コード例 #1
0
ファイル: bodmat.c プロジェクト: TomCrowley-ME/me_sim_test
/* $Procedure      BODMAT ( Return transformation matrix for a body ) */
/* Subroutine */ int bodmat_(integer *body, doublereal *et, doublereal *tipm)
{
    /* Initialized data */

    static logical first = TRUE_;
    static logical found = FALSE_;

    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1;

    /* Builtin functions */
    integer s_rnge(char *, integer, char *, integer);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer i_dnnt(doublereal *);
    double sin(doublereal), cos(doublereal), d_mod(doublereal *, doublereal *)
	    ;

    /* Local variables */
    integer cent;
    char item[32];
    doublereal j2ref[9]	/* was [3][3] */;
    extern integer zzbodbry_(integer *);
    extern /* Subroutine */ int eul2m_(doublereal *, doublereal *, doublereal 
	    *, integer *, integer *, integer *, doublereal *);
    doublereal d__;
    integer i__, j;
    doublereal dcoef[3], t, w;
    extern /* Subroutine */ int etcal_(doublereal *, char *, ftnlen);
    integer refid;
    doublereal delta;
    extern /* Subroutine */ int chkin_(char *, ftnlen);
    doublereal epoch, rcoef[3], tcoef[200]	/* was [2][100] */, wcoef[3];
    extern /* Subroutine */ int errch_(char *, char *, ftnlen, ftnlen);
    doublereal theta;
    extern /* Subroutine */ int moved_(doublereal *, integer *, doublereal *),
	     repmi_(char *, char *, integer *, char *, ftnlen, ftnlen, ftnlen)
	    , errdp_(char *, doublereal *, ftnlen);
    doublereal costh[100];
    extern doublereal vdotg_(doublereal *, doublereal *, integer *);
    char dtype[1];
    doublereal sinth[100], tsipm[36]	/* was [6][6] */;
    extern doublereal twopi_(void);
    static integer j2code;
    doublereal ac[100], dc[100];
    integer na, nd;
    doublereal ra, wc[100];
    extern /* Subroutine */ int cleard_(integer *, doublereal *);
    extern logical bodfnd_(integer *, char *, ftnlen);
    extern /* Subroutine */ int bodvcd_(integer *, char *, integer *, integer 
	    *, doublereal *, ftnlen);
    integer frcode;
    extern doublereal halfpi_(void);
    extern /* Subroutine */ int ccifrm_(integer *, integer *, integer *, char 
	    *, integer *, logical *, ftnlen);
    integer nw;
    doublereal conepc, conref;
    extern /* Subroutine */ int pckmat_(integer *, doublereal *, integer *, 
	    doublereal *, logical *);
    integer ntheta;
    extern /* Subroutine */ int gdpool_(char *, integer *, integer *, integer 
	    *, doublereal *, logical *, ftnlen);
    char fixfrm[32], errmsg[1840];
    extern /* Subroutine */ int irfnum_(char *, integer *, ftnlen), dtpool_(
	    char *, logical *, integer *, char *, ftnlen, ftnlen);
    doublereal tmpmat[9]	/* was [3][3] */;
    extern /* Subroutine */ int setmsg_(char *, ftnlen), suffix_(char *, 
	    integer *, char *, ftnlen, ftnlen), errint_(char *, integer *, 
	    ftnlen), sigerr_(char *, ftnlen), chkout_(char *, ftnlen), 
	    irfrot_(integer *, integer *, doublereal *);
    extern logical return_(void);
    char timstr[35];
    extern doublereal j2000_(void);
    doublereal dec;
    integer dim, ref;
    doublereal phi;
    extern doublereal rpd_(void), spd_(void);
    extern /* Subroutine */ int mxm_(doublereal *, doublereal *, doublereal *)
	    ;

/* $ Abstract */

/*     Return the J2000 to body Equator and Prime Meridian coordinate */
/*     transformation matrix for a specified body. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     PCK */
/*     NAIF_IDS */
/*     TIME */

/* $ Keywords */

/*     CONSTANTS */

/* $ Declarations */
/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */


/*     Include File:  SPICELIB Error Handling Parameters */

/*        errhnd.inc  Version 2    18-JUN-1997 (WLT) */

/*           The size of the long error message was */
/*           reduced from 25*80 to 23*80 so that it */
/*           will be accepted by the Microsoft Power Station */
/*           FORTRAN compiler which has an upper bound */
/*           of 1900 for the length of a character string. */

/*        errhnd.inc  Version 1    29-JUL-1997 (NJB) */



/*     Maximum length of the long error message: */


/*     Maximum length of the short error message: */


/*     End Include File:  SPICELIB Error Handling Parameters */

/* $ Abstract */

/*     The parameters below form an enumerated list of the recognized */
/*     frame types.  They are: INERTL, PCK, CK, TK, DYN.  The meanings */
/*     are outlined below. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Parameters */

/*     INERTL      an inertial frame that is listed in the routine */
/*                 CHGIRF and that requires no external file to */
/*                 compute the transformation from or to any other */
/*                 inertial frame. */

/*     PCK         is a frame that is specified relative to some */
/*                 INERTL frame and that has an IAU model that */
/*                 may be retrieved from the PCK system via a call */
/*                 to the routine TISBOD. */

/*     CK          is a frame defined by a C-kernel. */

/*     TK          is a "text kernel" frame.  These frames are offset */
/*                 from their associated "relative" frames by a */
/*                 constant rotation. */

/*     DYN         is a "dynamic" frame.  These currently are */
/*                 parameterized, built-in frames where the full frame */
/*                 definition depends on parameters supplied via a */
/*                 frame kernel. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */
/*     W.L. Taber      (JPL) */

/* $ Literature_References */

/*     None. */

/* $ Version */

/* -    SPICELIB Version 3.0.0, 28-MAY-2004 (NJB) */

/*       The parameter DYN was added to support the dynamic frame class. */

/* -    SPICELIB Version 2.0.0, 12-DEC-1996 (WLT) */

/*        Various unused frames types were removed and the */
/*        frame time TK was added. */

/* -    SPICELIB Version 1.0.0, 10-DEC-1995 (WLT) */

/* -& */
/* $ Brief_I/O */

/*     VARIABLE  I/O  DESCRIPTION */
/*     --------  ---  -------------------------------------------------- */
/*     BODY       I   ID code of body. */
/*     ET         I   Epoch of transformation. */
/*     TIPM       O   Transformation from Inertial to PM for BODY at ET. */

/* $ Detailed_Input */

/*     BODY        is the integer ID code of the body for which the */
/*                 transformation is requested. Bodies are numbered */
/*                 according to the standard NAIF numbering scheme. */

/*     ET          is the epoch at which the transformation is */
/*                 requested. (This is typically the epoch of */
/*                 observation minus the one-way light time from */
/*                 the observer to the body at the epoch of */
/*                 observation.) */

/* $ Detailed_Output */

/*     TIPM        is the transformation matrix from Inertial to body */
/*                 Equator and Prime Meridian.  The X axis of the PM */
/*                 system is directed to the intersection of the */
/*                 equator and prime meridian. The Z axis points north. */

/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     1) If data required to define the body-fixed frame associated */
/*        with BODY are not found in the binary PCK system or the kernel */
/*        pool, the error SPICE(FRAMEDATANOTFOUND) is signaled. In */
/*        the case of IAU style body-fixed frames, the absence of */
/*        prime meridian polynomial data (which are required) is used */
/*        as an indicator of missing data. */

/*     2) If the test for exception (1) passes, but in fact requested */
/*        data are not available in the kernel pool, the error will be */
/*        signaled by routines in the call tree of this routine. */

/*     3) If the kernel pool does not contain all of the data required */
/*        to define the number of nutation precession angles */
/*        corresponding to the available nutation precession */
/*        coefficients, the error SPICE(INSUFFICIENTANGLES) is */
/*        signaled. */

/*     4) If the reference frame REF is not recognized, a routine */
/*        called by BODMAT will diagnose the condition and invoke the */
/*        SPICE error handling system. */

/*     5) If the specified body code BODY is not recognized, the */
/*        error is diagnosed by a routine called by BODMAT. */

/* $ Files */

/*     None. */

/* $ Particulars */

/*     This routine is related to the more general routine TIPBOD */
/*     which returns a matrix that transforms vectors from a */
/*     specified inertial reference frame to body equator and */
/*     prime meridian coordinates.  TIPBOD accepts an input argument */
/*     REF that allows the caller to specify an inertial reference */
/*     frame. */

/*     The transformation represented by BODMAT's output argument TIPM */
/*     is defined as follows: */

/*        TIPM = [W] [DELTA] [PHI] */
/*                 3        1     3 */

/*     If there exists high-precision binary PCK kernel information */
/*     for the body at the requested time, these angles, W, DELTA */
/*     and PHI are computed directly from that file.  The most */
/*     recently loaded binary PCK file has first priority followed */
/*     by previously loaded binary PCK files in backward time order. */
/*     If no binary PCK file has been loaded, the text P_constants */
/*     kernel file is used. */

/*     If there is only text PCK kernel information, it is */
/*     expressed in terms of RA, DEC and W (same W as above), where */

/*        RA    = PHI - HALFPI() */
/*        DEC   = HALFPI() - DELTA */

/*     RA, DEC, and W are defined as follows in the text PCK file: */

/*           RA  = RA0  + RA1*T  + RA2*T*T   + a  sin theta */
/*                                              i          i */

/*           DEC = DEC0 + DEC1*T + DEC2*T*T  + d  cos theta */
/*                                              i          i */

/*           W   = W0   + W1*d   + W2*d*d    + w  sin theta */
/*                                              i          i */

/*     where: */

/*           d = days past J2000. */

/*           T = Julian centuries past J2000. */

/*           a , d , and w  arrays apply to satellites only. */
/*            i   i       i */

/*           theta  = THETA0 * THETA1*T are specific to each planet. */
/*                i */

/*     These angles -- typically nodal rates -- vary in number and */
/*     definition from one planetary system to the next. */

/* $ Examples */

/*     In the following code fragment, BODMAT is used to rotate */
/*     the position vector (POS) from a target body (BODY) to a */
/*     spacecraft from inertial coordinates to body-fixed coordinates */
/*     at a specific epoch (ET), in order to compute the planetocentric */
/*     longitude (PCLONG) of the spacecraft. */

/*        CALL BODMAT ( BODY, ET, TIPM ) */
/*        CALL MXV    ( TIPM, POS, POS ) */
/*        CALL RECLAT ( POS, RADIUS, PCLONG, LAT ) */

/*     To compute the equivalent planetographic longitude (PGLONG), */
/*     it is necessary to know the direction of rotation of the target */
/*     body, as shown below. */

/*        CALL BODVCD ( BODY, 'PM', 3, DIM, VALUES ) */

/*        IF ( VALUES(2) .GT. 0.D0 ) THEN */
/*           PGLONG = PCLONG */
/*        ELSE */
/*           PGLONG = TWOPI() - PCLONG */
/*        END IF */

/*     Note that the items necessary to compute the transformation */
/*     TIPM must have been loaded into the kernel pool (by one or more */
/*     previous calls to FURNSH). */

/* $ Restrictions */

/*     None. */

/* $ Literature_References */

/*     1)  Refer to the NAIF_IDS required reading file for a complete */
/*         list of the NAIF integer ID codes for bodies. */

/* $ Author_and_Institution */

/*     N.J. Bachman    (JPL) */
/*     W.L. Taber      (JPL) */
/*     I.M. Underwood  (JPL) */
/*     K.S. Zukor      (JPL) */

/* $ Version */

/* -    SPICELIB Version 4.1.1, 01-FEB-2008 (NJB) */

/*        The routine was updated to improve the error messages created */
/*        when required PCK data are not found. Now in most cases the */
/*        messages are created locally rather than by the kernel pool */
/*        access routines. In particular missing binary PCK data will */
/*        be indicated with a reasonable error message. */

/* -    SPICELIB Version 4.1.0, 25-AUG-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in MXM call. */

/*         Calls to ZZBODVCD have been replaced with calls to */
/*         BODVCD. */

/* -     SPICELIB Version 4.0.0, 12-FEB-2004 (NJB) */

/*         Code has been updated to support satellite ID codes in the */
/*         range 10000 to 99999 and to allow nutation precession angles */
/*         to be associated with any object. */

/*         Implementation changes were made to improve robustness */
/*         of the code. */

/* -     SPICELIB Version 3.2.0, 22-MAR-1995 (KSZ) */

/*        Gets TSIPM matrix from PCKMAT (instead of Euler angles */
/*        from PCKEUL.) */

/* -     SPICELIB Version 3.0.0, 10-MAR-1994 (KSZ) */

/*        Ability to get Euler angles from binary PCK file added. */
/*        This uses the new routine PCKEUL. */

/* -     SPICELIB Version 2.0.1, 10-MAR-1992 (WLT) */

/*         Comment section for permuted index source lines was added */
/*         following the header. */

/* -     SPICELIB Version 2.0.0, 04-SEP-1991 (NJB) */

/*         Updated to handle P_constants referenced to different epochs */
/*         and inertial reference frames. */

/*         The header was updated to specify that the inertial reference */
/*         frame used by BODMAT is restricted to be J2000. */

/* -    SPICELIB Version 1.0.0, 31-JAN-1990 (WLT) (IMU) */

/* -& */
/* $ Index_Entries */

/*     fetch transformation matrix for a body */
/*     transformation from j2000 position to bodyfixed */
/*     transformation from j2000 to bodyfixed coordinates */

/* -& */
/* $ Revisions */

/* -    SPICELIB Version 4.1.0, 25-AUG-2005 (NJB) */

/*        Updated to remove non-standard use of duplicate arguments */
/*        in MXM call. */

/*         Calls to ZZBODVCD have been replaced with calls to */
/*         BODVCD. */

/* -     SPICELIB Version 4.0.0, 12-FEB-2004 (NJB) */

/*         Code has been updated to support satellite ID codes in the */
/*         range 10000 to 99999 and to allow nutation precession angles */
/*         to be associated with any object. */

/*         Calls to deprecated kernel pool access routine RTPOOL */
/*         were replaced by calls to GDPOOL. */

/*         Calls to BODVAR have been replaced with calls to */
/*         ZZBODVCD. */

/* -     SPICELIB Version 3.2.0, 22-MAR-1995 (KSZ) */

/*        BODMAT now get the TSIPM matrix from PCKMAT, and */
/*        unpacks TIPM from it.  Also the calculated but unused */
/*        variable LAMBDA was removed. */

/* -     SPICELIB Version 3.0.0, 10-MAR-1994 (KSZ) */

/*        BODMAT now uses new software to check for the */
/*        existence of binary PCK files, search the for */
/*        data corresponding to the requested body and time, */
/*        and return the appropriate Euler angles, using the */
/*        new routine PCKEUL.  Otherwise the code calculates */
/*        the Euler angles from the P_constants kernel file. */

/* -     SPICELIB Version 2.0.0, 04-SEP-1991 (NJB) */

/*         Updated to handle P_constants referenced to different epochs */
/*         and inertial reference frames. */

/*         The header was updated to specify that the inertial reference */
/*         frame used by BODMAT is restricted to be J2000. */

/*         BODMAT now checks the kernel pool for presence of the */
/*         variables */

/*            BODY#_CONSTANTS_REF_FRAME */

/*         and */

/*            BODY#_CONSTANTS_JED_EPOCH */

/*         where # is the NAIF integer code of the barycenter of a */
/*         planetary system or of a body other than a planet or */
/*         satellite.  If either or both of these variables are */
/*         present, the P_constants for BODY are presumed to be */
/*         referenced to the specified inertial frame or epoch. */
/*         If the epoch of the constants is not J2000, the input */
/*         time ET is converted to seconds past the reference epoch. */
/*         If the frame of the constants is not J2000, the rotation from */
/*         the P_constants' frame to body-fixed coordinates is */
/*         transformed to the rotation from J2000 coordinates to */
/*         body-fixed coordinates. */

/*         For efficiency reasons, this routine now duplicates much */
/*         of the code of BODEUL so that it doesn't have to call BODEUL. */
/*         In some cases, BODEUL must covert Euler angles to a matrix, */
/*         rotate the matrix, and convert the result back to Euler */
/*         angles.  If this routine called BODEUL, then in such cases */
/*         this routine would convert the transformed angles back to */
/*         a matrix.  That would be a bit much.... */


/* -    Beta Version 1.1.0, 16-FEB-1989 (IMU) (NJB) */

/*        Examples section completed.  Declaration of unused variable */
/*        FOUND removed. */

/* -& */

/*     SPICELIB functions */


/*     Local parameters */


/*     Local variables */


/*     Saved variables */


/*     Initial values */


/*     Standard SPICE Error handling. */

    if (return_()) {
	return 0;
    } else {
	chkin_("BODMAT", (ftnlen)6);
    }

/*     Get the code for the J2000 frame, if we don't have it yet. */

    if (first) {
	irfnum_("J2000", &j2code, (ftnlen)5);
	first = FALSE_;
    }

/*     Get Euler angles from high precision data file. */

    pckmat_(body, et, &ref, tsipm, &found);
    if (found) {
	for (i__ = 1; i__ <= 3; ++i__) {
	    for (j = 1; j <= 3; ++j) {
		tipm[(i__1 = i__ + j * 3 - 4) < 9 && 0 <= i__1 ? i__1 : 
			s_rnge("tipm", i__1, "bodmat_", (ftnlen)485)] = tsipm[
			(i__2 = i__ + j * 6 - 7) < 36 && 0 <= i__2 ? i__2 : 
			s_rnge("tsipm", i__2, "bodmat_", (ftnlen)485)];
	    }
	}
    } else {

/*        The data for the frame of interest are not available in a */
/*        loaded binary PCK file. This is not an error: the data may be */
/*        present in the kernel pool. */

/*        Conduct a non-error-signaling check for the presence of a */
/*        kernel variable that is required to implement an IAU style */
/*        body-fixed reference frame. If the data aren't available, we */
/*        don't want BODVCD to signal a SPICE(KERNELVARNOTFOUND) error; */
/*        we want to issue the error signal locally, with a better error */
/*        message. */

	s_copy(item, "BODY#_PM", (ftnlen)32, (ftnlen)8);
	repmi_(item, "#", body, item, (ftnlen)32, (ftnlen)1, (ftnlen)32);
	dtpool_(item, &found, &nw, dtype, (ftnlen)32, (ftnlen)1);
	if (! found) {

/*           Now we do have an error. */

/*           We don't have the data we'll need to produced the requested */
/*           state transformation matrix. In order to create an error */
/*           message understandable to the user, find, if possible, the */
/*           name of the reference frame associated with the input body. */
/*           Note that the body is really identified by a PCK frame class */
/*           ID code, though most of the documentation just calls it a */
/*           body ID code. */

	    ccifrm_(&c__2, body, &frcode, fixfrm, &cent, &found, (ftnlen)32);
	    etcal_(et, timstr, (ftnlen)35);
	    s_copy(errmsg, "PCK data required to compute the orientation of "
		    "the # # for epoch # TDB were not found. If these data we"
		    "re to be provided by a binary PCK file, then it is possi"
		    "ble that the PCK file does not have coverage for the spe"
		    "cified body-fixed frame at the time of interest. If the "
		    "data were to be provided by a text PCK file, then possib"
		    "ly the file does not contain data for the specified body"
		    "-fixed frame. In either case it is possible that a requi"
		    "red PCK file was not loaded at all.", (ftnlen)1840, (
		    ftnlen)475);

/*           Fill in the variable data in the error message. */

	    if (found) {

/*              The frame system knows the name of the body-fixed frame. */

		setmsg_(errmsg, (ftnlen)1840);
		errch_("#", "body-fixed frame", (ftnlen)1, (ftnlen)16);
		errch_("#", fixfrm, (ftnlen)1, (ftnlen)32);
		errch_("#", timstr, (ftnlen)1, (ftnlen)35);
	    } else {

/*              The frame system doesn't know the name of the */
/*              body-fixed frame, most likely due to a missing */
/*              frame kernel. */

		suffix_("#", &c__1, errmsg, (ftnlen)1, (ftnlen)1840);
		setmsg_(errmsg, (ftnlen)1840);
		errch_("#", "body-fixed frame associated with the ID code", (
			ftnlen)1, (ftnlen)44);
		errint_("#", body, (ftnlen)1);
		errch_("#", timstr, (ftnlen)1, (ftnlen)35);
		errch_("#", "Also, a frame kernel defining the body-fixed fr"
			"ame associated with body # may need to be loaded.", (
			ftnlen)1, (ftnlen)96);
		errint_("#", body, (ftnlen)1);
	    }
	    sigerr_("SPICE(FRAMEDATANOTFOUND)", (ftnlen)24);
	    chkout_("BODMAT", (ftnlen)6);
	    return 0;
	}

/*        Find the body code used to label the reference frame and epoch */
/*        specifiers for the orientation constants for BODY. */

/*        For planetary systems, the reference frame and epoch for the */
/*        orientation constants is associated with the system */
/*        barycenter, not with individual bodies in the system.  For any */
/*        other bodies, (the Sun or asteroids, for example) the body's */
/*        own code is used as the label. */

	refid = zzbodbry_(body);

/*        Look up the epoch of the constants.  The epoch is specified */
/*        as a Julian ephemeris date.  The epoch defaults to J2000. */

	s_copy(item, "BODY#_CONSTANTS_JED_EPOCH", (ftnlen)32, (ftnlen)25);
	repmi_(item, "#", &refid, item, (ftnlen)32, (ftnlen)1, (ftnlen)32);
	gdpool_(item, &c__1, &c__1, &dim, &conepc, &found, (ftnlen)32);
	if (found) {

/*           The reference epoch is returned as a JED.  Convert to */
/*           ephemeris seconds past J2000.  Then convert the input ET to */
/*           seconds past the reference epoch. */

	    conepc = spd_() * (conepc - j2000_());
	    epoch = *et - conepc;
	} else {
	    epoch = *et;
	}

/*        Look up the reference frame of the constants.  The reference */
/*        frame is specified by a code recognized by CHGIRF.  The */
/*        default frame is J2000, symbolized by the code J2CODE. */

	s_copy(item, "BODY#_CONSTANTS_REF_FRAME", (ftnlen)32, (ftnlen)25);
	repmi_(item, "#", &refid, item, (ftnlen)32, (ftnlen)1, (ftnlen)32);
	gdpool_(item, &c__1, &c__1, &dim, &conref, &found, (ftnlen)32);
	if (found) {
	    ref = i_dnnt(&conref);
	} else {
	    ref = j2code;
	}

/*        Whatever the body, it has quadratic time polynomials for */
/*        the RA and Dec of the pole, and for the rotation of the */
/*        Prime Meridian. */

	s_copy(item, "POLE_RA", (ftnlen)32, (ftnlen)7);
	cleard_(&c__3, rcoef);
	bodvcd_(body, item, &c__3, &na, rcoef, (ftnlen)32);
	s_copy(item, "POLE_DEC", (ftnlen)32, (ftnlen)8);
	cleard_(&c__3, dcoef);
	bodvcd_(body, item, &c__3, &nd, dcoef, (ftnlen)32);
	s_copy(item, "PM", (ftnlen)32, (ftnlen)2);
	cleard_(&c__3, wcoef);
	bodvcd_(body, item, &c__3, &nw, wcoef, (ftnlen)32);

/*        There may be additional nutation and libration (THETA) terms. */

	ntheta = 0;
	na = 0;
	nd = 0;
	nw = 0;
	s_copy(item, "NUT_PREC_ANGLES", (ftnlen)32, (ftnlen)15);
	if (bodfnd_(&refid, item, (ftnlen)32)) {
	    bodvcd_(&refid, item, &c__100, &ntheta, tcoef, (ftnlen)32);
	    ntheta /= 2;
	}
	s_copy(item, "NUT_PREC_RA", (ftnlen)32, (ftnlen)11);
	if (bodfnd_(body, item, (ftnlen)32)) {
	    bodvcd_(body, item, &c__100, &na, ac, (ftnlen)32);
	}
	s_copy(item, "NUT_PREC_DEC", (ftnlen)32, (ftnlen)12);
	if (bodfnd_(body, item, (ftnlen)32)) {
	    bodvcd_(body, item, &c__100, &nd, dc, (ftnlen)32);
	}
	s_copy(item, "NUT_PREC_PM", (ftnlen)32, (ftnlen)11);
	if (bodfnd_(body, item, (ftnlen)32)) {
	    bodvcd_(body, item, &c__100, &nw, wc, (ftnlen)32);
	}
/* Computing MAX */
	i__1 = max(na,nd);
	if (max(i__1,nw) > ntheta) {
	    setmsg_("Insufficient number of nutation/precession angles for b"
		    "ody * at time #.", (ftnlen)71);
	    errint_("*", body, (ftnlen)1);
	    errdp_("#", et, (ftnlen)1);
	    sigerr_("SPICE(KERNELVARNOTFOUND)", (ftnlen)24);
	    chkout_("BODMAT", (ftnlen)6);
	    return 0;
	}

/*        Evaluate the time polynomials at EPOCH. */

	d__ = epoch / spd_();
	t = d__ / 36525.;
	ra = rcoef[0] + t * (rcoef[1] + t * rcoef[2]);
	dec = dcoef[0] + t * (dcoef[1] + t * dcoef[2]);
	w = wcoef[0] + d__ * (wcoef[1] + d__ * wcoef[2]);

/*        Add nutation and libration as appropriate. */

	i__1 = ntheta;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    theta = (tcoef[(i__2 = (i__ << 1) - 2) < 200 && 0 <= i__2 ? i__2 :
		     s_rnge("tcoef", i__2, "bodmat_", (ftnlen)700)] + t * 
		    tcoef[(i__3 = (i__ << 1) - 1) < 200 && 0 <= i__3 ? i__3 : 
		    s_rnge("tcoef", i__3, "bodmat_", (ftnlen)700)]) * rpd_();
	    sinth[(i__2 = i__ - 1) < 100 && 0 <= i__2 ? i__2 : s_rnge("sinth",
		     i__2, "bodmat_", (ftnlen)702)] = sin(theta);
	    costh[(i__2 = i__ - 1) < 100 && 0 <= i__2 ? i__2 : s_rnge("costh",
		     i__2, "bodmat_", (ftnlen)703)] = cos(theta);
	}
	ra += vdotg_(ac, sinth, &na);
	dec += vdotg_(dc, costh, &nd);
	w += vdotg_(wc, sinth, &nw);

/*        Convert from degrees to radians and mod by two pi. */

	ra *= rpd_();
	dec *= rpd_();
	w *= rpd_();
	d__1 = twopi_();
	ra = d_mod(&ra, &d__1);
	d__1 = twopi_();
	dec = d_mod(&dec, &d__1);
	d__1 = twopi_();
	w = d_mod(&w, &d__1);

/*        Convert to Euler angles. */

	phi = ra + halfpi_();
	delta = halfpi_() - dec;

/*        Produce the rotation matrix defined by the Euler angles. */

	eul2m_(&w, &delta, &phi, &c__3, &c__1, &c__3, tipm);
    }

/*     Convert TIPM to the J2000-to-bodyfixed rotation, if is is not */
/*     already referenced to J2000. */

    if (ref != j2code) {

/*        Find the transformation from the J2000 frame to the frame */
/*        designated by REF.  Form the transformation from `REF' */
/*        coordinates to body-fixed coordinates.  Compose the */
/*        transformations to obtain the J2000-to-body-fixed */
/*        transformation. */

	irfrot_(&j2code, &ref, j2ref);
	mxm_(tipm, j2ref, tmpmat);
	moved_(tmpmat, &c__9, tipm);
    }

/*     TIPM now gives the transformation from J2000 to */
/*     body-fixed coordinates at epoch ET seconds past J2000, */
/*     regardless of the epoch and frame of the orientation constants */
/*     for the specified body. */

    chkout_("BODMAT", (ftnlen)6);
    return 0;
} /* bodmat_ */
コード例 #2
0
ファイル: etcal.c プロジェクト: Dbelsa/coft
/* $Procedure            ETCAL ( Convert ET to Calendar format ) */
/* Subroutine */ int etcal_(doublereal *et, char *string, ftnlen string_len)
{
    /* Initialized data */

    static logical first = TRUE_;
    static integer extra[12] = { 0,0,1,1,1,1,1,1,1,1,1,1 };
    static integer dpjan0[12] = { 0,31,59,90,120,151,181,212,243,273,304,334 }
	    ;
    static integer dpbegl[12] = { 0,31,60,91,121,152,182,213,244,274,305,335 }
	    ;
    static char months[3*12] = "JAN" "FEB" "MAR" "APR" "MAY" "JUN" "JUL" 
	    "AUG" "SEP" "OCT" "NOV" "DEC";

    /* System generated locals */
    address a__1[12];
    integer i__1, i__2, i__3[12];
    doublereal d__1;

    /* Builtin functions */
    integer s_rnge(char *, integer, char *, integer);
    double d_int(doublereal *);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *,
	     char **, integer *, integer *, ftnlen);

    /* Local variables */
    static integer dn2000;
    static doublereal dp2000, frac;
    static char date[180];
    static doublereal remd, secs;
    static integer year, mins;
    static char dstr[16], hstr[16], mstr[16], sstr[16], ystr[16];
    static doublereal halfd, q;
    static integer tsecs, dofyr, month, hours;
    extern /* Subroutine */ int ljust_(char *, char *, ftnlen, ftnlen);
    static doublereal mynum;
    static integer bh, bm, iq;
    static doublereal secspd;
    static char messge[16];
    static integer offset;
    static doublereal dmnint;
    static logical adjust;
    static integer daynum;
    extern integer intmin_(void), intmax_(void);
    extern /* Subroutine */ int dpstrf_(doublereal *, integer *, char *, char 
	    *, ftnlen, ftnlen);
    static doublereal dmxint, mydnom;
    extern /* Subroutine */ int cmprss_(char *, integer *, char *, char *, 
	    ftnlen, ftnlen, ftnlen);
    extern integer lstlti_(integer *, integer *, integer *);
    extern /* Subroutine */ int intstr_(integer *, char *, ftnlen);
    static integer yr1, yr4;
    static char era[16];
    static integer day, rem;
    extern doublereal spd_(void);
    static integer yr100, yr400;

/* $ Abstract */


/*     Convert from an ephemeris epoch measured in seconds past */
/*     the epoch of J2000 to a calendar string format using a */
/*     formal calendar free of leapseconds. */

/* $ Disclaimer */

/*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
/*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
/*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
/*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
/*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
/*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
/*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
/*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
/*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
/*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

/*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
/*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
/*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
/*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
/*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
/*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

/*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
/*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
/*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
/*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

/* $ Required_Reading */

/*     None. */

/* $ Keywords */

/*     TIME */

/* $ Declarations */
/* $ Brief_I/O */

/*     Variable  I/O  Description */
/*     --------  ---  -------------------------------------------------- */
/*     ET         I   Ephemeris time measured in seconds past J2000. */
/*     STRING     O   A standard calendar representation of ET. */

/* $ Detailed_Input */

/*     ET       is an epoch measured in ephemeris seconds */
/*              past the epoch of J2000. */

/* $ Detailed_Output */

/*     STRING   is a calendar string representing the input ephemeris */
/*              epoch.  This string is based upon extending the */
/*              Gregorian Calendar backward and forward indefinitely */
/*              keeping the same rules for determining leap years. */
/*              Moreover, there is no accounting for leapseconds. */

/*              To be sure that all of the date can be stored in */
/*              STRING, it should be declared to have length at */
/*              least 48 characters. */

/*              The string will have the following format */

/*                 year (era) mon day hr:mn:sc.sss */

/*              Where: */

/*                 year --- is the year */
/*                 era  --- is the chronological era associated with */
/*                          the date.  For years after 999 A.D. */
/*                          the era is omitted.  For years */
/*                          between 1 A.D. and 999 A.D. (inclusive) */
/*                          era is the string 'A.D.' For epochs */
/*                          before 1 A.D. Jan 1 00:00:00, era is */
/*                          given as 'B.C.' and the year is converted */
/*                          to years before the "Christian Era". */
/*                          The last B.C. epoch is */

/*                            1 B.C. DEC 31 23:59:59.999 */

/*                          The first A.D. epoch (which occurs .001 */
/*                          seconds after the last B.C. epoch) is: */

/*                             1 A.D. JAN 1 00:00:00.000 */

/*                          Note: there is no year 0 A.D. or 0 B.C. */
/*                 mon  --- is a 3-letter abbreviation for the month */
/*                          in all capital letters. */
/*                 day  --- is the day of the month */
/*                 hr   --- is the hour of the day (between 0 and 23) */
/*                          leading zeros are added to hr if the */
/*                          numeric value is less than 10. */
/*                 mn   --- is the minute of the hour (0 to 59) */
/*                          leading zeros are added to mn if the */
/*                          numeric value is less than 10. */
/*                 sc.sss   is the second of the minute to 3 decimal */
/*                          places ( 0 to 59.999).  Leading zeros */
/*                          are added if the numeric value is less */
/*                          than 10.  Seconds are truncated, not */
/*                          rounded. */


/* $ Parameters */

/*     None. */

/* $ Exceptions */

/*     Error free. */

/*     1) If the input ET is so large that the corresponding */
/*        number of days since 1 A.D. Jan 1, 00:00:00 is */
/*        within 1 of overflowing or underflowing an integer, */
/*        ET will not be converted to the correct string */
/*        representation rather, the string returned will */
/*        state that the epoch was before or after the day */
/*        that is INTMIN +1 or INTMAX - 1 days after */
/*        1 A.D. Jan 1, 00:00:00. */

/*     2) If the output string is not sufficiently long to hold */
/*        the full date, it will be truncated on the right. */

/* $ Files */

/*     None. */

/* $ Particulars */

/*     This is an error free routine for converting ephemeris epochs */
/*     represented as seconds past the J2000 epoch to formal */
/*     calendar strings based upon the Gregorian Calendar.  This formal */
/*     time is often useful when one needs a human recognizable */
/*     form of an ephemeris epoch.  There is no accounting for leap */
/*     seconds in the output times produced. */

/*     Note: The calendar epochs produced are not the same as the */
/*           UTC calendar epochs that correspond to ET. The strings */
/*           produced by this routine may vary from the corresponding */
/*           UTC epochs by more than 1 minute. */

/*     This routine can be used in creating error messages or */
/*     in routines and programs in which one prefers to report */
/*     times without employing leapseconds to produce exact UTC */
/*     epochs. */


/* $ Examples */

/*     Suppose you wish to  report that no data is */
/*     available at a particular ephemeris epoch ET.  The following */
/*     code shows how you might accomplish this task. */

/*     CALL DPSTRF ( ET,  6, 'F', ETSTR  ) */
/*     CALL ETCAL  ( ET,          STRING ) */

/*     E1 = RTRIM   (             STRING ) */
/*     E2 = RTRIM   (             ETSTR  ) */

/*     WRITE (*,*) 'There is no data available for the body ' */
/*     WRITE (*,*) 'at requested time: ' */
/*     WRITE (*,*) '   ', STRING(1:E1), ' (', ETSTR(1:E2), ')' */


/* $ Restrictions */

/*     One must keep in mind when using this routine that */
/*     ancient times are not based upon the Gregorian */
/*     calendar.  For example the 0 point of the Julian */
/*     Date system is 4713 B.C. Jan 1, 12:00:00 on the Julian */
/*     Calendar.  If one formalized the Gregorian calendar */
/*     and extended it indefinitely, the zero point of the Julian */
/*     date system corresponds to 4714 B.C. NOV 24 12:00:00 on */
/*     the Gregorian calendar.  There are several reasons for this. */
/*     Leap years in the Julian calendar occur every */
/*     4 years (including *all* centuries).  Moreover,  the */
/*     Gregorian calendar "effectively" begins on 15 Oct, 1582 A.D. */
/*     which is 5 Oct, 1582 A.D. in the Julian Calendar. */

/*     Therefore you must be careful in your interpretation */
/*     of ancient dates produced by this routine. */

/* $ Literature_References */

/*     1. "From Sundial to Atomic Clocks---Understanding Time and */
/*         Frequency" by James Jespersen and Jane Fitz-Randolph */
/*         Dover Publications, Inc. New York (1982). */

/* $ Author_and_Institution */

/*     W.L. Taber      (JPL) */
/*     K.R. Gehringer  (JPL) */

/* $ Version */

/* -     SPICELIB Version 2.2.0, 05-MAR-1998 (WLT) */

/*         The documentation concerning the appearance of the output */
/*         time string was corrected so that it does not suggest */
/*         a comma is inserted after the day of the month.  The */
/*         comma was removed from the output string in Version 2.0.0 */
/*         (see the note below) but the documentation was not upgraded */
/*         accordingly. */

/* -     SPICELIB Version 2.1.0, 20-MAY-1996 (WLT) */

/*         Two arrays that were initialized but never used were */
/*         removed. */

/* -     SPICELIB Version 2.0.0, 16-AUG-1995 (KRG) */

/*         If the day number was less than 10, the spacing was off for */
/*         the rest of the time by one space, that for the "tens" digit. */
/*         This has been fixed by using a leading zero when the number of */
/*         days is < 10. */

/*         Also, the comma that appeared between the month/day/year */
/*         and the hour:minute:seconds tokens has been removed. This was */
/*         done in order to make the calendar date format of ETCAL */
/*         consistent with the calendar date format of ET2UTC. */


/* -     SPICELIB Version 1.0.0, 14-DEC-1993 (WLT) */

/* -& */
/* $ Index_Entries */

/*     Convert ephemeris time to a formal calendar date */

/* -& */
/* $ Revisions */

/* -     SPICELIB Version 2.1.0, 20-MAY-1996 (WLT) */

/*         Two arrays that were initialized but never used were */
/*         removed. */

/* -     SPICELIB Version 2.0.0, 16-AUG-1995 (KRG) */

/*         If the day number was less than 10, the spacing was off for */
/*         the rest of the time by one space, that for the "tens" digit. */
/*         This has been fixed byusing a leading zero when the number of */
/*         days is < 10. */

/*         Also, the comma that appeared between the month/day/year */
/*         and the hour:minute:seconds tokens has been removed. This was */
/*         done in order to make the calendar date format of ETCAL */
/*         consistent with the calendar date format of ET2UTC. */

/* -     SPICELIB Version 1.0.0, 14-DEC-1993 (WLT) */

/* -& */

/*     Spicelib Functions. */


/*     We declare the variables that contain the number of days in */
/*     400 years, 100 years, 4 years and 1 year. */


/*     The following integers give the number of days during the */
/*     associated month of a non-leap year. */


/*     The integers that follow give the number of days in a normal */
/*     year that precede the first of the month. */


/*     The integers that follow give the number of days in a leap */
/*     year that precede the first of the month. */


/*     The variables below hold the components of the output string */
/*     before they are put together. */


/*     We will construct our string using the local variable DATE */
/*     and transfer the results to the output STRING when we are */
/*     done. */


/*     MONTHS contains 3-letter abbreviations for the months of the year */


/*     The array EXTRA contains the number of additional days that */
/*     appear before the first of a month during a leap year (as opposed */
/*     to a non-leap year). */


/*     DPJAN0(I) gives the number of days that occur before the I'th */
/*     month of a normal year. */


/*     Definitions of statement functions. */


/*     The number of days elapsed since Jan 1, of year 1 A.D. to */
/*     Jan 1 of YEAR is given by: */


/*     The number of leap days in a year is given by: */


/*     To compute the day of the year we */

/*        look up the number of days to the beginning of the month, */

/*        add on the number leap days that occurred prior to that */
/*        time */

/*        add on the number of days into the month */


/*     The number of days since 1 Jan 1 A.D. is given by: */

    if (first) {
	first = FALSE_;
	halfd = spd_() / 2.;
	secspd = spd_();
	dn2000 = (c__2000 - 1) * 365 + (c__2000 - 1) / 4 - (c__2000 - 1) / 
		100 + (c__2000 - 1) / 400 + (dpjan0[(i__1 = c__1 - 1) < 12 && 
		0 <= i__1 ? i__1 : s_rnge("dpjan0", i__1, "etcal_", (ftnlen)
		571)] + extra[(i__2 = c__1 - 1) < 12 && 0 <= i__2 ? i__2 : 
		s_rnge("extra", i__2, "etcal_", (ftnlen)571)] * ((c__2000 / 4 
		<< 2) / c__2000 - c__2000 / 100 * 100 / c__2000 + c__2000 / 
		400 * 400 / c__2000) + c__1) - 1;
	dmxint = (doublereal) intmax_();
	dmnint = (doublereal) intmin_();
    }

/*     Now we "in-line" compute the following call. */

/*        call rmaind ( et + halfd, secspd, dp2000, secs ) */

/*     because we can't make a call to rmaind. */

/*     The reader may wonder why we use et + halfd.  The value */
/*     et is seconds past the ephemeris epoch of J2000 which */
/*     is at 2000 Jan 1, 12:00:00.  We want to compute days past */
/*     2000 Jan 1, 00:00:00.  The seconds past THAT epoch is et + halfd. */
/*     We add on 0.0005 seconds so that the string produced will be */
/*     rounded to the nearest millisecond. */

    mydnom = secspd;
    mynum = *et + halfd;
    d__1 = mynum / mydnom;
    q = d_int(&d__1);
    remd = mynum - q * mydnom;
    if (remd < 0.) {
	q += -1.;
	remd += mydnom;
    }
    secs = remd;
    dp2000 = q;

/*     Do something about the problem when ET is vastly */
/*     out of range.  (Day number outside MAX and MIN integer). */

    if (dp2000 + dn2000 < dmnint + 1) {
	dp2000 = dmnint - dn2000 + 1;
	s_copy(messge, "Epoch before ", (ftnlen)16, (ftnlen)13);
	secs = 0.;
    } else if (dp2000 + dn2000 > dmxint - 1) {
	dp2000 = dmxint - dn2000 - 1;
	s_copy(messge, "Epoch after ", (ftnlen)16, (ftnlen)12);
	secs = 0.;
    } else {
	s_copy(messge, " ", (ftnlen)16, (ftnlen)1);
    }

/*     Compute the number of days since 1 .A.D. Jan 1, 00:00:00. */
/*     From the tests in the previous IF-ELSE IF-ELSE block this */
/*     addition is guaranteed not to overflow. */

    daynum = (integer) (dp2000 + (doublereal) dn2000);

/*     If the number of days is negative, we need to do a little */
/*     work so that we can represent the date in the B.C. era. */
/*     We add enough multiples of 400 years so that the year will */
/*     be positive and then we subtract off the appropriate multiple */
/*     of 400 years later. */

    if (daynum < 0) {

/*        Since we can't make the call below and remain */
/*        error free, we compute it ourselves. */

/*        call rmaini ( daynum, dp400y, offset, daynum ) */

	iq = daynum / 146097;
	rem = daynum - iq * 146097;
	if (rem < 0) {
	    --iq;
	    rem += 146097;
	}
	offset = iq;
	daynum = rem;
	adjust = TRUE_;
    } else {
	adjust = FALSE_;
    }

/*     Next we compute the year.  Divide out multiples of 400, 100 */
/*     4 and 1 year.  Finally combine these to get the correct */
/*     value for year.  (Note this is all integer arithmetic.) */

/*     Recall that DP1Y   =    365 */
/*                 DP4Y   =  4*DPY    + 1 */
/*                 DP100Y = 25*DP4Y   - 1 */
/*                 DP400Y =  4*DP100Y + 1 */

    yr400 = daynum / 146097;
    rem = daynum - yr400 * 146097;
/* Computing MIN */
    i__1 = 3, i__2 = rem / 36524;
    yr100 = min(i__1,i__2);
    rem -= yr100 * 36524;
/* Computing MIN */
    i__1 = 24, i__2 = rem / 1461;
    yr4 = min(i__1,i__2);
    rem -= yr4 * 1461;
/* Computing MIN */
    i__1 = 3, i__2 = rem / 365;
    yr1 = min(i__1,i__2);
    rem -= yr1 * 365;
    dofyr = rem + 1;
    year = yr400 * 400 + yr100 * 100 + (yr4 << 2) + yr1 + 1;

/*     Get the month, and day of month (depending upon whether */
/*     we have a leap year or not). */

    if ((year / 4 << 2) / year - year / 100 * 100 / year + year / 400 * 400 / 
	    year == 0) {
	month = lstlti_(&dofyr, &c__12, dpjan0);
	day = dofyr - dpjan0[(i__1 = month - 1) < 12 && 0 <= i__1 ? i__1 : 
		s_rnge("dpjan0", i__1, "etcal_", (ftnlen)698)];
    } else {
	month = lstlti_(&dofyr, &c__12, dpbegl);
	day = dofyr - dpbegl[(i__1 = month - 1) < 12 && 0 <= i__1 ? i__1 : 
		s_rnge("dpbegl", i__1, "etcal_", (ftnlen)701)];
    }

/*     If we had to adjust the year to make it positive, we now */
/*     need to correct it and then convert it to a B.C. year. */

    if (adjust) {
	year += offset * 400;
	year = -year + 1;
	s_copy(era, " B.C. ", (ftnlen)16, (ftnlen)6);
    } else {

/*        If the year is less than 1000, we can't just write it */
/*        out.  We need to add the era.  If we don't do this */
/*        the dates look very confusing. */

	if (year < 1000) {
	    s_copy(era, " A.D. ", (ftnlen)16, (ftnlen)6);
	} else {
	    s_copy(era, " ", (ftnlen)16, (ftnlen)1);
	}
    }

/*     Convert Seconds to Hours, Minute and Seconds. */
/*     We work with thousandths of a second in integer arithmetic */
/*     so that all of the truncation work with seconds will already */
/*     be done.  (Note that we already know that SECS is greater than */
/*     or equal to zero so we'll have no problems with HOURS, MINS */
/*     or SECS becoming negative.) */

    tsecs = (integer) (secs * 1e3);
    frac = secs - (doublereal) tsecs;
    hours = tsecs / 3600000;
    tsecs -= hours * 3600000;
    mins = tsecs / 60000;
    tsecs -= mins * 60000;
    secs = (doublereal) tsecs / 1e3;

/*     We round seconds if we can do so without getting seconds to be */
/*     bigger than 60. */

    if (secs + 5e-4 < 60.) {
	secs += 5e-4;
    }

/*     Finally, get the components of our date string. */

    intstr_(&year, ystr, (ftnlen)16);
    if (day >= 10) {
	intstr_(&day, dstr, (ftnlen)16);
    } else {
	s_copy(dstr, "0", (ftnlen)16, (ftnlen)1);
	intstr_(&day, dstr + 1, (ftnlen)15);
    }

/*     We want to zero pad the hours minutes and seconds. */

    if (hours < 10) {
	bh = 2;
    } else {
	bh = 1;
    }
    if (mins < 10) {
	bm = 2;
    } else {
	bm = 1;
    }
    s_copy(mstr, "00", (ftnlen)16, (ftnlen)2);
    s_copy(hstr, "00", (ftnlen)16, (ftnlen)2);
    s_copy(sstr, " ", (ftnlen)16, (ftnlen)1);

/*     Now construct the string components for hours, minutes and */
/*     seconds. */

    secs = (integer) (secs * 1e3) / 1e3;
    intstr_(&hours, hstr + (bh - 1), 16 - (bh - 1));
    intstr_(&mins, mstr + (bm - 1), 16 - (bm - 1));
    dpstrf_(&secs, &c__6, "F", sstr, (ftnlen)1, (ftnlen)16);

/*     The form of the output for SSTR has a leading blank followed by */
/*     the first significant digit.  If a decimal point is in the */
/*     third slot, then SSTR is of the form ' x.xxxxx'  and we need */
/*     to insert a leading zero. */

    if (*(unsigned char *)&sstr[2] == '.') {
	*(unsigned char *)sstr = '0';
    }

/*     We don't want any leading spaces in SSTR, (HSTR and MSTR don't */
/*     have leading spaces by construction. */

    ljust_(sstr, sstr, (ftnlen)16, (ftnlen)16);

/*     Now form the date string, squeeze out extra spaces and */
/*     left justify the whole thing. */

/* Writing concatenation */
    i__3[0] = 16, a__1[0] = messge;
    i__3[1] = 16, a__1[1] = ystr;
    i__3[2] = 16, a__1[2] = era;
    i__3[3] = 3, a__1[3] = months + ((i__1 = month - 1) < 12 && 0 <= i__1 ? 
	    i__1 : s_rnge("months", i__1, "etcal_", (ftnlen)810)) * 3;
    i__3[4] = 1, a__1[4] = " ";
    i__3[5] = 3, a__1[5] = dstr;
    i__3[6] = 1, a__1[6] = " ";
    i__3[7] = 2, a__1[7] = hstr;
    i__3[8] = 1, a__1[8] = ":";
    i__3[9] = 2, a__1[9] = mstr;
    i__3[10] = 1, a__1[10] = ":";
    i__3[11] = 6, a__1[11] = sstr;
    s_cat(date, a__1, i__3, &c__12, (ftnlen)180);
    cmprss_(" ", &c__1, date, date, (ftnlen)1, (ftnlen)180, (ftnlen)180);
    ljust_(date, date, (ftnlen)180, (ftnlen)180);
    s_copy(string, date, string_len, (ftnlen)180);
    return 0;
} /* etcal_ */
コード例 #3
0
ファイル: spkw20.c プロジェクト: Boxx-Obspm/DOCKing_System
/* $Procedure SPKW20 ( SPK, write segment, type 20 ) */
/* Subroutine */ int spkw20_(integer *handle, integer *body, integer *center,
                             char *frame, doublereal *first, doublereal *last, char *segid,
                             doublereal *intlen, integer *n, integer *polydg, doublereal *cdata,
                             doublereal *dscale, doublereal *tscale, doublereal *initjd,
                             doublereal *initfr, ftnlen frame_len, ftnlen segid_len)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;

    /* Local variables */
    extern /* Subroutine */ int etcal_(doublereal *, char *, ftnlen), chkin_(
        char *, ftnlen), dafps_(integer *, integer *, doublereal *,
                                integer *, doublereal *);
    doublereal btime, descr[5];
    extern /* Subroutine */ int errch_(char *, char *, ftnlen, ftnlen);
    doublereal ltime;
    extern /* Subroutine */ int errdp_(char *, doublereal *, ftnlen);
    char etstr[40];
    extern /* Subroutine */ int dafada_(doublereal *, integer *), dafbna_(
        integer *, doublereal *, char *, ftnlen), dafena_(void);
    extern logical failed_(void);
    extern /* Subroutine */ int chckid_(char *, integer *, char *, ftnlen,
                                        ftnlen);
    integer refcod, ninrec;
    extern /* Subroutine */ int namfrm_(char *, integer *, ftnlen);
    doublereal numrec;
    extern /* Subroutine */ int sigerr_(char *, ftnlen), chkout_(char *,
            ftnlen), setmsg_(char *, ftnlen), errint_(char *, integer *,
                    ftnlen);
    extern logical return_(void);
    char netstr[40];
    doublereal dcd[2];
    extern doublereal j2000_(void);
    integer icd[6];
    extern doublereal spd_(void);
    doublereal tol;

    /* $ Abstract */

    /*     Write a type 20 segment to an SPK file. */

    /* $ Disclaimer */

    /*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
    /*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
    /*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
    /*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
    /*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
    /*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
    /*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
    /*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
    /*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
    /*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

    /*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
    /*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
    /*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
    /*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
    /*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
    /*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

    /*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
    /*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
    /*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
    /*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

    /* $ Required_Reading */

    /*     DAF */
    /*     NAIF_IDS */
    /*     TIME */
    /*     SPK */

    /* $ Keywords */

    /*     EPHEMERIS */

    /* $ Declarations */
    /* $ Abstract */

    /*     Declare parameters specific to SPK type 20. */

    /* $ Disclaimer */

    /*     THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE */
    /*     CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. */
    /*     GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE */
    /*     ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE */
    /*     PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" */
    /*     TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY */
    /*     WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A */
    /*     PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC */
    /*     SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE */
    /*     SOFTWARE AND RELATED MATERIALS, HOWEVER USED. */

    /*     IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA */
    /*     BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT */
    /*     LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, */
    /*     INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, */
    /*     REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE */
    /*     REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. */

    /*     RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF */
    /*     THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY */
    /*     CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE */
    /*     ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. */

    /* $ Required_Reading */

    /*     SPK */

    /* $ Keywords */

    /*     SPK */

    /* $ Restrictions */

    /*     None. */

    /* $ Author_and_Institution */

    /*     N.J. Bachman      (JPL) */

    /* $ Literature_References */

    /*     None. */

    /* $ Version */

    /* -    SPICELIB Version 1.0.0, 30-DEC-2013 (NJB) */

    /* -& */
    /*     MAXDEG         is the maximum allowed degree of the input */
    /*                    Chebyshev expansions. If the value of MAXDEG is */
    /*                    increased, the SPICELIB routine SPKPVN must be */
    /*                    changed accordingly. In particular, the size of */
    /*                    the record passed to SPKRnn and SPKEnn must be */
    /*                    increased, and comments describing the record size */
    /*                    must be changed. */

    /*                    The record size requirement is */

    /*                       MAXREC = 3 * ( MAXDEG + 3 ) */



    /*     TOLSCL         is a tolerance scale factor (also called a */
    /*                    "relative tolerance") used for time coverage */
    /*                    bound checking. TOLSCL is unitless. TOLSCL */
    /*                    produces a tolerance value via the formula */

    /*                       TOL = TOLSCL * MAX( ABS(FIRST), ABS(LAST) ) */

    /*                    where FIRST and LAST are the coverage time bounds */
    /*                    of a type 20 segment, expressed as seconds past */
    /*                    J2000 TDB. */

    /*                    The resulting parameter TOL is used as a tolerance */
    /*                    for comparing the input segment descriptor time */
    /*                    bounds to the first and last epoch covered by the */
    /*                    sequence of time intervals defined by the inputs */
    /*                    to SPKW20: */

    /*                       INITJD */
    /*                       INITFR */
    /*                       INTLEN */
    /*                       N */

    /*     Tolerance scale for coverage gap at the endpoints */
    /*     of the segment coverage interval: */


    /*     End of include file spk20.inc. */

    /* $ Brief_I/O */

    /*   Variable  I/O  Description */
    /*     --------  ---  -------------------------------------------------- */
    /*     HANDLE     I   Handle of SPK file open for writing. */
    /*     BODY       I   NAIF code for ephemeris object. */
    /*     CENTER     I   NAIF code for the center of motion of the body. */
    /*     FRAME      I   Reference frame name. */
    /*     FIRST      I   Start time of interval covered by segment. */
    /*     LAST       I   End time of interval covered by segment. */
    /*     SEGID      I   Segment identifier. */
    /*     INTLEN     I   Length of time covered by logical record (days). */
    /*     N          I   Number of logical records in segment. */
    /*     POLYDG     I   Chebyshev polynomial degree. */
    /*     CDATA      I   Array of Chebyshev coefficients and positions. */
    /*     DSCALE     I   Distance scale of data. */
    /*     TSCALE     I   Time scale of data. */
    /*     INITJD     I   Integer part of begin time (TDB Julian date) of */
    /*                    first record. */
    /*     INITFR     I   Fractional part of begin time (TDB Julian date) of */
    /*                    first record. */
    /*     MAXDEG     P   Maximum allowed degree of Chebyshev expansions. */
    /*     TOLSCL     P   Tolerance scale for coverage bound checking. */

    /* $ Detailed_Input */

    /*     HANDLE         is the DAF handle of an SPK file to which a type 20 */
    /*                    segment is to be added.  The SPK file must be open */
    /*                    for writing. */

    /*     BODY           is the NAIF integer code for an ephemeris object */
    /*                    whose state relative to another body is described */
    /*                    by the segment to be created. */

    /*     CENTER         is the NAIF integer code for the center of motion */
    /*                    of the object identified by BODY. */

    /*     FRAME          is the NAIF name for a reference frame relative to */
    /*                    which the state information for BODY is specified. */

    /*     FIRST, */
    /*     LAST           are the start and stop times of the time interval */
    /*                    over which the segment defines the state of the */
    /*                    object identified by BODY. */

    /*     SEGID          is a segment identifier. An SPK segment identifier */
    /*                    may contain up to 40 characters. */

    /*     INTLEN         is the length of time, in TDB Julian days, covered */
    /*                    by each set of Chebyshev polynomial coefficients */
    /*                    (each logical record). */

    /*     N              is the number of logical records to be stored in */
    /*                    the segment. There is one logical record for each */
    /*                    time period. Each logical record contains three */
    /*                    sets of Chebyshev coefficients---one for each */
    /*                    coordinate---and three position vector components. */

    /*     POLYDG         is the degree of each set of Chebyshev */
    /*                    polynomials, i.e. the number of Chebyshev */
    /*                    coefficients per coordinate minus one. POLYDG must */
    /*                    be less than or equal to the parameter MAXDEG. */

    /*     CDATA          is an array containing all the sets of Chebyshev */
    /*                    polynomial coefficients and position components to */
    /*                    be placed in the new segment of the SPK file. */
    /*                    There are three sets of coefficients and position */
    /*                    components for each time interval covered by the */
    /*                    segment. */

    /*                    The coefficients and position components are */
    /*                    stored in CDATA in order as follows: */

    /*                       the (POLYDG + 1) coefficients for the first */
    /*                       coordinate of the first logical record, */
    /*                       followed by the X component of position at the */
    /*                       first interval midpoint. The first coefficient */
    /*                       is that of the constant term of the expansion. */

    /*                       the coefficients for the second coordinate, */
    /*                       followed by the Y component of position at the */
    /*                       first interval midpoint. */

    /*                       the coefficients for the third coordinate, */
    /*                       followed by the Z component of position at the */
    /*                       first interval midpoint. */

    /*                       the coefficients for the first coordinate for */
    /*                       the second logical record, followed by the X */
    /*                       component of position at the second interval */
    /*                       midpoint. */

    /*                       and so on. */

    /*                    The logical data records are stored contiguously: */

    /*                       +----------+ */
    /*                       | Record 1 | */
    /*                       +----------+ */
    /*                       | Record 2 | */
    /*                       +----------+ */
    /*                           ... */
    /*                       +----------+ */
    /*                       | Record N | */
    /*                       +----------+ */

    /*                    The contents of an individual record are: */

    /*                       +--------------------------------------+ */
    /*                       | Coeff set for X velocity component   | */
    /*                       +--------------------------------------+ */
    /*                       | X position component                 | */
    /*                       +--------------------------------------+ */
    /*                       | Coeff set for Y velocity component   | */
    /*                       +--------------------------------------+ */
    /*                       | Y position component                 | */
    /*                       +--------------------------------------+ */
    /*                       | Coeff set for Z velocity component   | */
    /*                       +--------------------------------------+ */
    /*                       | Z position component                 | */
    /*                       +--------------------------------------+ */

    /*                   Each coefficient set has the structure: */

    /*                       +--------------------------------------+ */
    /*                       | Coefficient of T_0                   | */
    /*                       +--------------------------------------+ */
    /*                       | Coefficient of T_1                   | */
    /*                       +--------------------------------------+ */
    /*                                         ... */
    /*                       +--------------------------------------+ */
    /*                       | Coefficient of T_POLYDG              | */
    /*                       +--------------------------------------+ */

    /*                    Where T_n represents the Chebyshev polynomial */
    /*                    of the first kind of degree n. */


    /*     DSCALE, */
    /*     TSCALE         are, respectively, the distance scale of the input */
    /*                    position and velocity data in km, and the time */
    /*                    scale of the input velocity data in TDB seconds. */

    /*                    For example, if the input distance data have units */
    /*                    of astronomical units (AU), DSCALE should be set */
    /*                    to the number of km in one AU. If the input */
    /*                    velocity data have time units of Julian days, then */
    /*                    TSCALE should be set to the number of seconds per */
    /*                    Julian day (86400). */


    /*     INITJD         is the integer part of the Julian ephemeris date */
    /*                    of initial epoch of the first record. INITJD may */
    /*                    be less than, equal to, or greater than the */
    /*                    initial epoch. */

    /*     INITFR         is the fractional part of the Julian ephemeris date */
    /*                    of initial epoch of the first record. INITFR has */
    /*                    units of Julian days. INITFR has magnitude */
    /*                    strictly less than 1 day. The sum */

    /*                       INITJD + INITFR */

    /*                    equals the Julian ephemeris date of the initial */
    /*                    epoch of the first record. */


    /* $ Detailed_Output */

    /*     None. This routine writes data to an SPK file. */

    /* $ Parameters */

    /*     The parameters described in this section are declared in the */
    /*     Fortran INCLUDE file spk20.inc */


    /*     MAXDEG         is the maximum allowed degree of the input */
    /*                    Chebyshev expansions. */


    /*     TOLSCL         is a tolerance scale factor (also called a */
    /*                    "relative tolerance") used for time coverage */
    /*                    bound checking. TOLSCL is unitless. TOLSCL */
    /*                    produces a tolerance value via the formula */

    /*                       TOL = TOLSCL * MAX( ABS(FIRST), ABS(LAST) ) */

    /*                    where FIRST and LAST are the coverage time bounds */
    /*                    of a type 20 segment, expressed as seconds past */
    /*                    J2000 TDB. */

    /*                    The resulting parameter TOL is used as a tolerance */
    /*                    for comparing the input segment descriptor time */
    /*                    bounds to the first and last epoch covered by the */
    /*                    sequence of time intervals defined by the inputs */

    /*                       INITJD */
    /*                       INITFR */
    /*                       INTLEN */
    /*                       N */

    /*                    See the Exceptions section below for a description */
    /*                    of the error check using this tolerance. */

    /* $ Exceptions */

    /*     1)  If the number of sets of coefficients is not positive */
    /*         SPICE(INVALIDCOUNT) is signaled. */

    /*     2)  If the interval length is not positive, SPICE(INTLENNOTPOS) */
    /*         is signaled. */

    /*     3)  If the name of the reference frame is not recognized, */
    /*         SPICE(INVALIDREFFRAME) is signaled. */

    /*     4)  If segment stop time is not greater than or equal to */
    /*         the begin time, SPICE(BADDESCRTIMES) is signaled. */

    /*     5)  If the start time of the first record exceeds the descriptor */
    /*         begin time by more than a computed tolerance, or if the end */
    /*         time of the last record precedes the descriptor end time by */
    /*         more than a computed tolerance, the error SPICE(COVERAGEGAP) */
    /*         is signaled. See the Parameters section above for a */
    /*         description of the tolerance. */

    /*     6)  If the input degree POLYDG is less than 0 or greater than */
    /*         MAXDEG, the error SPICE(INVALIDDEGREE) is signaled. */

    /*     7)  If the last non-blank character of SEGID occurs past index */
    /*         40, or if SEGID contains any nonprintable characters, the */
    /*         error will be diagnosed by a routine in the call tree of this */
    /*         routine. */

    /*     8)  If either the distance or time scale is non-positive, the */
    /*         error SPICE(NONPOSITIVESCALE) will be signaled. */

    /* $ Files */

    /*     A new type 20 SPK segment is written to the SPK file attached */
    /*     to HANDLE. */

    /* $ Particulars */

    /*     This routine writes an SPK type 20 data segment to the designated */
    /*     SPK file, according to the format described in the SPK Required */
    /*     Reading. */

    /*     Each segment can contain data for only one target, central body, */
    /*     and reference frame. The Chebyshev polynomial degree and length */
    /*     of time covered by each logical record are also fixed. However, */
    /*     an arbitrary number of logical records of Chebyshev polynomial */
    /*     coefficients can be written in each segment.  Minimizing the */
    /*     number of segments in an SPK file will help optimize how the */
    /*     SPICE system accesses the file. */

    /* $ Examples */

    /*     Suppose that you have in an array CDATA sets of Chebyshev */
    /*     polynomial coefficients and position vectors representing the */
    /*     state of the moon (NAIF ID = 301), relative to the Earth-moon */
    /*     barycenter (NAIF ID = 3), in the J2000 reference frame, and you */
    /*     want to put these into a type 20 segment in an existing SPK file. */
    /*     The following code could be used to add one new type 20 segment. */
    /*     To add multiple segments, put the call to SPKW20 in a loop. */

    /*     C */
    /*     C      First open the SPK file and get a handle for it. */
    /*     C */
    /*            CALL DAFOPW ( SPKNAM, HANDLE ) */

    /*     C */
    /*     C      Create a segment identifier. */
    /*     C */
    /*            SEGID = 'MY_SAMPLE_SPK_TYPE_20_SEGMENT' */

    /*     C */
    /*     C      Note that the interval length INTLEN has units */
    /*     C      of Julian days. The start time of the first record */
    /*     C      is expressed using two inputs: integer and fractional */
    /*     C      portions of the Julian ephemeris date of the start */
    /*     C      time. */
    /*     C */
    /*     C      Write the segment. */
    /*     C */
    /*            CALL SPKW20 ( HANDLE, 301,    3,      'J2000', */
    /*          .               FIRST,  LAST,   SEGID,  INTLEN, */
    /*          .               N,      POLYDG, CDATA,  DSCALE, */
    /*          .               TSCALE, INITJD, INITFR           ) */

    /*     C */
    /*     C      Close the file. */
    /*     C */
    /*            CALL DAFCLS ( HANDLE ) */

    /* $ Restrictions */

    /*     None. */

    /* $ Literature_References */

    /*     None. */

    /* $ Author_and_Institution */

    /*     N.J. Bachman (JPL) */
    /*     K.S. Zukor   (JPL) */

    /* $ Version */

    /* -    SPICELIB Version 1.0.0, 17-JAN-2017 (NJB) (KSZ) */

    /* -& */
    /* $ Index_Entries */

    /*     write spk type_20 data segment */

    /* -& */

    /*     SPICELIB functions */


    /*     Local Parameters */


    /*     DTYPE is the SPK data type. */


    /*     ND is the number of double precision components in an SPK */
    /*     segment descriptor. SPK uses ND = 2. */


    /*     NI is the number of integer components in an SPK segment */
    /*     descriptor. SPK uses NI = 6. */


    /*     NS is the size of a packed SPK segment descriptor. */


    /*     SIDLEN is the maximum number of characters allowed in an */
    /*     SPK segment identifier. */


    /*     Local variables */



    /*     Standard SPICE error handling. */

    if (return_()) {
        return 0;
    }
    chkin_("SPKW20", (ftnlen)6);

    /*     The number of sets of coefficients must be positive. */

    if (*n <= 0) {
        setmsg_("The number of sets of coordinate coefficients is not positi"
                "ve. N = # ", (ftnlen)69);
        errint_("#", n, (ftnlen)1);
        sigerr_("SPICE(INVALIDCOUNT)", (ftnlen)19);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     Make sure that the degree of the interpolating polynomials is */
    /*     in range. */

    if (*polydg < 0 || *polydg > 50) {
        setmsg_("The interpolating polynomials have degree #; the valid degr"
                "ee range is [0, #].", (ftnlen)78);
        errint_("#", polydg, (ftnlen)1);
        errint_("#", &c__50, (ftnlen)1);
        sigerr_("SPICE(INVALIDDEGREE)", (ftnlen)20);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     The interval length must be positive. */

    if (*intlen <= 0.) {
        setmsg_("The interval length is not positive.N = #", (ftnlen)41);
        errdp_("#", intlen, (ftnlen)1);
        sigerr_("SPICE(INTLENNOTPOS)", (ftnlen)19);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     Get the NAIF integer code for the reference frame. */

    namfrm_(frame, &refcod, frame_len);
    if (refcod == 0) {
        setmsg_("The reference frame # is not supported.", (ftnlen)39);
        errch_("#", frame, (ftnlen)1, frame_len);
        sigerr_("SPICE(INVALIDREFFRAME)", (ftnlen)22);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     The segment stop time must be greater than or equal to the begin */
    /*     time. */

    if (*first > *last) {
        setmsg_("The segment start time: # (# TDB) is greater than the segme"
                "nt end time: (# TDB).", (ftnlen)80);
        etcal_(first, etstr, (ftnlen)40);
        errch_("#", etstr, (ftnlen)1, (ftnlen)40);
        errdp_("#", first, (ftnlen)1);
        etcal_(last, netstr, (ftnlen)40);
        errch_("#", netstr, (ftnlen)1, (ftnlen)40);
        errdp_("#", last, (ftnlen)1);
        sigerr_("SPICE(BADDESCRTIMES)", (ftnlen)20);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     The distance and time scales must be positive. */

    if (*dscale <= 0.) {
        setmsg_("The distance scale is not positive.DSCALE = #", (ftnlen)45);
        errdp_("#", dscale, (ftnlen)1);
        sigerr_("SPICE(NONPOSITIVESCALE)", (ftnlen)23);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }
    if (*tscale <= 0.) {
        setmsg_("The time scale is not positive.TSCALE = #", (ftnlen)41);
        errdp_("#", tscale, (ftnlen)1);
        sigerr_("SPICE(NONPOSITIVESCALE)", (ftnlen)23);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     The begin time of the first record must be less than or equal */
    /*     to the begin time of the segment. Convert the two-part input */
    /*     epoch to seconds past J2000 for the purpose of this check. */

    btime = spd_() * (*initjd - j2000_() + *initfr);
    ltime = btime + *n * *intlen * spd_();

    /*     Compute the tolerance to use for descriptor time bound checks. */

    /* Computing MAX */
    d__1 = abs(btime), d__2 = abs(ltime);
    tol = max(d__1,d__2) * 1e-13;
    if (*first < btime - tol) {
        setmsg_("The segment descriptor start time # is too much less than t"
                "he beginning time of the segment data # (in seconds past J20"
                "00: #). The difference is # seconds; the tolerance is # seco"
                "nds.", (ftnlen)183);
        etcal_(first, etstr, (ftnlen)40);
        errch_("#", etstr, (ftnlen)1, (ftnlen)40);
        etcal_(&btime, etstr, (ftnlen)40);
        errch_("#", etstr, (ftnlen)1, (ftnlen)40);
        errdp_("#", first, (ftnlen)1);
        d__1 = btime - *first;
        errdp_("#", &d__1, (ftnlen)1);
        errdp_("#", &tol, (ftnlen)1);
        sigerr_("SPICE(COVERAGEGAP)", (ftnlen)18);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     The end time of the final record must be greater than or */
    /*     equal to the end time of the segment. */

    if (*last > ltime + tol) {
        setmsg_("The segment descriptor end time # is too much greater than "
                "the end time of the segment data # (in seconds past J2000: #"
                "). The difference is # seconds; the tolerance is # seconds.",
                (ftnlen)178);
        etcal_(last, etstr, (ftnlen)40);
        errch_("#", etstr, (ftnlen)1, (ftnlen)40);
        etcal_(&ltime, etstr, (ftnlen)40);
        errch_("#", etstr, (ftnlen)1, (ftnlen)40);
        errdp_("#", last, (ftnlen)1);
        d__1 = *last - ltime;
        errdp_("#", &d__1, (ftnlen)1);
        errdp_("#", &tol, (ftnlen)1);
        sigerr_("SPICE(COVERAGEGAP)", (ftnlen)18);
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     Now check the validity of the segment identifier. */

    chckid_("SPK segment identifier", &c__40, segid, (ftnlen)22, segid_len);
    if (failed_()) {
        chkout_("SPKW20", (ftnlen)6);
        return 0;
    }

    /*     Store the start and end times to be associated */
    /*     with this segment. */

    dcd[0] = *first;
    dcd[1] = *last;

    /*     Create the integer portion of the descriptor. */

    icd[0] = *body;
    icd[1] = *center;
    icd[2] = refcod;
    icd[3] = 20;

    /*     Pack the segment descriptor. */

    dafps_(&c__2, &c__6, dcd, icd, descr);

    /*     Begin a new segment of SPK type 20 form: */

    /*        Record 1 */
    /*        Record 2 */
    /*        ... */
    /*        Record N */
    /*        DSCALE     ( distance scale in km ) */
    /*        TSCALE     ( time scale in seconds ) */
    /*        INITJD     ( integer part of initial epoch of first record, */
    /*                     expressed as a TDB Julian date ) */
    /*        INITFR     ( fractional part of initial epoch, in units of */
    /*                     TDB Julian days ) */
    /*        INTLEN     ( length of interval covered by each record, in */
    /*                     units of TDB Julian days ) */
    /*        RSIZE      ( number of data elements in each record ) */
    /*        N          ( number of records in segment ) */

    /*     Each record will have the form: */

    /*        X coefficients */
    /*        X position component at interval midpoint */
    /*        Y coefficients */
    /*        Y position component at interval midpoint */
    /*        Z coefficients */
    /*        Z position component at interval midpoint */


    dafbna_(handle, descr, segid, segid_len);

    /*     Calculate the number of entries in a record. */

    ninrec = (*polydg + 2) * 3;

    /*     Fill segment with N records of data. */

    i__1 = *n * ninrec;
    dafada_(cdata, &i__1);

    /*     Store the distance and time scales. */

    dafada_(dscale, &c__1);
    dafada_(tscale, &c__1);

    /*     Store the integer and fractional parts of the initial epoch of */
    /*     the first record. */

    dafada_(initjd, &c__1);
    dafada_(initfr, &c__1);

    /*     Store the length of interval covered by each record. */

    dafada_(intlen, &c__1);

    /*     Store the size of each record (total number of array elements). */
    /*     Note that this size is smaller by 2 than the size of a type 2 */
    /*     record of the same degree, since the record coverage midpoint */
    /*     and radius are not stored. */

    d__1 = (doublereal) ninrec;
    dafada_(&d__1, &c__1);

    /*     Store the number of records contained in the segment. */

    numrec = (doublereal) (*n);
    dafada_(&numrec, &c__1);

    /*     End this segment. */

    dafena_();
    chkout_("SPKW20", (ftnlen)6);
    return 0;
} /* spkw20_ */