コード例 #1
0
size_t bdSetRandTest(T a, size_t ndigits)
/* Make a random bigd a of up to ndigits digits 
   -- NB just for testing 
   Return # digits actually set */ 
{
	size_t i, n, bits;
	DIGIT_T mask;

	assert(a);
	/* Pick a random size */
	n = (size_t)spSimpleRand(1, (DIGIT_T)ndigits);
	
	/* Check allocated memory */
	bd_resize(a, n);
	
	/* Now fill with random digits */
	for (i = 0; i < n; i++)
		a->digits[i] = spSimpleRand(0, MAX_DIGIT);

	a->ndigits = n;

	/*	Zero out a random number of bits in leading digit 
		about half the time */
	bits = (size_t)spSimpleRand(0, 2*BITS_PER_DIGIT);
	if (bits != 0 && bits < BITS_PER_DIGIT)
	{
		mask = HIBITMASK;
		for (i = 1; i < bits; i++)
		{
			mask |= (mask >> 1);
		}
		mask = ~mask;
		a->digits[n-1] &= mask;
	}
コード例 #2
0
ファイル: spExtras.c プロジェクト: gmoromisato/Hexarc
int spIsPrime(DIGIT_T w, size_t t)
{	/*	Returns true if w is a probable prime 
		Carries out t iterations
		(Use t = 50 for DSS Standard) 
	*/
	/*	Uses Rabin-Miller Probabilistic Primality Test,
		Ref: FIPS-186-2 Appendix 2.
		Also Schneier 2nd ed p 260 & Knuth Vol 2, p 379
		and ANSI 9.42-2003 Annex B.1.1.
	*/

	unsigned int i, j;
	DIGIT_T m, a, b, z;
	int failed;

	/*	First check for small primes */
	for (i = 0; i < N_SMALL_PRIMES; i++)
	{
		if (w % SMALL_PRIMES[i] == 0)
			return 0;	/* Failed */
	}

	/*	Now do Rabin-Miller  */
	/*	Step 2. Find a and m where w = 1 + (2^a)m
		m is odd and 2^a is largest power of 2 dividing w - 1 */

	m = w - 1;
	for (a = 0; ISEVEN(m); a++)
		m >>= 1;	/* Divide by 2 until m is odd */

	/*
	assert((1 << a) * m + 1 == w);
	*/

	for (i = 0; i < t; i++)
	{
		failed = 1;	/* Assume fail unless passed in loop */
		/* Step 3. Generate a random integer 1 < b < w */
		/* [v2.1] changed to 1 < b < w-1 */
		b = spSimpleRand(2, w - 2);

		/*
		assert(1 < b && b < w-1);
		*/

		/* Step 4. Set j = 0 and z = b^m mod w */
		j = 0;
		spModExp(&z, b, m, w);
		do
		{
			/* Step 5. If j = 0 and z = 1, or if z = w - 1 */
			if ((j == 0 && z == 1) || (z == w - 1))
			{	/* Passes on this loop  - go to Step 9 */
				failed = 0;
				break;
			}

			/* Step 6. If j > 0 and z = 1 */
			if (j > 0 && z == 1)
			{	/* Fails - go to Step 8 */
				failed = 1;
				break;
			}

			/* Step 7. j = j + 1. If j < a set z = z^2 mod w */
			j++;
			if (j < a)
				spModMult(&z, z, z, w);
			/* Loop: if j < a go to Step 5 */
		} while (j < a);

		if (failed)
		{	/* Step 8. Not a prime - stop */
			return 0;
		}
	}	/* Step 9. Go to Step 3 until i >= n */
	/* If got here, probably prime => success */
	return 1;
}
コード例 #3
0
ファイル: t_spExtras.c プロジェクト: SumiTomohiko/Yog
int main(void)
{
	DIGIT_T x, y, g;
	DIGIT_T m, e, n, c, z, t;
	DIGIT_T p, v, u, w, a, q;
	int res, i, ntries;
	DIGIT_T primes32[] = { 5, 17, 65, 99 };
	DIGIT_T primes16[] = { 15, 17, 39 };

	/* Test greatest common divisor (gcd) */
	printf("Test spGcd:\n");
	/* simple one */
	x = 15; y = 27;
	g = spGcd(x, y);
	printf("gcd(%" PRIuBIGD ", %" PRIuBIGD ") = %" PRIuBIGD "\n", x, y, g);
	assert(g == 3);

	/* contrived using small primes */
	x = 53 * 37; y = 53 * 83;
	g = spGcd(x, y);
	printf("gcd(%" PRIuBIGD ", %" PRIuBIGD ") = %" PRIuBIGD "\n", x, y, g);
	assert(g == 53);

	/* contrived using bigger primes */
	x = 0x0345 * 0xfedc; y = 0xfedc * 0x0871;
	g = spGcd(x, y);
	printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = 0x%" PRIxBIGD "\n", x, y, g);
	assert(g == 0xfedc);

	/* Known primes: 2^16-15, 2^32-5 */
	y = 0x10000 - 15;
	x = spSimpleRand(1, y);
	g = spGcd(x, y);
	printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = %" PRIxBIGD "\n", x, y, g);
	assert(g == 1);

	y = 0xffffffff - 5 + 1;
	x = spSimpleRand(1, y);
	g = spGcd(x, y);
	printf("gcd(0x%" PRIxBIGD ", 0x%" PRIxBIGD ") = %" PRIxBIGD "\n", x, y, g);
	assert(g == 1);

	/* Test spModExp */
	printf("Test spModExp:\n");
	/* Verify that (m^e mod n).(z^e mod n) == (m.z)^e mod n 
	   for random m, e, n, z */
	/* Generate some random numbers */
	n = spSimpleRand(MAX_DIGIT / 2, MAX_DIGIT);
	m = spSimpleRand(1, n -1);
	e = spSimpleRand(1, n -1);
	z = spSimpleRand(1, n -1);
	/* Compute c = m^e mod n */
	spModExp(&c, m, e, n);
	printf("c=m^e mod n=%" PRIxBIGD "^%" PRIxBIGD " mod %" PRIxBIGD "=%" PRIxBIGD "\n", m, e, n, c);
	/* Compute x = c.z^e mod n */
	printf("z=%" PRIxBIGD "\n", z);
	spModExp(&t, z, e, n);
	spModMult(&x, c, t, n);
	printf("x = c.z^e mod n =   %" PRIxBIGD "\n", x);
	/* Compute y = (m.z)^e mod n */
	spModMult(&t, m, z, n);
	spModExp(&y, t, e, n);
	printf("y = (m.z)^e mod n = %" PRIxBIGD "\n", x);
	/* Check they are equal */
	assert(x == y);

	/* Test spModInv */
	printf("Test spModInv:\n");
	/* Use identity that (vp-1)^-1 mod p = p-1 
	   for prime p and integer v */
	/* known prime */
	p = 0x10000 - 15;
	/* small multiplier */
	v = spSimpleRand(2, 10);
	u = v * p - 1;
	printf("u = vp-1 = %" PRIuBIGD " * %" PRIuBIGD " - 1 = %" PRIuBIGD "\n", v, p, u);
	/* compute w = u^-1 mod p */
	spModInv(&w, u, p);
	printf("w = u^-1 mod p = %" PRIuBIGD "\n", w);
	/* check wu mod p == 1 */
	spModMult(&c, w, u, p);
	printf("Check 1 == wu mod p = %" PRIuBIGD "\n", c);
	assert(c == 1);
	/* Try mod inversion that should fail */
	/* Set u = pq so that gcd(u, p) != 1 */
	q = 31;
	u = p * q;
	printf("p=%" PRIuBIGD " q=%" PRIuBIGD " pq=%" PRIuBIGD "\n", p, q, u);
	printf("gcd(pq, p) = %" PRIuBIGD " (i.e. not 1)\n", spGcd(u, p));
	res = spModInv(&w, u, p);
	printf("w = (pq)^-1 mod p returns error %d (expected 1)\n", res);
	assert(res != 0);

	/* Test spIsPrime */
	printf("Test spIsPrime:\n");
	/* Find primes just less than 2^32. Ref: Knuth p408 */
	for (n = 0xffffffff, a = 1; a < 100; a++, n--)
	{
		if (spIsPrime(n, 50))
		{
			printf("2^32-%" PRIuBIGD " is prime\n", a);
			assert(is_in_list(a, primes32, NELEMS(primes32)));
		}
	}
	/* And just less than 2^16 */
	for (n = 0xffff, a = 1; a < 50; a++, n--)
	{
		if (spIsPrime(n, 50))
		{
			printf("2^16-%" PRIuBIGD " is prime\n", a);
			assert(is_in_list(a, primes16, NELEMS(primes16)));
		}
	}
	/* Generate a random prime < MAX_DIGIT */
	n = spSimpleRand(0, MAX_DIGIT);
	/* make sure odd */
	n |= 0x01;
	/* expect to find a prime approx every lg(n) numbers, 
	   so for sure within 100 times that */
	ntries = BITS_PER_DIGIT * 100;
	for (i = 0; i < ntries; i++)
	{
		if (spIsPrime(n, 50))
			break;
		n += 2;
	}
	printf("Random prime, n = %" PRIuBIGD " (0x%" PRIxBIGD ")\n", n, n);
	printf("found after %d candidates\n", i+1);
	if (i >= ntries)
		printf("Didn't manage to find a prime in %d tries!\n", ntries);
	else
		assert(spIsPrime(n, 50));

	res = spIsPrime(n, 50);
	printf("spIsPrime(%" PRIuBIGD ") is %s\n", n, (res ? "TRUE" : "FALSE"));

	/* Check using (less accurate) Fermat test (these could fail) */
	w = 2;
	spModExp(&x, w, n-1, n);
	printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
	w = 3;
	spModExp(&x, w, n-1, n);
	printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
	w = 5;
	spModExp(&x, w, n-1, n);
	printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));

	/* Try a known Fermat liar (Carmichael number) */
	n = 561;
	printf("Try n = 561 = 3.11.17 (a `Fermat liar')\n");
	w = 5;
	spModExp(&x, w, n-1, n);
	printf("Fermat test: %" PRIxBIGD "^(n-1) mod n = %" PRIxBIGD " (%s)\n", w, x, (x == 1 ? "PASSED" : "FAILED!"));
	res = spIsPrime(n, 50);
	printf("spIsPrime(%" PRIuBIGD ") is %s\n", n, (res ? "TRUE" : "FALSE"));
	assert(!res);

	return 0;
}