コード例 #1
0
ファイル: kdbuild.cpp プロジェクト: lukaszdk/lzrt
inline void MinMaxBinCount3SIMD(aabb_t *aabb, minmaxbin_t *mmb, aabb_t *baabb)
{
	vector float *baabb_min = (vector float*)baabb->min;
	vector float *baabb_max = (vector float*)baabb->max;
	vector float *aabb_min = (vector float*)aabb->min;
	vector float *aabb_max = (vector float*)aabb->max;

	vector float nbins = spu_splats((float)nsamplepoints);
	vector float invnbins = spu_re(nbins);
	nbins = spu_sub(nbins, spu_splats(1.0f));

	vector float width = spu_abs(spu_sub(*baabb_max, *baabb_min));
	vector float invdelta = spu_re(spu_mul(width, invnbins));

	vector int minindex = GetBinSIMD(*baabb_min, *baabb_max, *aabb_min, invdelta, nbins);
	vector int maxindex = GetBinSIMD(*baabb_min, *baabb_max, *aabb_max, invdelta, nbins);

	mmb->minbins[minindex[0]].b[0]++;
	mmb->minbins[minindex[1]].b[1]++;
	mmb->minbins[minindex[2]].b[2]++;

	mmb->maxbins[maxindex[0]].b[0]++;
	mmb->maxbins[maxindex[1]].b[1]++;
	mmb->maxbins[maxindex[2]].b[2]++;
}
コード例 #2
0
ファイル: spu_tri.c プロジェクト: CPFDSoftware-Tony/gmv
/**
 * Setup fragment shader inputs by evaluating triangle's vertex
 * attribute coefficient info.
 * \param x  quad x pos
 * \param y  quad y pos
 * \param fragZ  returns quad Z values
 * \param fragInputs  returns fragment program inputs
 * Note: this code could be incorporated into the fragment program
 * itself to avoid the loop and switch.
 */
static void
eval_inputs(float x, float y, vector float *fragZ, vector float fragInputs[])
{
   static const vector float deltaX = (const vector float) {0, 1, 0, 1};
   static const vector float deltaY = (const vector float) {0, 0, 1, 1};

   const uint posSlot = 0;
   const vector float pos = setup.coef[posSlot].a0;
   const vector float dposdx = setup.coef[posSlot].dadx;
   const vector float dposdy = setup.coef[posSlot].dady;
   const vector float fragX = spu_splats(x) + deltaX;
   const vector float fragY = spu_splats(y) + deltaY;
   vector float fragW, wInv;
   uint i;

   *fragZ = splatz(pos) + fragX * splatz(dposdx) + fragY * splatz(dposdy);
   fragW =  splatw(pos) + fragX * splatw(dposdx) + fragY * splatw(dposdy);
   wInv = spu_re(fragW);  /* 1 / w */

   /* loop over fragment program inputs */
   for (i = 0; i < spu.vertex_info.num_attribs; i++) {
      uint attr = i + 1;
      enum interp_mode interp = spu.vertex_info.attrib[attr].interp_mode;

      /* constant term */
      vector float a0 = setup.coef[attr].a0;
      vector float r0 = splatx(a0);
      vector float r1 = splaty(a0);
      vector float r2 = splatz(a0);
      vector float r3 = splatw(a0);

      if (interp == INTERP_LINEAR || interp == INTERP_PERSPECTIVE) {
         /* linear term */
         vector float dadx = setup.coef[attr].dadx;
         vector float dady = setup.coef[attr].dady;
         /* Use SPU intrinsics here to get slightly better code.
          * originally: r0 += fragX * splatx(dadx) + fragY * splatx(dady);
          */
         r0 = spu_madd(fragX, splatx(dadx), spu_madd(fragY, splatx(dady), r0));
         r1 = spu_madd(fragX, splaty(dadx), spu_madd(fragY, splaty(dady), r1));
         r2 = spu_madd(fragX, splatz(dadx), spu_madd(fragY, splatz(dady), r2));
         r3 = spu_madd(fragX, splatw(dadx), spu_madd(fragY, splatw(dady), r3));
         if (interp == INTERP_PERSPECTIVE) {
            /* perspective term */
            r0 *= wInv;
            r1 *= wInv;
            r2 *= wInv;
            r3 *= wInv;
         }
      }
      fragInputs[CHAN0] = r0;
      fragInputs[CHAN1] = r1;
      fragInputs[CHAN2] = r2;
      fragInputs[CHAN3] = r3;
      fragInputs += 4;
   }
}


/**
 * Emit a quad (pass to next stage).  No clipping is done.
 * Note: about 1/5 to 1/7 of the time, mask is zero and this function
 * should be skipped.  But adding the test for that slows things down
 * overall.
 */
static INLINE void
emit_quad( int x, int y, mask_t mask)
{
   /* If any bits in mask are set... */
   if (spu_extract(spu_orx(mask), 0)) {
      const int ix = x - setup.cliprect_minx;
      const int iy = y - setup.cliprect_miny;

      spu.cur_ctile_status = TILE_STATUS_DIRTY;
      spu.cur_ztile_status = TILE_STATUS_DIRTY;

      {
         /*
          * Run fragment shader, execute per-fragment ops, update fb/tile.
          */
         vector float inputs[4*4], outputs[2*4];
         vector unsigned int kill_mask;
         vector float fragZ;

         eval_inputs((float) x, (float) y, &fragZ, inputs);

         ASSERT(spu.fragment_program);
         ASSERT(spu.fragment_ops);

         /* Execute the current fragment program */
         kill_mask = spu.fragment_program(inputs, outputs, spu.constants);

         mask = spu_andc(mask, kill_mask);

         /* Execute per-fragment/quad operations, including:
          * alpha test, z test, stencil test, blend and framebuffer writing.
          * Note that there are two different fragment operations functions
          * that can be called, one for front-facing fragments, and one
          * for back-facing fragments.  (Often the two are the same;
          * but in some cases, like two-sided stenciling, they can be
          * very different.)  So choose the correct function depending
          * on the calculated facing.
          */
         spu.fragment_ops[setup.facing](ix, iy, &spu.ctile, &spu.ztile,
                          fragZ,
                          outputs[0*4+0],
                          outputs[0*4+1],
                          outputs[0*4+2],
                          outputs[0*4+3],
                          mask);
      }
   }
}


/**
 * Given an X or Y coordinate, return the block/quad coordinate that it
 * belongs to.
 */
static INLINE int
block(int x)
{
   return x & ~1;
}


/**
 * Render a horizontal span of quads
 */
static void
flush_spans(void)
{
   int minleft, maxright;

   const int l0 = spu_extract(setup.span.quad, 0);
   const int l1 = spu_extract(setup.span.quad, 1);
   const int r0 = spu_extract(setup.span.quad, 2);
   const int r1 = spu_extract(setup.span.quad, 3);

   switch (setup.span.y_flags) {
   case 0x3:
      /* both odd and even lines written (both quad rows) */
      minleft = MIN2(l0, l1);
      maxright = MAX2(r0, r1);
      break;

   case 0x1:
      /* only even line written (quad top row) */
      minleft = l0;
      maxright = r0;
      break;

   case 0x2:
      /* only odd line written (quad bottom row) */
      minleft = l1;
      maxright = r1;
      break;

   default:
      return;
   }

   /* OK, we're very likely to need the tile data now.
    * clear or finish waiting if needed.
    */
   if (spu.cur_ctile_status == TILE_STATUS_GETTING) {
      /* wait for mfc_get() to complete */
      //printf("SPU: %u: waiting for ctile\n", spu.init.id);
      wait_on_mask(1 << TAG_READ_TILE_COLOR);
      spu.cur_ctile_status = TILE_STATUS_CLEAN;
   }
   else if (spu.cur_ctile_status == TILE_STATUS_CLEAR) {
      //printf("SPU %u: clearing C tile %u, %u\n", spu.init.id, setup.tx, setup.ty);
      clear_c_tile(&spu.ctile);
      spu.cur_ctile_status = TILE_STATUS_DIRTY;
   }
   ASSERT(spu.cur_ctile_status != TILE_STATUS_DEFINED);

   if (spu.read_depth_stencil) {
      if (spu.cur_ztile_status == TILE_STATUS_GETTING) {
         /* wait for mfc_get() to complete */
         //printf("SPU: %u: waiting for ztile\n", spu.init.id);
         wait_on_mask(1 << TAG_READ_TILE_Z);
         spu.cur_ztile_status = TILE_STATUS_CLEAN;
      }
      else if (spu.cur_ztile_status == TILE_STATUS_CLEAR) {
         //printf("SPU %u: clearing Z tile %u, %u\n", spu.init.id, setup.tx, setup.ty);
         clear_z_tile(&spu.ztile);
         spu.cur_ztile_status = TILE_STATUS_DIRTY;
      }
      ASSERT(spu.cur_ztile_status != TILE_STATUS_DEFINED);
   }

   /* XXX this loop could be moved into the above switch cases... */
   
   /* Setup for mask calculation */
   const vec_int4 quad_LlRr = setup.span.quad;
   const vec_int4 quad_RrLl = spu_rlqwbyte(quad_LlRr, 8);
   const vec_int4 quad_LLll = spu_shuffle(quad_LlRr, quad_LlRr, SHUFFLE4(A,A,B,B));
   const vec_int4 quad_RRrr = spu_shuffle(quad_RrLl, quad_RrLl, SHUFFLE4(A,A,B,B));

   const vec_int4 twos = spu_splats(2);

   const int x = block(minleft);
   vec_int4 xs = {x, x+1, x, x+1};

   for (; spu_extract(xs, 0) <= block(maxright); xs += twos) {
      /**
       * Computes mask to indicate which pixels in the 2x2 quad are actually
       * inside the triangle's bounds.
       */
      
      /* Calculate ({x,x+1,x,x+1} >= {l[0],l[0],l[1],l[1]}) */
      const mask_t gt_LLll_xs = spu_cmpgt(quad_LLll, xs);
      const mask_t gte_xs_LLll = spu_nand(gt_LLll_xs, gt_LLll_xs); 
      
      /* Calculate ({r[0],r[0],r[1],r[1]} > {x,x+1,x,x+1}) */
      const mask_t gt_RRrr_xs = spu_cmpgt(quad_RRrr, xs);

      /* Combine results to create mask */
      const mask_t mask = spu_and(gte_xs_LLll, gt_RRrr_xs);

      emit_quad(spu_extract(xs, 0), setup.span.y, mask);
   }

   setup.span.y = 0;
   setup.span.y_flags = 0;
   /* Zero right elements */
   setup.span.quad = spu_shuffle(setup.span.quad, setup.span.quad, SHUFFLE4(A,B,0,0));
}


#if DEBUG_VERTS
static void
print_vertex(const struct vertex_header *v)
{
   uint i;
   fprintf(stderr, "  Vertex: (%p)\n", v);
   for (i = 0; i < spu.vertex_info.num_attribs; i++) {
      fprintf(stderr, "    %d: %f %f %f %f\n",  i, 
              spu_extract(v->data[i], 0),
              spu_extract(v->data[i], 1),
              spu_extract(v->data[i], 2),
              spu_extract(v->data[i], 3));
   }
}
コード例 #3
0
ファイル: main.c プロジェクト: zerkman/fractal
void draw_frame(uint64_t buf_ea) {
    vec_uint4 buf[2*1920/4];
    int row, col, i, tag = 0;
    float step = 4.0f/spu.width*spu.zoom;
    float xbeg = spu.xc - spu.width*step*0.5f;
    vec_float4 vxbeg = spu_splats(xbeg)
    + spu_splats(step) * (vec_float4) {
        0.f,1.f,2.f,3.f
    };
    vec_float4 xstep = spu_splats(step)*spu_splats(4.f);
    vec_float4 vyp = spu_splats(spu.yc - spu.height*step*0.5f + step*spu.rank);
    const vec_float4 vinc = spu_splats(spu.count * step);
    const vec_float4 esc2 = spu_splats(BAILOUT*BAILOUT);
#if BAILBITS != 1
    const vec_float4 esc21 = spu_splats(4.f/(BAILOUT*BAILOUT));
#endif
    const vec_float4 two = spu_splats(2.f);
    const vec_float4 zero = spu_splats(0.f);
    const vec_float4 colsc = spu_splats(255.f);
    const vec_float4 ccr = spu_splats(4.f*BAILOUT/(3.5f*3.141592654f));
    const vec_float4 ccg = spu_splats(4.f*BAILOUT/(5.f*3.141592654f));
    const vec_float4 ccb = spu_splats(4.f*BAILOUT/(9.f*3.141592654f));
    vec_float4 x, y, x2, y2, m2, vxp;
    vec_uint4 cmp, inc;
    vec_uint4 vi;
    vec_uint4 *p, *b;
    vec_float4 co;

    /* Process the full image. As there are 6 SPUs working in parallel, each with
     * a different rank from 0 to 5, each SPU processes only the line numbers:
     * rank, rank+6, rank+12, ...
     * The program uses a SPU DMA programming technique known as "double buffering",
     * where the previously generated line is transmitted to main memory while we
     * compute the next one, hence the need for a local buffer containing two lines.
     */
    for (row = spu.rank; row < spu.height; row += spu.count) {
        /* Pixel buffer address (in local memory) of the next line to be drawn */
        b = p = buf + ((1920/4)&-tag);
        vxp = vxbeg; /* first four x coordinates */
        /* Process a whole screen line by packets of 4 pixels */
        for (col = spu.width/4; col > 0 ; col--) {
            vi = spu_splats(0u);
            x = vxp;
            y = vyp;
            i = 0;
            cmp = spu_splats(-1u);
            inc = spu_splats(1u);
            m2 = zero;

            /* This loop processes the Mandelbrot suite for the four complex numbers
             * whose real part are the components of the x vector, and the imaginary
             * part are in y (as we process the same line, all initial values of y
             * are equal).
             * We perform loop unrolling for SPU performance optimization reasons,
             * hence the 4x replication of the same computation block.
             */
            do {
                x2 = x*x;
                y2 = y*y;
                m2 = spu_sel(m2, x2+y2, cmp);
                cmp = spu_cmpgt(esc2, m2);
                inc = spu_and(inc, cmp); /* increment the iteration count only if */
                vi = vi + inc;           /* we're still inside the bailout radius */
                y = two*x*y + vyp;
                x = x2-y2 + vxp;

                x2 = x*x;
                y2 = y*y;
                m2 = spu_sel(m2, x2+y2, cmp);
                cmp = spu_cmpgt(esc2, m2);
                inc = spu_and(inc, cmp);
                vi = vi + inc;
                y = two*x*y + vyp;
                x = x2-y2 + vxp;

                x2 = x*x;
                y2 = y*y;
                m2 = spu_sel(m2, x2+y2, cmp);
                cmp = spu_cmpgt(esc2, m2);
                inc = spu_and(inc, cmp);
                vi = vi + inc;
                y = two*x*y + vyp;
                x = x2-y2 + vxp;

                x2 = x*x;
                y2 = y*y;
                m2 = spu_sel(m2, x2+y2, cmp);
                cmp = spu_cmpgt(esc2, m2);
                inc = spu_and(inc, cmp);
                vi = vi + inc;
                y = two*x*y + vyp;
                x = x2-y2 + vxp;

                i += 4;
            }
            /* Exit the loop only if the iteration limit of 128 has been reached,
             * or all current four points are outside the bailout radius.
             * The __builtin_expect(xxx, 1) construct hints the compiler that the xxx
             * test has greater chance of being true (1), so a branch hinting
             * instruction is inserted into the binary code to make the conditional
             * branch faster in most cases (except the last one when we exit the
             * loop). This results in performance increase.
             */
            while (__builtin_expect((i < 128) &
                                    (si_to_int((qword)spu_gather(cmp)) != 0), 1));
            /* smooth coloring: compute the fractional part */
            co = spu_convtf(vi, 0) + spu_splats(1.f);
            co -= fast_logf(fast_logf(m2) * spu_splats(.5f));
#if BAILBITS != 1
            co = spu_re(spu_rsqrte(co*esc21));
#endif
            /* Compute the red, green an blue pixel components */
            vec_uint4 cr = spu_convtu(mcos(co * ccr) * colsc, 0);
            vec_uint4 cg = spu_convtu(mcos(co * ccg) * colsc, 0);
            vec_uint4 cb = spu_convtu(mcos(co * ccb) * colsc, 0);
            /* Put the 4 pixel values in the buffer */
            *p++ = (spu_sl(cr, 16) | spu_sl(cg, 8) | cb) & ~-inc;

            vxp += xstep;
        }

        /* double-buffered dma: initiate a dma transfer of last computed scanline
         * then wait for completion of the second last transfer (previous computed
         * line). This is done by changing the tag value.
         */
        mfc_put(b, buf_ea+(spu.width*4)*row, spu.width*4, tag, 0, 0);
        tag = 1 - tag;
        wait_for_completion(tag);
        vyp += vinc;
    }
    /* wait for completion of last sent image line */
    wait_for_completion(1-tag);
}
コード例 #4
0
vector double
__divv2df3 (vector double a_in, vector double b_in)
{
    /* Variables */
    vec_int4    exp, exp_bias;
    vec_uint4   no_underflow, overflow;
    vec_float4  mant_bf, inv_bf;
    vec_ullong2 exp_a, exp_b;
    vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0;
    vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0;
    vec_ullong2 nan;
    vec_uint4   a_exp, b_exp;
    vec_ullong2 a_mant_0, b_mant_0;
    vec_ullong2 a_exp_1s, b_exp_1s;
    vec_ullong2 sign_exp_mask;

    vec_double2 a, b;
    vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;

    /* Constants */
    vec_uint4   exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
    vec_uchar16 splat_hi = (vec_uchar16) {
        0,1,2,3, 0,1,2,3,  8, 9,10,11, 8,9,10,11
    };
    vec_uchar16 swap_32 = (vec_uchar16) {
        4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11
    };
    vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
    vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
    vec_float4  onef = spu_splats(1.0f);
    vec_double2 one = spu_splats(1.0);
    vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);

    sign_exp_mask = spu_or(sign_mask, exp_mask);

    /* Extract the floating point components from each of the operands including
     * exponent and mantissa.
     */
    a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
    a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
    b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
    b_exp = spu_shuffle(b_exp, b_exp, splat_hi);

    a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
    a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));

    b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
    b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));

    a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
    b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);

    /* Identify all possible special values that must be accommodated including:
     * +-denorm, +-0, +-infinity, and NaNs.
     */
    a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0);
    a_nan    = spu_andc(a_exp_1s, a_mant_0);
    a_zero   = spu_and (a_denorm0, a_mant_0);
    a_inf    = spu_and (a_exp_1s, a_mant_0);
    a_denorm = spu_andc(a_denorm0, a_zero);

    b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0);
    b_nan    = spu_andc(b_exp_1s, b_mant_0);
    b_zero   = spu_and (b_denorm0, b_mant_0);
    b_inf    = spu_and (b_exp_1s, b_mant_0);
    b_denorm = spu_andc(b_denorm0, b_zero);

    /* Scale denorm inputs to into normalized numbers by conditionally scaling the
     * input parameters.
     */
    a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
    a = spu_sel(a_in, a, a_denorm);

    b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
    b = spu_sel(b_in, b, b_denorm);

    /* Extract the divisor and dividend exponent and force parameters into the signed
     * range [1.0,2.0) or [-1.0,2.0).
     */
    exp_a = spu_and((vec_ullong2)a, exp_mask);
    exp_b = spu_and((vec_ullong2)b, exp_mask);

    mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
    mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);

    /* Approximate the single reciprocal of b by using
     * the single precision reciprocal estimate followed by one
     * single precision iteration of Newton-Raphson.
     */
    mant_bf = spu_roundtf(mant_b);
    inv_bf = spu_re(mant_bf);
    inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);

    /* Perform 2 more Newton-Raphson iterations in double precision. The
     * result (q1) is in the range (0.5, 2.0).
     */
    inv_b = spu_extend(inv_bf);
    inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
    q0 = spu_mul(mant_a, inv_b);
    q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);

    /* Determine the exponent correction factor that must be applied
     * to q1 by taking into account the exponent of the normalized inputs
     * and the scale factors that were applied to normalize them.
     */
    exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
    exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));

    /* Bias the quotient exponent depending on the sign of the exponent correction
     * factor so that a single multiplier will ensure the entire double precision
     * domain (including denorms) can be achieved.
     *
     *    exp 	       bias q1     adjust exp
     *   =====	       ========    ==========
     *   positive         2^+65         -65
     *   negative         2^-64         +64
     */
    exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
    exp = spu_sub(exp, exp_bias);

    q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);

    /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
     * expected result. On overflow, clamp the multiplier to the maximum non-infinite
     * number in case the rounding mode is not round-to-nearest.
     */
    exp = spu_add(exp, 0x3FF);
    no_underflow = spu_cmpgt(exp, 0);
    overflow = spu_cmpgt(exp, 0x7FE);
    exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
    exp = spu_and(exp, (vec_int4)exp_mask);

    mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow);

    /* Handle special value conditions. These include:
     *
     * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
     *    results.
     * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
     * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
     */
    mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
    mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));

    nan = spu_or(a_nan, b_nan);
    nan = spu_or(nan, spu_and(a_zero, b_zero));
    nan = spu_or(nan, spu_and(a_inf, b_inf));

    mult = spu_or(mult, (vec_double2)nan);

    /* Scale the final quotient */

    q2 = spu_mul(q1, mult);

    return (q2);
}