コード例 #1
0
ファイル: dgstrs.c プロジェクト: sourekj/Packages
void
dgstrs(trans_t trans, SuperMatrix *L, SuperMatrix *U, 
       int *perm_r, int *perm_c, SuperMatrix *B, Gstat_t *Gstat, int *info)
{
/*
 * -- SuperLU MT routine (version 1.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * August 15, 1997
 *
 * Purpose
 * =======
 *
 * dgstrs() solves a system of linear equations A*X=B or A'*X=B
 * with A sparse and B dense, using the LU factorization computed by
 * pdgstrf().
 *
 * Arguments
 * =========
 *
 * trans   (input) Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         pdgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         pdgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * perm_r  (input) int*
 *         Row permutation vector of size L->nrow, which defines the
 *         permutation matrix Pr; perm_r[i] = j means row i of A is in
 *         position j in Pr*A.
 *
 * perm_c  (int*) dimension A->ncol
 *	   Column permutation vector, which defines the 
 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
 *         in position j in A*Pc.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * Gstat   (output) Gstat_t*
 *          Record all the statistics about the triangular solves; 
 *          See Gstat_t structure defined in util.h.
 *
 * info    (output) Diagnostics
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *
 */
#if ( MACH==CRAY_PVP )
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif

#ifdef USE_VENDOR_BLAS
    int      incx = 1, incy = 1;
    double   alpha = 1.0, beta = 1.0;
#endif

    register int j, k, jcol, iptr, luptr, ksupno, istart, irow, bptr;
    register int fsupc, nsuper;
    int      i, n, nsupc, nsupr, nrow, nrhs, ldb;
    int      *supno;
    DNformat *Bstore;
    SCPformat *Lstore;
    NCPformat *Ustore;
    double   *Lval, *Uval, *Bmat;
    double   *work, *work_col, *rhs_work, *soln;
    flops_t  solve_ops;
    void dprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    if ( trans != NOTRANS && trans != TRANS ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -3;
    else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -4;
    else if ( ldb < MAX(0, L->nrow) ) *info = -6;
    if ( *info ) {
        i = -(*info);
	xerbla_("dgstrs", &i);
	return;
    }

    n = L->nrow;
    work = doubleCalloc(n * nrhs);
    if ( !work ) ABORT("Malloc fails for local work[].");
    soln = doubleMalloc(n);
    if ( !soln ) ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    Ustore = U->Store;
    Uval = Ustore->nzval;
    supno = Lstore->col_to_sup;
    nsuper = Lstore->nsuper;
    solve_ops = 0;
    
    if ( trans == NOTRANS ) {
	/* Permute right hand sides to form Pr*B */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
	/* Forward solve PLy=Pb. */
/*>>	for (k = 0; k < n; k += nsupc) {
	    ksupno = supno[k];
*/
	for (ksupno = 0; ksupno <= nsuper; ++ksupno) {
	    fsupc = L_FST_SUPC(ksupno);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_END(fsupc) - istart;
	    nsupc = L_LAST_SUPC(ksupno) - fsupc;
	    nrow = nsupr - nsupc;

	    solve_ops += nsupc * (nsupc - 1) * nrhs;
	    solve_ops += 2 * nrow * nsupc * nrhs;
	    
	    if ( nsupc == 1 ) {
		for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		    rhs_work = &Bmat[bptr];
	    	    luptr = L_NZ_START(fsupc);
		    for (iptr=istart+1; iptr < L_SUB_END(fsupc); iptr++){
			irow = L_SUB(iptr);
			++luptr;
                        rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr];
		    }
		}
	    } else {
	    	luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#if ( MACH==CRAY_PVP )
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("N", strlen("N"));
		ftcs3 = _cptofcd("U", strlen("U"));
 		STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
		      &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		SGEMM(ftcs2, ftcs2,  &nrow, &nrhs, &nsupc, &alpha, 
		      &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
		      &beta, &work[0], &n );
#else
 		dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#endif
		for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		    rhs_work = &Bmat[bptr];
		    work_col = &work[j*n];
		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
                        rhs_work[irow] -= work_col[i]; /* Scatter */
                        work_col[i] = 0.0;
			iptr++;
		    }
		}
#else		
		for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		    rhs_work = &Bmat[bptr];
		    dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
		    dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
			     &rhs_work[fsupc], &work[0] );

		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
                        rhs_work[irow] -= work[i];
                        work[i] = 0.0;
			iptr++;
		    }
		}
#endif		    
	    } /* if-else: nsupc == 1 ... */
	} /* for L-solve */

#if ( DEBUGlevel>=2 )
  	printf("After L-solve: y=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/*
	 * Back solve Ux=y.
	 */
/*>>	for (k = n-1; k >= 0; k -= nsupc) {
	    ksupno = supno[k];
*/
	for (ksupno = nsuper; ksupno >= 0; --ksupno) {
	    fsupc = L_FST_SUPC(ksupno);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_END(fsupc) - istart;
	    nsupc = L_LAST_SUPC(ksupno) - fsupc;
	    luptr = L_NZ_START(fsupc);

	    solve_ops += nsupc * (nsupc + 1) * nrhs;

	    /* dense triangular matrix */
	    if ( nsupc == 1 ) {
		rhs_work = &Bmat[0];
		for (j = 0; j < nrhs; j++) {
                    rhs_work[fsupc] /= Lval[luptr];
		    rhs_work += ldb;
		}
	    } else {
#ifdef USE_VENDOR_BLAS
#if ( MACH==CRAY_PVP )
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("U", strlen("U"));
		ftcs3 = _cptofcd("N", strlen("N"));
		STRSM(ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		      &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
		dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else		
		for (j = 0, bptr = fsupc; j < nrhs; j++, bptr += ldb) {
		    dusolve (nsupr, nsupc, &Lval[luptr], &Bmat[bptr]);
		}
#endif		
	    }

	    /* matrix-vector update */
	    for (j = 0, bptr = 0; j < nrhs; ++j, bptr += ldb) {
		rhs_work = &Bmat[bptr];
		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
                    solve_ops += 2*(U_NZ_END(jcol) - U_NZ_START(jcol));
		    for (i = U_NZ_START(jcol); i < U_NZ_END(jcol); i++ ){
			irow = U_SUB(i);
                        rhs_work[irow] -= rhs_work[jcol] * Uval[i];
		    }
		}
	    }
	    
	} /* for U-solve */

#if ( DEBUGlevel>=2 )
  	printf("After U-solve: x=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/* Compute the final solution X <= Pc*X. */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
    } else { /* Solve A'*X=B */
	/* Permute right hand sides to form Pc'*B. */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
        for (k = 0; k < nrhs; ++k) {

            /* Multiply by inv(U'). */
            sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], info);

            /* Multiply by inv(L'). */
            sp_dtrsv("L", "T", "U", L, U, &Bmat[k*ldb], info);

        }
	/* Compute the final solution X <= Pr'*X (=inv(Pr)*X) */
	for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	    rhs_work = &Bmat[bptr];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

    } /* if-else trans */

    Gstat->ops[TRISOLVE] = solve_ops;
    SUPERLU_FREE(work);
    SUPERLU_FREE(soln);
}
コード例 #2
0
ファイル: dgscon.c プロジェクト: r35krag0th/pysparse
void
dgscon(char *norm, SuperMatrix *L, SuperMatrix *U,
       double anorm, double *rcond, int *info)
{
/*
    Purpose   
    =======   

    DGSCON estimates the reciprocal of the condition number of a general 
    real matrix A, in either the 1-norm or the infinity-norm, using   
    the LU factorization computed by DGETRF.   

    An estimate is obtained for norm(inv(A)), and the reciprocal of the   
    condition number is computed as   
       RCOND = 1 / ( norm(A) * norm(inv(A)) ).   

    See supermatrix.h for the definition of 'SuperMatrix' structure.
 
    Arguments   
    =========   

    NORM    (input) char*
            Specifies whether the 1-norm condition number or the   
            infinity-norm condition number is required:   
            = '1' or 'O':  1-norm;   
            = 'I':         Infinity-norm.
	    
    L       (input) SuperMatrix*
            The factor L from the factorization Pr*A*Pc=L*U as computed by
            dgstrf(). Use compressed row subscripts storage for supernodes,
            i.e., L has types: Stype = SC, Dtype = D_, Mtype = TRLU.
 
    U       (input) SuperMatrix*
            The factor U from the factorization Pr*A*Pc=L*U as computed by
            dgstrf(). Use column-wise storage scheme, i.e., U has types:
            Stype = NC, Dtype = D_, Mtype = TRU.
	    
    ANORM   (input) double
            If NORM = '1' or 'O', the 1-norm of the original matrix A.   
            If NORM = 'I', the infinity-norm of the original matrix A.
	    
    RCOND   (output) double*
            The reciprocal of the condition number of the matrix A,   
            computed as RCOND = 1/(norm(A) * norm(inv(A))).
	    
    INFO    (output) int*
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    ===================================================================== 
*/

    /* Local variables */
    int    kase, kase1, onenrm, i;
    double ainvnm;
    double *work;
    int    *iwork;
    extern int drscl_(int *, double *, double *, int *);

    extern int dlacon_(int *, double *, double *, int *, double *, int *);

    
    /* Test the input parameters. */
    *info = 0;
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    if (! onenrm && ! lsame_(norm, "I")) *info = -1;
    else if (L->nrow < 0 || L->nrow != L->ncol ||
             L->Stype != SC || L->Dtype != D_ || L->Mtype != TRLU)
	 *info = -2;
    else if (U->nrow < 0 || U->nrow != U->ncol ||
             U->Stype != NC || U->Dtype != D_ || U->Mtype != TRU) 
	*info = -3;
    if (*info != 0) {
	i = -(*info);
	xerbla_("dgscon", &i);
	return;
    }

    /* Quick return if possible */
    *rcond = 0.;
    if ( L->nrow == 0 || U->nrow == 0) {
	*rcond = 1.;
	return;
    }

    work = doubleCalloc( 3*L->nrow );
    iwork = intMalloc( L->nrow );


    if ( !work || !iwork )
	ABORT("Malloc fails for work arrays in dgscon.");
    
    /* Estimate the norm of inv(A). */
    ainvnm = 0.;
    if ( onenrm ) kase1 = 1;
    else kase1 = 2;
    kase = 0;

    do {
	dlacon_(&L->nrow, &work[L->nrow], &work[0], &iwork[0], &ainvnm, &kase);

	if (kase == 0) break;

	if (kase == kase1) {
	    /* Multiply by inv(L). */
	    sp_dtrsv("Lower", "No transpose", "Unit", L, U, &work[0], info);

	    /* Multiply by inv(U). */
	    sp_dtrsv("Upper", "No transpose", "Non-unit", L, U, &work[0],info);
	    
	} else {

	    /* Multiply by inv(U'). */
	    sp_dtrsv("Upper", "Transpose", "Non-unit", L, U, &work[0], info);

	    /* Multiply by inv(L'). */
	    sp_dtrsv("Lower", "Transpose", "Unit", L, U, &work[0], info);
	    
	}

    } while ( kase != 0 );

    /* Compute the estimate of the reciprocal condition number. */
    if (ainvnm != 0.) *rcond = (1. / ainvnm) / anorm;

    SUPERLU_FREE (work);
    SUPERLU_FREE (iwork);
    return;

} /* dgscon */
コード例 #3
0
ファイル: dgscon.c プロジェクト: drhansj/polymec-dev
void
dgscon(char *norm, SuperMatrix *L, SuperMatrix *U,
       double anorm, double *rcond, SuperLUStat_t *stat, int *info)
{


    /* Local variables */
    int    kase, kase1, onenrm, i;
    double ainvnm;
    double *work;
    int    *iwork;
    int    isave[3];
    extern int drscl_(int *, double *, double *, int *);

    extern int dlacon2_(int *, double *, double *, int *, double *, int *, int []);

    
    /* Test the input parameters. */
    *info = 0;
    onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
    if (! onenrm && ! lsame_(norm, "I")) *info = -1;
    else if (L->nrow < 0 || L->nrow != L->ncol ||
             L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU)
	 *info = -2;
    else if (U->nrow < 0 || U->nrow != U->ncol ||
             U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU) 
	*info = -3;
    if (*info != 0) {
	i = -(*info);
	input_error("dgscon", &i);
	return;
    }

    /* Quick return if possible */
    *rcond = 0.;
    if ( L->nrow == 0 || U->nrow == 0) {
	*rcond = 1.;
	return;
    }

    work = doubleCalloc( 3*L->nrow );
    iwork = intMalloc( L->nrow );


    if ( !work || !iwork )
	ABORT("Malloc fails for work arrays in dgscon.");
    
    /* Estimate the norm of inv(A). */
    ainvnm = 0.;
    if ( onenrm ) kase1 = 1;
    else kase1 = 2;
    kase = 0;

    do {
	dlacon2_(&L->nrow, &work[L->nrow], &work[0], &iwork[0], &ainvnm, &kase, isave);

	if (kase == 0) break;

	if (kase == kase1) {
	    /* Multiply by inv(L). */
	    sp_dtrsv("L", "No trans", "Unit", L, U, &work[0], stat, info);

	    /* Multiply by inv(U). */
	    sp_dtrsv("U", "No trans", "Non-unit", L, U, &work[0], stat, info);
	    
	} else {

	    /* Multiply by inv(U'). */
	    sp_dtrsv("U", "Transpose", "Non-unit", L, U, &work[0], stat, info);

	    /* Multiply by inv(L'). */
	    sp_dtrsv("L", "Transpose", "Unit", L, U, &work[0], stat, info);
	    
	}

    } while ( kase != 0 );

    /* Compute the estimate of the reciprocal condition number. */
    if (ainvnm != 0.) *rcond = (1. / ainvnm) / anorm;

    SUPERLU_FREE (work);
    SUPERLU_FREE (iwork);
    return;

} /* dgscon */
コード例 #4
0
ファイル: dgstrsU.c プロジェクト: innovatelogic/ilogic-vm
/*! \brief
 *
 * <pre>
 * Purpose
 * =======
 *
 * dgstrsU only performs the U-solve using the LU factorization computed
 * by DGSTRF.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * trans   (input) trans_t
 *          Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *          = CONJ:    A**H * X = B  (Conjugate transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * perm_c  (input) int*, dimension (L->ncol)
 *	   Column permutation vector, which defines the 
 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
 *         in position j in A*Pc.
 *
 * perm_r  (input) int*, dimension (L->nrow)
 *         Row permutation vector, which defines the permutation matrix Pr; 
 *         perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * stat     (output) SuperLUStat_t*
 *          Record the statistics on runtime and floating-point operation count.
 *          See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 * </pre>
 */
void
dgstrsU(trans_t trans, SuperMatrix *L, SuperMatrix *U,
        int *perm_c, int *perm_r, SuperMatrix *B,
        SuperLUStat_t *stat, int *info)
{
#ifdef _CRAY
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif

#ifdef USE_VENDOR_BLAS
    double   alpha = 1.0, beta = 1.0;
    double   *work_col;
#endif
    DNformat *Bstore;
    double   *Bmat;
    SCformat *Lstore;
    NCformat *Ustore;
    double   *Lval, *Uval;
    int      fsupc, nsupr, nsupc, luptr, istart, irow;
    int      i, j, k, jcol, n, ldb, nrhs;
    double   *rhs_work, *soln;
    flops_t  solve_ops;
    void dprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
	*info = -2;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
	      U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU )
	*info = -3;
    else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -6;
    if ( *info ) {
	i = -(*info);
	xerbla_("dgstrs", &i);
	return;
    }

    n = L->nrow;
    soln = doubleMalloc(n);
    if ( !soln ) ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    Ustore = U->Store;
    Uval = Ustore->nzval;
    solve_ops = 0;
    
    if ( trans == NOTRANS ) {
	/*
	 * Back solve Ux=y.
	 */
	for (k = Lstore->nsuper; k >= 0; k--) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    luptr = L_NZ_START(fsupc);

	    solve_ops += nsupc * (nsupc + 1) * nrhs;

	    if ( nsupc == 1 ) {
		rhs_work = &Bmat[0];
		for (j = 0; j < nrhs; j++) {
		    rhs_work[fsupc] /= Lval[luptr];
		    rhs_work += ldb;
		}
	    } else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("U", strlen("U"));
		ftcs3 = _cptofcd("N", strlen("N"));
		STRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
		dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#endif
#else		
		for (j = 0; j < nrhs; j++)
		    dusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
#endif		
	    }

	    for (j = 0; j < nrhs; ++j) {
		rhs_work = &Bmat[j*ldb];
		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
		    solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
		    for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
			irow = U_SUB(i);
			rhs_work[irow] -= rhs_work[jcol] * Uval[i];
		    }
		}
	    }
	    
	} /* for U-solve */

#ifdef DEBUG
  	printf("After U-solve: x=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/* Compute the final solution X := Pc*X. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
        stat->ops[SOLVE] = solve_ops;

    } else { /* Solve U'x = b */
	/* Permute right hand sides to form Pc'*B. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

	for (k = 0; k < nrhs; ++k) {
	    /* Multiply by inv(U'). */
	    sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
	}

    }

    SUPERLU_FREE(soln);
}
コード例 #5
0
ファイル: dgstrs.c プロジェクト: Chang-Liu-0520/hypre
void
dgstrs (trans_t trans, SuperMatrix *L, SuperMatrix *U,
        int *perm_c, int *perm_r, SuperMatrix *B,
        SuperLUStat_t *stat, int *info)
{
/*
 * Purpose
 * =======
 *
 * DGSTRS solves a system of linear equations A*X=B or A'*X=B
 * with A sparse and B dense, using the LU factorization computed by
 * DGSTRF.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * trans   (input) trans_t
 *          Specifies the form of the system of equations:
 *          = NOTRANS: A * X = B  (No transpose)
 *          = TRANS:   A'* X = B  (Transpose)
 *          = CONJ:    A**H * X = B  (Conjugate transpose)
 *
 * L       (input) SuperMatrix*
 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use compressed row subscripts storage for supernodes,
 *         i.e., L has types: Stype = SLU_SC, Dtype = SLU_D, Mtype = SLU_TRLU.
 *
 * U       (input) SuperMatrix*
 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
 *         dgstrf(). Use column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_D, Mtype = SLU_TRU.
 *
 * perm_c  (input) int*, dimension (L->ncol)
 *	   Column permutation vector, which defines the 
 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
 *         in position j in A*Pc.
 *
 * perm_r  (input) int*, dimension (L->nrow)
 *         Row permutation vector, which defines the permutation matrix Pr; 
 *         perm_r[i] = j means row i of A is in position j in Pr*A.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_D, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * stat     (output) SuperLUStat_t*
 *          Record the statistics on runtime and floating-point operation count.
 *          See util.h for the definition of 'SuperLUStat_t'.
 *
 * info    (output) int*
 * 	   = 0: successful exit
 *	   < 0: if info = -i, the i-th argument had an illegal value
 *
 */
#ifdef _CRAY
    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
#endif
#if 0
    int      incx = 1, incy = 1;
#endif
#ifdef USE_VENDOR_BLAS
    double   alpha = 1.0, beta = 1.0;
    double   *work_col;
#endif
    DNformat *Bstore;
    double   *Bmat;
    SCformat *Lstore;
    NCformat *Ustore;
    double   *Lval, *Uval;
    int      fsupc, nrow, nsupr, nsupc, luptr, istart, irow;
    int      i, j, k, iptr, jcol, n, ldb, nrhs;
    double   *work, *rhs_work, *soln;
    flops_t  solve_ops;
    void dprint_soln();

    /* Test input parameters ... */
    *info = 0;
    Bstore = B->Store;
    ldb = Bstore->lda;
    nrhs = B->ncol;
    if ( trans != NOTRANS && trans != TRANS && trans != CONJ ) *info = -1;
    else if ( L->nrow != L->ncol || L->nrow < 0 ||
	      L->Stype != SLU_SC || L->Dtype != SLU_D || L->Mtype != SLU_TRLU )
	*info = -2;
    else if ( U->nrow != U->ncol || U->nrow < 0 ||
	      U->Stype != SLU_NC || U->Dtype != SLU_D || U->Mtype != SLU_TRU )
	*info = -3;
    else if ( ldb < SUPERLU_MAX(0, L->nrow) ||
	      B->Stype != SLU_DN || B->Dtype != SLU_D || B->Mtype != SLU_GE )
	*info = -6;
    if ( *info ) {
	i = -(*info);
	superlu_xerbla("dgstrs", &i);
	return;
    }

    n = L->nrow;
    work = doubleCalloc(n * nrhs);
    if ( !work ) ABORT("Malloc fails for local work[].");
    soln = doubleMalloc(n);
    if ( !soln ) ABORT("Malloc fails for local soln[].");

    Bmat = Bstore->nzval;
    Lstore = L->Store;
    Lval = Lstore->nzval;
    Ustore = U->Store;
    Uval = Ustore->nzval;
    solve_ops = 0;
    
    if ( trans == NOTRANS ) {
	/* Permute right hand sides to form Pr*B */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
	/* Forward solve PLy=Pb. */
	for (k = 0; k <= Lstore->nsuper; k++) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    nrow = nsupr - nsupc;

	    solve_ops += nsupc * (nsupc - 1) * nrhs;
	    solve_ops += 2 * nrow * nsupc * nrhs;
	    
	    if ( nsupc == 1 ) {
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
	    	    luptr = L_NZ_START(fsupc);
		    for (iptr=istart+1; iptr < L_SUB_START(fsupc+1); iptr++){
			irow = L_SUB(iptr);
			++luptr;
			rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr];
		    }
		}
	    } else {
	    	luptr = L_NZ_START(fsupc);
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("N", strlen("N"));
		ftcs3 = _cptofcd("U", strlen("U"));
		STRSM( ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		SGEMM( ftcs2, ftcs2, &nrow, &nrhs, &nsupc, &alpha, 
			&Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			&beta, &work[0], &n );
#else
                hypre_F90_NAME_BLAS(dtrsm,DTRSM)("L","L","N","U",&nsupc,
                       &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], 
                       &ldb);
                hypre_F90_NAME_BLAS(dgemm,DGEMM)("N","N",&nrow,&nrhs,&nsupc, 
                       &alpha, &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb,
                       &beta, &work[0], &n );
#endif
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
		    work_col = &work[j*n];
		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
			rhs_work[irow] -= work_col[i]; /* Scatter */
			work_col[i] = 0.0;
			iptr++;
		    }
		}
#else		
		for (j = 0; j < nrhs; j++) {
		    rhs_work = &Bmat[j*ldb];
		    sludlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
		    sludmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
			    &rhs_work[fsupc], &work[0] );

		    iptr = istart + nsupc;
		    for (i = 0; i < nrow; i++) {
			irow = L_SUB(iptr);
			rhs_work[irow] -= work[i];
			work[i] = 0.0;
			iptr++;
		    }
		}
#endif		    
	    } /* else ... */
	} /* for L-solve */

#ifdef DEBUG
  	printf("After L-solve: y=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/*
	 * Back solve Ux=y.
	 */
	for (k = Lstore->nsuper; k >= 0; k--) {
	    fsupc = L_FST_SUPC(k);
	    istart = L_SUB_START(fsupc);
	    nsupr = L_SUB_START(fsupc+1) - istart;
	    nsupc = L_FST_SUPC(k+1) - fsupc;
	    luptr = L_NZ_START(fsupc);

	    solve_ops += nsupc * (nsupc + 1) * nrhs;

	    if ( nsupc == 1 ) {
		rhs_work = &Bmat[0];
		for (j = 0; j < nrhs; j++) {
		    rhs_work[fsupc] /= Lval[luptr];
		    rhs_work += ldb;
		}
	    } else {
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
		ftcs1 = _cptofcd("L", strlen("L"));
		ftcs2 = _cptofcd("U", strlen("U"));
		ftcs3 = _cptofcd("N", strlen("N"));
		STRSM( ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
#else
                hypre_F90_NAME_BLAS(dtrsm,DTRSM)("L","U","N","N", &nsupc, 
                       &nrhs, &alpha, &Lval[luptr], &nsupr, &Bmat[fsupc], 
                       &ldb);
#endif
#else		
		for (j = 0; j < nrhs; j++)
		    sludusolve ( nsupr, nsupc, &Lval[luptr], &Bmat[fsupc+j*ldb] );
#endif		
	    }

	    for (j = 0; j < nrhs; ++j) {
		rhs_work = &Bmat[j*ldb];
		for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
		    solve_ops += 2*(U_NZ_START(jcol+1) - U_NZ_START(jcol));
		    for (i = U_NZ_START(jcol); i < U_NZ_START(jcol+1); i++ ){
			irow = U_SUB(i);
			rhs_work[irow] -= rhs_work[jcol] * Uval[i];
		    }
		}
	    }
	    
	} /* for U-solve */

#ifdef DEBUG
  	printf("After U-solve: x=\n");
	dprint_soln(n, nrhs, Bmat);
#endif

	/* Compute the final solution X := Pc*X. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}
	
        stat->ops[SOLVE] = solve_ops;

    } else { /* Solve A'*X=B or CONJ(A)*X=B */
	/* Permute right hand sides to form Pc'*B. */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

	stat->ops[SOLVE] = 0;
	for (k = 0; k < nrhs; ++k) {
	    
	    /* Multiply by inv(U'). */
	    sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], stat, info);
	    
	    /* Multiply by inv(L'). */
	    sp_dtrsv("L", "T", "U", L, U, &Bmat[k*ldb], stat, info);
	    
	}
	/* Compute the final solution X := Pr'*X (=inv(Pr)*X) */
	for (i = 0; i < nrhs; i++) {
	    rhs_work = &Bmat[i*ldb];
	    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
	    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	}

    }

    SUPERLU_FREE(work);
    SUPERLU_FREE(soln);
}