コード例 #1
0
bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
        VelocityTracker::Estimator* outEstimator) const {
    outEstimator->clear();

    // Iterate over movement samples in reverse time order and collect samples.
    float x[HISTORY_SIZE];
    float y[HISTORY_SIZE];
    float w[HISTORY_SIZE];
    float time[HISTORY_SIZE];
    uint32_t m = 0;
    uint32_t index = mIndex;
    const Movement& newestMovement = mMovements[mIndex];
    do {
        const Movement& movement = mMovements[index];
        if (!movement.idBits.hasBit(id)) {
            break;
        }

        nsecs_t age = newestMovement.eventTime - movement.eventTime;
        if (age > HORIZON) {
            break;
        }

        const VelocityTracker::Position& position = movement.getPosition(id);
        x[m] = position.x;
        y[m] = position.y;
        w[m] = chooseWeight(index);
        time[m] = -age * 0.000000001f;
        index = (index == 0 ? HISTORY_SIZE : index) - 1;
    } while (++m < HISTORY_SIZE);

    if (m == 0) {
        return false; // no data
    }

    // Calculate a least squares polynomial fit.
    uint32_t degree = mDegree;
    if (degree > m - 1) {
        degree = m - 1;
    }
    if (degree >= 1) {
        if (degree == 2 && mWeighting == WEIGHTING_NONE) { // optimize unweighted, degree=2 fit
            outEstimator->time = newestMovement.eventTime;
            outEstimator->degree = 2;
            outEstimator->confidence = 1;
            outEstimator->xCoeff[0] = 0; // only slope is calculated, set rest of coefficients = 0
            outEstimator->yCoeff[0] = 0;
            outEstimator->xCoeff[1] = solveUnweightedLeastSquaresDeg2(time, x, m);
            outEstimator->yCoeff[1] = solveUnweightedLeastSquaresDeg2(time, y, m);
            outEstimator->xCoeff[2] = 0;
            outEstimator->yCoeff[2] = 0;
            return true;
        }

        float xdet, ydet;
        uint32_t n = degree + 1;
        if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
                && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
            outEstimator->time = newestMovement.eventTime;
            outEstimator->degree = degree;
            outEstimator->confidence = xdet * ydet;
#if DEBUG_STRATEGY
            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
                    int(outEstimator->degree),
                    vectorToString(outEstimator->xCoeff, n).c_str(),
                    vectorToString(outEstimator->yCoeff, n).c_str(),
                    outEstimator->confidence);
#endif
            return true;
        }
    }

    // No velocity data available for this pointer, but we do have its current position.
    outEstimator->xCoeff[0] = x[0];
    outEstimator->yCoeff[0] = y[0];
    outEstimator->time = newestMovement.eventTime;
    outEstimator->degree = 0;
    outEstimator->confidence = 1;
    return true;
}
コード例 #2
0
double
ossimRpcProjection::optimizeFit(const ossimTieGptSet& tieSet, double* /* targetVariance */)
{
#if 1
   //NOTE : ignore targetVariance
   ossimRefPtr<ossimRpcSolver> solver = new ossimRpcSolver(false, false); //TBD : choices should be part of setupFromString

   std::vector<ossimDpt> imagePoints;
   std::vector<ossimGpt> groundPoints;
   tieSet.getSlaveMasterPoints(imagePoints, groundPoints);
   solver->solveCoefficients(imagePoints, groundPoints);

   ossimRefPtr< ossimImageGeometry > optProj = solver->createRpcProjection();
   if (!optProj)
   {
      ossimNotify(ossimNotifyLevel_FATAL) << "FATAL ossimRpcProjection::optimizeFit(): error when optimizing the RPC with given tie points"
                                             << std::endl;
      return -1.0;
   }

   if(optProj->hasProjection())
   {
      ossimKeywordlist kwl;
      optProj->getProjection()->saveState(kwl);
      this->loadState(kwl);
   }

   return std::pow(solver->getRmsError(), 2); //variance in pixel^2
#else
   // COPIED from ossimRpcProjection
   //
   //
   //use a simple Levenberg-Marquardt non-linear optimization
   //note : please limit the number of tie points
   //
   //INPUTS: requires Jacobian matrix (partial derivatives with regards to parameters)
   //OUTPUTS: will also compute parameter covariance matrix
   //
   //TBD: use targetVariance!
 
   int np = getNumberOfAdjustableParameters();
   int nobs = tieSet.size();

   //setup initail values
   int iter=0;
   int iter_max = 200;
   double minResidue = 1e-10; //TBC
   double minDelta = 1e-10; //TBC

   //build Least Squares initial normal equation
   // don't waste memory, add samples one at a time
   NEWMAT::SymmetricMatrix A;
   NEWMAT::ColumnVector residue;
   NEWMAT::ColumnVector projResidue;
   double deltap_scale = 1e-4; //step_Scale is 1.0 because we expect parameters to be between -1 and 1
   buildNormalEquation(tieSet, A, residue, projResidue, deltap_scale);
   double ki2=residue.SumSquare();

   //get current adjustment (between -1 and 1 normally) and convert to ColumnVector
   ossimAdjustmentInfo cadj;
   getAdjustment(cadj);
   std::vector< ossimAdjustableParameterInfo >& parmlist = cadj.getParameterList();
   NEWMAT::ColumnVector cparm(np), nparm(np);
   for(int n=0;n<np;++n)
   {
      cparm(n+1) = parmlist[n].getParameter();
   }

   double damping_speed = 2.0;
   //find max diag element for A
   double maxdiag=0.0;
   for(int d=1;d<=np;++d) {
      if (maxdiag < A(d,d)) maxdiag=A(d,d);
   }
   double damping = 1e-3 * maxdiag;
   double olddamping = 0.0;
   bool found = false;

//DEBUG TBR
cout<<"rms="<<sqrt(ki2/nobs)<<" ";
cout.flush();

   while ( (!found) && (iter < iter_max) ) //non linear optimization loop
   {
      bool decrease = false;

      do
      {
         //add damping update to normal matrix
         for(int d=1;d<=np;++d) A(d,d) += damping - olddamping;
         olddamping = damping;

         NEWMAT::ColumnVector deltap = solveLeastSquares(A, projResidue);

         if (deltap.NormFrobenius() <= minDelta) 
         {
            found = true;
         } else {
            //update adjustment
            nparm = cparm + deltap;
            for(int n=0;n<np;++n)
            {
               setAdjustableParameter(n, nparm(n+1), false); //do not update now, wait
            }
            adjustableParametersChanged();

            //check residue is reduced
            NEWMAT::ColumnVector newresidue = getResidue(tieSet);
            double newki2=newresidue.SumSquare();
            double res_reduction = (ki2 - newki2) / (deltap.t()*(deltap*damping + projResidue)).AsScalar();
 //DEBUG TBR
       cout<<sqrt(newki2/nobs)<<" ";
       cout.flush();

            if (res_reduction > 0)
            {
               //accept new parms
               cparm = nparm;
               ki2=newki2;

               deltap_scale = max(1e-15, deltap.NormInfinity()*1e-4);

               buildNormalEquation(tieSet, A, residue, projResidue, deltap_scale);
               olddamping = 0.0;

               found = ( projResidue.NormInfinity() <= minResidue );
               //update damping factor
               damping *= std::max( 1.0/3.0, 1.0-std::pow((2.0*res_reduction-1.0),3));
               damping_speed = 2.0;
               decrease = true;
            } else {
               //cancel parameter update
               for(int n=0;n<np;++n)
               {
                  setAdjustableParameter(n, nparm(n+1), false); //do not update right now
               }
               adjustableParametersChanged();

               damping *= damping_speed;
               damping_speed *= 2.0;
            }
         }
      } while (!decrease && !found);
      ++iter;
   }

//DEBUG TBR
cout<<endl;

   //compute parameter correlation
   // use normal matrix inverse
   //TBD

   return ki2/nobs;
#endif
}