm_bind(pcb, sa);

	case PRU_CONNECT:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);

		if (sa->bt_len != sizeof(struct sockaddr_bt))
			return EINVAL;

		if (sa->bt_family != AF_BLUETOOTH)
			return EAFNOSUPPORT;

		soisconnecting(up);
		return rfcomm_connect(pcb, sa);

	case PRU_PEERADDR:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return rfcomm_peeraddr(pcb, sa);

	case PRU_SOCKADDR:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return rfcomm_sockaddr(pcb, sa);

	case PRU_SHUTDOWN:
		socantsendmore(up);
		break;

	case PRU_SEND:
		KASSERT(m != NULL);

		if (ctl)	/* no use for that */
			m_freem(ctl);

		m0 = m_copypacket(m, M_DONTWAIT);
		if (m0 == NULL)
			return ENOMEM;

		sbappendstream(&up->so_snd, m);

		return rfcomm_send(pcb, m0);

	case PRU_SENSE:
		return 0;		/* (no release) */

	case PRU_RCVD:
		return rfcomm_rcvd(pcb, sbspace(&up->so_rcv));

	case PRU_RCVOOB:
		return EOPNOTSUPP;	/* (no release) */

	case PRU_LISTEN:
		return rfcomm_listen(pcb);

	case PRU_ACCEPT:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return rfcomm_peeraddr(pcb, sa);

	case PRU_CONNECT2:
	case PRU_SENDOOB:
	case PRU_FASTTIMO:
	case PRU_SLOWTIMO:
	case PRU_PROTORCV:
	case PRU_PROTOSEND:
		err = EOPNOTSUPP;
		break;

	default:
		UNKNOWN(req);
		err = EOPNOTSUPP;
		break;
	}

release:
	if (m) m_freem(m);
	if (ctl) m_freem(ctl);
	return err;
}
コード例 #8
0
ファイル: l2cap_socket.c プロジェクト: sofuture/bitrig
/*
 * User Request.
 * up is socket
 * m is either
 *	optional mbuf chain containing message
 *	ioctl command (PRU_CONTROL)
 * nam is either
 *	optional mbuf chain containing an address
 *	ioctl data (PRU_CONTROL)
 *	optionally protocol number (PRU_ATTACH)
 *	message flags (PRU_RCVD)
 * ctl is either
 *	optional mbuf chain containing socket options
 *	optional interface pointer (PRU_CONTROL, PRU_PURGEIF)
 * l is pointer to process requesting action (if any)
 *
 * we are responsible for disposing of m and ctl if
 * they are mbuf chains
 */
int
l2cap_usrreq(struct socket *up, int req, struct mbuf *m,
    struct mbuf *nam, struct mbuf *ctl, struct proc *p)
{
	struct l2cap_channel *pcb = up->so_pcb;
	struct sockaddr_bt *sa;
	struct mbuf *m0;
	int err = 0;

#ifdef notyet			/* XXX */
	DPRINTFN(2, "%s\n", prurequests[req]);
#endif

	switch (req) {
	case PRU_CONTROL:
		return EPASSTHROUGH;

#ifdef notyet			/* XXX */
	case PRU_PURGEIF:
		return EOPNOTSUPP;
#endif

	case PRU_ATTACH:
		/* XXX solock() and bt_lock fiddling in NetBSD */
		if (pcb != NULL)
			return EINVAL;
		/*
		 * For L2CAP socket PCB we just use an l2cap_channel structure
		 * since we have nothing to add..
		 */
		err = soreserve(up, l2cap_sendspace, l2cap_recvspace);
		if (err)
			return err;

		return l2cap_attach((struct l2cap_channel **)&up->so_pcb,
					&l2cap_proto, up);
	}

	if (pcb == NULL) {
		err = EINVAL;
		goto release;
	}

	switch(req) {
	case PRU_DISCONNECT:
		soisdisconnecting(up);
		return l2cap_disconnect(pcb, up->so_linger);

	case PRU_ABORT:
		l2cap_disconnect(pcb, 0);
		soisdisconnected(up);
		/* fall through to */
	case PRU_DETACH:
		return l2cap_detach((struct l2cap_channel **)&up->so_pcb);

	case PRU_BIND:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);

		if (sa->bt_len != sizeof(struct sockaddr_bt))
			return EINVAL;

		if (sa->bt_family != AF_BLUETOOTH)
			return EAFNOSUPPORT;

		return l2cap_bind(pcb, sa);

	case PRU_CONNECT:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);

		if (sa->bt_len != sizeof(struct sockaddr_bt))
			return EINVAL;

		if (sa->bt_family != AF_BLUETOOTH)
			return EAFNOSUPPORT;

		soisconnecting(up);
		return l2cap_connect(pcb, sa);

	case PRU_PEERADDR:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return l2cap_peeraddr(pcb, sa);

	case PRU_SOCKADDR:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return l2cap_sockaddr(pcb, sa);

	case PRU_SHUTDOWN:
		socantsendmore(up);
		break;

	case PRU_SEND:
		KASSERT(m != NULL);
		if (m->m_pkthdr.len == 0)
			break;

		if (m->m_pkthdr.len > pcb->lc_omtu) {
			err = EMSGSIZE;
			break;
		}

		m0 = m_copym(m, 0, M_COPYALL, M_DONTWAIT);
		if (m0 == NULL) {
			err = ENOMEM;
			break;
		}

		if (ctl)	/* no use for that */
			m_freem(ctl);

		sbappendrecord(&up->so_snd, m);
		return l2cap_send(pcb, m0);

	case PRU_SENSE:
		return 0;		/* (no release) */

	case PRU_RCVD:
	case PRU_RCVOOB:
		return EOPNOTSUPP;	/* (no release) */

	case PRU_LISTEN:
		return l2cap_listen(pcb);

	case PRU_ACCEPT:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return l2cap_peeraddr(pcb, sa);

	case PRU_CONNECT2:
	case PRU_SENDOOB:
	case PRU_FASTTIMO:
	case PRU_SLOWTIMO:
	case PRU_PROTORCV:
	case PRU_PROTOSEND:
		err = EOPNOTSUPP;
		break;

	default:
		UNKNOWN(req);
		err = EOPNOTSUPP;
		break;
	}

release:
	if (m) m_freem(m);
	if (ctl) m_freem(ctl);
	return err;
}
コード例 #9
0
/*
 * User Request.
 * up is socket
 * m is either
 *	optional mbuf chain containing message
 *	ioctl command (PRU_CONTROL)
 * nam is either
 *	optional mbuf chain containing an address
 *	ioctl data (PRU_CONTROL)
 * ctl is optional mbuf chain containing socket options
 * l is pointer to process requesting action (if any)
 *
 * we are responsible for disposing of m and ctl if
 * they are mbuf chains
 */
static int
sco_usrreq(struct socket *up, int req, struct mbuf *m,
    struct mbuf *nam, struct mbuf *ctl, struct lwp *l)
{
	struct sco_pcb *pcb = (struct sco_pcb *)up->so_pcb;
	struct sockaddr_bt *sa;
	struct mbuf *m0;
	int err = 0;

	DPRINTFN(2, "%s\n", prurequests[req]);
	KASSERT(req != PRU_ATTACH);
	KASSERT(req != PRU_DETACH);

	switch(req) {
	case PRU_CONTROL:
		return EOPNOTSUPP;

	case PRU_PURGEIF:
		return EOPNOTSUPP;
	}

	/* anything after here *requires* a pcb */
	if (pcb == NULL) {
		err = EINVAL;
		goto release;
	}

	switch(req) {
	case PRU_DISCONNECT:
		soisdisconnecting(up);
		return sco_disconnect(pcb, up->so_linger);

	case PRU_ABORT:
		sco_disconnect(pcb, 0);
		soisdisconnected(up);
		sco_detach(up);
		return 0;

	case PRU_BIND:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);

		if (sa->bt_len != sizeof(struct sockaddr_bt))
			return EINVAL;

		if (sa->bt_family != AF_BLUETOOTH)
			return EAFNOSUPPORT;

		return sco_bind(pcb, sa);

	case PRU_CONNECT:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);

		if (sa->bt_len != sizeof(struct sockaddr_bt))
			return EINVAL;

		if (sa->bt_family != AF_BLUETOOTH)
			return EAFNOSUPPORT;

		soisconnecting(up);
		return sco_connect(pcb, sa);

	case PRU_PEERADDR:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return sco_peeraddr(pcb, sa);

	case PRU_SOCKADDR:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return sco_sockaddr(pcb, sa);

	case PRU_SHUTDOWN:
		socantsendmore(up);
		break;

	case PRU_SEND:
		KASSERT(m != NULL);
		if (m->m_pkthdr.len == 0)
			break;

		if (m->m_pkthdr.len > pcb->sp_mtu) {
			err = EMSGSIZE;
			break;
		}

		m0 = m_copypacket(m, M_DONTWAIT);
		if (m0 == NULL) {
			err = ENOMEM;
			break;
		}

		if (ctl) /* no use for that */
			m_freem(ctl);

		sbappendrecord(&up->so_snd, m);
		return sco_send(pcb, m0);

	case PRU_SENSE:
		return 0;		/* (no sense - Doh!) */

	case PRU_RCVD:
	case PRU_RCVOOB:
		return EOPNOTSUPP;	/* (no release) */

	case PRU_LISTEN:
		return sco_listen(pcb);

	case PRU_ACCEPT:
		KASSERT(nam != NULL);
		sa = mtod(nam, struct sockaddr_bt *);
		nam->m_len = sizeof(struct sockaddr_bt);
		return sco_peeraddr(pcb, sa);

	case PRU_CONNECT2:
	case PRU_SENDOOB:
	case PRU_FASTTIMO:
	case PRU_SLOWTIMO:
	case PRU_PROTORCV:
	case PRU_PROTOSEND:
		err = EOPNOTSUPP;
		break;

	default:
		UNKNOWN(req);
		err = EOPNOTSUPP;
		break;
	}

release:
	if (m) m_freem(m);
	if (ctl) m_freem(ctl);
	return err;
}