/* * SQLite manages explicit transactions by setting a flag when a BEGIN; is * issued, then starting an actual transaction in the btree layer when the * first operation happens (a read txn if it's a read op, a write txn if write) * Then each statement will be contained in a sub-transaction. Since sequences * are implemented using a custom function, we need to emulate that * functionality. So there are three cases here: * - Not in an explicit transaction - start a statement, since we might do * write operations, and thus we need a valid statement_txn. * - In an explicit transaction, and the first statement. Start a txn and a statement txn. * - In an explicit transaction and not the first statemetn. Start a statement * transaction. * * The SQLite vdbe will take care of closing the statement transaction for us, * so we don't need to worry about that. * * Caching sequences can't be transactionally protected, so it's a no-op in * that case (and this function should not be called). * * It's safe to call this method multiple times since both * sqlite3BtreeBeginTrans and sqlite3BtreeBeginStmt are no-ops on subsequent * calls. */ static int btreeSeqStartTransaction( sqlite3_context *context, Btree *p, int is_write) { sqlite3 *db; Vdbe *vdbe; int rc; db = sqlite3_context_db_handle(context); /* * TODO: This is actually a linked list of VDBEs, not necessarily * the vdbe we want. I can't see a way to get the correct * vdbe handle. * It's possible that there is only one VDBE handle in DB, since * we use a shared cache. */ vdbe = db->pVdbe; if (!sqlite3BtreeIsInTrans(p) && (rc = btreeBeginTransInternal(p, 1)) != SQLITE_OK) { btreeSeqError(context, SQLITE_ERROR, "Could not begin transaction."); return (rc); } /* * TODO: Do we need logic bumping the VDBE statement count here? * vdbe.c:OP_Transaction does, but adding it here causes an * assert failure. It should be OK, because this code is only * really relevant in the case where there is a single statement. */ rc = sqlite3BtreeBeginStmt(p, vdbe->iStatement); return (rc); }
/* ** Rollback all database files. */ void sqlite3RollbackAll(sqlite3 *db){ int i; int inTrans = 0; assert( sqlite3_mutex_held(db->mutex) ); sqlite3MallocEnterBenignBlock(1); /* Enter benign region */ for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt ){ if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ inTrans = 1; } sqlite3BtreeRollback(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } sqlite3VtabRollback(db); sqlite3MallocLeaveBenignBlock(); /* Leave benign region */ if( db->flags&SQLITE_InternChanges ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, 0); } /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } }
/* ** Rollback all database files. */ void sqlite3RollbackAll(sqlite3 *db){ int i; int inTrans = 0; assert( sqlite3_mutex_held(db->mutex) ); sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt ){ if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ inTrans = 1; } sqlite3BtreeRollback(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } sqlite3VtabRollback(db); sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0); if( db->flags&SQLITE_InternChanges ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetInternalSchema(db, 0); } /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } }
/* ** Rollback all database files. */ void sqlite3RollbackAll(sqlite3 *db){ int i; int inTrans = 0; for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt ){ if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ inTrans = 1; } sqlite3BtreeRollback(db->aDb[i].pBt); db->aDb[i].inTrans = 0; } } if( db->flags&SQLITE_InternChanges ){ sqlite3ResetInternalSchema(db, 0); } /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } }
/* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ const char *zFilename; /* full pathname of the database file */ int nFilename; /* number of characters in zFilename[] */ char *zTemp = 0; /* a temporary file in same directory as zFilename */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; char *zSql = 0; int saved_flags; /* Saved value of the db->flags */ Db *pDb = 0; /* Database to detach at end of vacuum */ /* Save the current value of the write-schema flag before setting it. */ saved_flags = db->flags; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", (char*)0); rc = SQLITE_ERROR; goto end_of_vacuum; } /* Get the full pathname of the database file and create a ** temporary filename in the same directory as the original file. */ pMain = db->aDb[0].pBt; zFilename = sqlite3BtreeGetFilename(pMain); assert( zFilename ); if( zFilename[0]=='\0' ){ /* The in-memory database. Do nothing. Return directly to avoid causing ** an error trying to DETACH the vacuum_db (which never got attached) ** in the exit-handler. */ return SQLITE_OK; } nFilename = strlen(zFilename); zTemp = sqliteMalloc( nFilename+100 ); if( zTemp==0 ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } strcpy(zTemp, zFilename); /* The randomName() procedure in the following loop uses an excellent ** source of randomness to generate a name from a space of 1.3e+31 ** possibilities. So unless the directory already contains on the order ** of 1.3e+31 files, the probability that the following loop will ** run more than once or twice is vanishingly small. We are certain ** enough that this loop will always terminate (and terminate quickly) ** that we don't even bother to set a maximum loop count. */ do { zTemp[nFilename] = '-'; randomName((unsigned char*)&zTemp[nFilename+1]); } while( sqlite3OsFileExists(zTemp) ); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. */ zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp); if( !zSql ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } rc = execSql(db, zSql); sqliteFree(zSql); zSql = 0; if( rc!=SQLITE_OK ) goto end_of_vacuum; pDb = &db->aDb[db->nDb-1]; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), sqlite3BtreeGetReserve(pMain)); assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) ); rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); if( rc!=SQLITE_OK ){ goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Begin a transaction */ rc = execSql(db, "BEGIN EXCLUSIVE;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)" " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSql(db, "INSERT INTO vacuum_db.sqlite_master " " SELECT type, name, tbl_name, rootpage, sql" " FROM sqlite_master" " WHERE type='view' OR type='trigger'" " OR (type='table' AND rootpage=0)" ); if( rc ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( rc==SQLITE_OK ){ u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { 1, 1, /* Add one to the old schema cookie */ 3, 0, /* Preserve the default page cache size */ 5, 0, /* Preserve the default text encoding */ 6, 0, /* Preserve the user version */ }; assert( 1==sqlite3BtreeIsInTrans(pTemp) ); assert( 1==sqlite3BtreeIsInTrans(pMain) ); /* Copy Btree meta values */ for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){ rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); if( rc!=SQLITE_OK ) goto end_of_vacuum; } rc = sqlite3BtreeCopyFile(pMain, pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pMain); } end_of_vacuum: /* Restore the original value of db->flags */ db->flags = saved_flags; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3MallocDisallow(); sqlite3BtreeClose(pDb->pBt); sqlite3MallocAllow(); pDb->pBt = 0; pDb->pSchema = 0; } if( zTemp ){ sqlite3OsDelete(zTemp); sqliteFree(zTemp); } sqliteFree( zSql ); sqlite3ResetInternalSchema(db, 0); return rc; }
/* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Pager *pMainPager; /* Pager for database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ char *zSql = 0; /* SQL statements */ int saved_flags; /* Saved value of the db->flags */ int saved_nChange; /* Saved value of db->nChange */ int saved_nTotalChange; /* Saved value of db->nTotalChange */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True is vacuuming a :memory: database */ int nRes; /* Save the current value of the write-schema flag before setting it. */ saved_flags = db->flags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); rc = SQLITE_ERROR; goto end_of_vacuum; } pMain = db->aDb[0].pBt; pMainPager = sqlite3BtreePager(pMain); isMemDb = sqlite3PagerFile(pMainPager)->pMethods==0; /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ zSql = "ATTACH '' AS vacuum_db;"; rc = execSql(db, zSql); if( rc!=SQLITE_OK ) goto end_of_vacuum; pDb = &db->aDb[db->nDb-1]; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; nRes = sqlite3BtreeGetReserve(pMain); /* A VACUUM cannot change the pagesize of an encrypted database. */ #ifdef SQLITE_HAS_CODEC if( db->nextPagesize ){ extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); if( nKey ) db->nextPagesize = 0; } #endif if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes)) || db->mallocFailed ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); if( rc!=SQLITE_OK ){ goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Begin a transaction */ rc = execSql(db, "BEGIN EXCLUSIVE;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) " " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)" " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table' AND name!='sqlite_sequence' " " AND rootpage>0" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy over the sequence table */ rc = execExecSql(db, "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';' " "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSql(db, "INSERT INTO vacuum_db.sqlite_master " " SELECT type, name, tbl_name, rootpage, sql" " FROM sqlite_master" " WHERE type='view' OR type='trigger'" " OR (type='table' AND rootpage=0)" ); if( rc ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( rc==SQLITE_OK ){ u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { 1, 1, /* Add one to the old schema cookie */ 3, 0, /* Preserve the default page cache size */ 5, 0, /* Preserve the default text encoding */ 6, 0, /* Preserve the user version */ }; assert( 1==sqlite3BtreeIsInTrans(pTemp) ); assert( 1==sqlite3BtreeIsInTrans(pMain) ); /* Copy Btree meta values */ for(i=0; i<ArraySize(aCopy); i+=2){ rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); if( rc!=SQLITE_OK ) goto end_of_vacuum; } rc = sqlite3BtreeCopyFile(pMain, pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp)); #endif rc = sqlite3BtreeCommit(pMain); } if( rc==SQLITE_OK ){ rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes); } end_of_vacuum: /* Restore the original value of db->flags */ db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } sqlite3ResetInternalSchema(db, 0); return rc; }
/* CHANGE 1 of 3: Add function parameter nRes */ SQLITE_PRIVATE int sqlite3RunVacuumForRekey(char **pzErrMsg, sqlite3 *db, int iDb, int nRes){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ u16 saved_mDbFlags; /* Saved value of db->mDbFlags */ u32 saved_flags; /* Saved value of db->flags */ int saved_nChange; /* Saved value of db->nChange */ int saved_nTotalChange; /* Saved value of db->nTotalChange */ u8 saved_mTrace; /* Saved trace settings */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ /* CHANGE 2 of 3: Do not define local variable nRes */ /*int nRes;*/ /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ const char *zDbMain; /* Schema name of database to vacuum */ if (!db->autoCommit) { sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; } if (db->nVdbeActive>1) { sqlite3SetString(pzErrMsg, db, "cannot VACUUM - SQL statements in progress"); return SQLITE_ERROR; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_CountRows); db->mTrace = 0; zDbMain = db->aDb[iDb].zDbSName; pMain = db->aDb[iDb].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ nDb = db->nDb; rc = execSql(db, pzErrMsg, "ATTACH''AS vacuum_db"); if (rc != SQLITE_OK) goto end_of_vacuum; assert((db->nDb - 1) == nDb); pDb = &db->aDb[nDb]; assert(strcmp(pDb->zDbSName, "vacuum_db") == 0); pTemp = pDb->pBt; /* The call to execSql() to attach the temp database has left the file ** locked (as there was more than one active statement when the transaction ** to read the schema was concluded. Unlock it here so that this doesn't ** cause problems for the call to BtreeSetPageSize() below. */ sqlite3BtreeCommit(pTemp); /* CHANGE 3 of 3: Do not call sqlite3BtreeGetOptimalReserve */ /* nRes = sqlite3BtreeGetOptimalReserve(pMain); */ /* A VACUUM cannot change the pagesize of an encrypted database. */ #ifdef SQLITE_HAS_CODEC if (db->nextPagesize) { extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; sqlite3CodecGetKey(db, iDb, (void**)&zKey, &nKey); if (nKey) db->nextPagesize = 0; } #endif sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size); sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain, 0)); sqlite3BtreeSetPagerFlags(pTemp, PAGER_SYNCHRONOUS_OFF | PAGER_CACHESPILL); /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if (rc != SQLITE_OK) goto end_of_vacuum; rc = sqlite3BtreeBeginTrans(pMain, 2); if (rc != SQLITE_OK) goto end_of_vacuum; /* Do not attempt to change the page size for a WAL database */ if (sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) == PAGER_JOURNALMODE_WAL) { db->nextPagesize = 0; } if (sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) || NEVER(db->mallocFailed) ) { rc = SQLITE_NOMEM_BKPT; goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac >= 0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */ rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_master" " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if (rc != SQLITE_OK) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_master" " WHERE type='index'", zDbMain ); if (rc != SQLITE_OK) goto end_of_vacuum; db->init.iDb = 0; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ rc = execSqlF(db, pzErrMsg, "SELECT'INSERT INTO vacuum_db.'||quote(name)" "||' SELECT*FROM\"%w\".'||quote(name)" "FROM vacuum_db.sqlite_master " "WHERE type='table'AND coalesce(rootpage,1)>0", zDbMain ); assert((db->mDbFlags & DBFLAG_Vacuum) != 0); db->mDbFlags &= ~DBFLAG_Vacuum; if (rc != SQLITE_OK) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the SQLITE_MASTER table. */ rc = execSqlF(db, pzErrMsg, "INSERT INTO vacuum_db.sqlite_master" " SELECT*FROM \"%w\".sqlite_master" " WHERE type IN('view','trigger')" " OR(type='table'AND rootpage=0)", zDbMain ); if (rc) goto end_of_vacuum; /* At this point, there is a write transaction open on both the ** vacuum database and the main database. Assuming no error occurs, ** both transactions are closed by this block - the main database ** transaction by sqlite3BtreeCopyFile() and the other by an explicit ** call to sqlite3BtreeCommit(). */ { u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; assert(1 == sqlite3BtreeIsInTrans(pTemp)); assert(1 == sqlite3BtreeIsInTrans(pMain)); /* Copy Btree meta values */ for (i = 0; i<ArraySize(aCopy); i += 2) { /* GetMeta() and UpdateMeta() cannot fail in this context because ** we already have page 1 loaded into cache and marked dirty. */ sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta + aCopy[i + 1]); if (NEVER(rc != SQLITE_OK)) goto end_of_vacuum; } rc = sqlite3BtreeCopyFile(pMain, pTemp); if (rc != SQLITE_OK) goto end_of_vacuum; rc = sqlite3BtreeCommit(pTemp); if (rc != SQLITE_OK) goto end_of_vacuum; #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp)); #endif } assert(rc == SQLITE_OK); rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes, 1); end_of_vacuum: /* Restore the original value of db->flags */ db->init.iDb = 0; db->mDbFlags = saved_mDbFlags; db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->mTrace = saved_mTrace; sqlite3BtreeSetPageSize(pMain, -1, -1, 1); /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if (pDb) { sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } /* This both clears the schemas and reduces the size of the db->aDb[] ** array. */ sqlite3ResetAllSchemasOfConnection(db); return rc; }
/* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a ** write-transaction spanning more than one database file, this routine ** takes care of the master journal trickery. */ static int vdbeCommit(sqlite3 *db){ int i; int nTrans = 0; /* Number of databases with an active write-transaction */ int rc = SQLITE_OK; int needXcommit = 0; for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeIsInTrans(pBt) ){ needXcommit = 1; if( i!=1 ) nTrans++; } } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ int rc; sqlite3SafetyOff(db); rc = db->xCommitCallback(db->pCommitArg); sqlite3SafetyOn(db); if( rc ){ return SQLITE_CONSTRAINT; } } /* The simple case - no more than one database file (not counting the ** TEMP database) has a transaction active. There is no need for the ** master-journal. ** ** If the return value of sqlite3BtreeGetFilename() is a zero length ** string, it means the main database is :memory:. In that case we do ** not support atomic multi-file commits, so use the simple case then ** too. */ if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeSync(pBt, 0); } } /* Do the commit only if all databases successfully synced */ if( rc==SQLITE_OK ){ for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommit(pBt); } } } } /* The complex case - There is a multi-file write-transaction active. ** This requires a master journal file to ensure the transaction is ** committed atomicly. */ else{ char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); OsFile master; /* Select a master journal file name */ do { u32 random; sqliteFree(zMaster); sqlite3Randomness(sizeof(random), &random); zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff); if( !zMaster ){ return SQLITE_NOMEM; } }while( sqlite3OsFileExists(zMaster) ); /* Open the master journal. */ memset(&master, 0, sizeof(master)); rc = sqlite3OsOpenExclusive(zMaster, &master, 0); if( rc!=SQLITE_OK ){ sqliteFree(zMaster); return rc; } /* Write the name of each database file in the transaction into the new ** master journal file. If an error occurs at this point close ** and delete the master journal file. All the individual journal files ** still have 'null' as the master journal pointer, so they will roll ** back independantly if a failure occurs. */ for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( i==1 ) continue; /* Ignore the TEMP database */ if( pBt && sqlite3BtreeIsInTrans(pBt) ){ char const *zFile = sqlite3BtreeGetJournalname(pBt); if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ rc = sqlite3OsWrite(&master, zFile, strlen(zFile)+1); if( rc!=SQLITE_OK ){ sqlite3OsClose(&master); sqlite3OsDelete(zMaster); sqliteFree(zMaster); return rc; } } } /* Sync the master journal file. Before doing this, open the directory ** the master journal file is store in so that it gets synced too. */ zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); rc = sqlite3OsOpenDirectory(zMainFile, &master); if( rc!=SQLITE_OK ){ sqlite3OsClose(&master); sqlite3OsDelete(zMaster); sqliteFree(zMaster); return rc; } rc = sqlite3OsSync(&master); if( rc!=SQLITE_OK ){ sqlite3OsClose(&master); sqliteFree(zMaster); return rc; } /* Sync all the db files involved in the transaction. The same call ** sets the master journal pointer in each individual journal. If ** an error occurs here, do not delete the master journal file. ** ** If the error occurs during the first call to sqlite3BtreeSync(), ** then there is a chance that the master journal file will be ** orphaned. But we cannot delete it, in case the master journal ** file name was written into the journal file before the failure ** occured. */ for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeIsInTrans(pBt) ){ rc = sqlite3BtreeSync(pBt, zMaster); if( rc!=SQLITE_OK ){ sqlite3OsClose(&master); sqliteFree(zMaster); return rc; } } } sqlite3OsClose(&master); /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete(zMaster); assert( rc==SQLITE_OK ); sqliteFree(zMaster); zMaster = 0; rc = sqlite3OsSyncDirectory(zMainFile); if( rc!=SQLITE_OK ){ /* This is not good. The master journal file has been deleted, but ** the directory sync failed. There is no completely safe course of ** action from here. The individual journals contain the name of the ** master journal file, but there is no way of knowing if that ** master journal exists now or if it will exist after the operating ** system crash that may follow the fsync() failure. */ assert(0); sqliteFree(zMaster); return rc; } /* All files and directories have already been synced, so the following ** calls to sqlite3BtreeCommit() are only closing files and deleting ** journals. If something goes wrong while this is happening we don't ** really care. The integrity of the transaction is already guaranteed, ** but some stray 'cold' journals may be lying around. Returning an ** error code won't help matters. */ for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ sqlite3BtreeCommit(pBt); } } } return rc; }
/* ** Copy nPage pages from the source b-tree to the destination. */ int sqlite3_backup_step(sqlite3_backup *p, int nPage) { int returnCode, pages; Parse parse; DB_ENV *dbenv; BtShared *pBtDest, *pBtSrc; pBtDest = pBtSrc = NULL; if (p->rc != SQLITE_OK || nPage == 0) return p->rc; sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3_mutex_enter(p->pDestDb->mutex); /* * Make sure the schema has been read in, so the keyInfo * can be retrieved for the indexes. No-op if already read. * If the schema has not been read then an update must have * changed it, so backup will restart. */ memset(&parse, 0, sizeof(parse)); parse.db = p->pSrcDb; p->rc = sqlite3ReadSchema(&parse); if (p->rc != SQLITE_OK) goto err; /* * This process updated the source database, so * the backup process has to restart. */ if (p->pSrc->updateDuringBackup > p->lastUpdate) { p->rc = SQLITE_LOCKED; if ((p->rc = backupCleanup(p)) != SQLITE_OK) goto err; else backupReset(p); } pages = nPage; if (!p->cleaned) { const char *home; const char inmem[9] = ":memory:"; int storage; pBtDest = p->pDest->pBt; storage = p->pDest->pBt->dbStorage; if (storage == DB_STORE_NAMED) p->openDest = 1; p->rc = btreeDeleteEnvironment(p->pDest, p->fullName, 1); if (storage == DB_STORE_INMEM && strcmp(p->destName, "temp") != 0) home = inmem; else home = p->fullName; p->pDest = p->pDestDb->aDb[p->iDb].pBt; if (p->rc != SQLITE_OK) goto err; /* * Call sqlite3OpenTempDatabase instead of * sqlite3BtreeOpen, because sqlite3OpenTempDatabase * automatically chooses the right flags before calling * sqlite3BtreeOpen. */ if (strcmp(p->destName, "temp") == 0) { memset(&parse, 0, sizeof(parse)); parse.db = p->pDestDb; p->rc = sqlite3OpenTempDatabase(&parse); p->pDest = p->pDestDb->aDb[p->iDb].pBt; } else { p->rc = sqlite3BtreeOpen(home, p->pDestDb, &p->pDest, SQLITE_DEFAULT_CACHE_SIZE | SQLITE_OPEN_MAIN_DB, p->pDestDb->openFlags); p->pDestDb->aDb[p->iDb].pBt = p->pDest; if (p->rc == SQLITE_OK) { p->pDestDb->aDb[p->iDb].pSchema = sqlite3SchemaGet(p->pDestDb, p->pDest); if (!p->pDestDb->aDb[p->iDb].pSchema) p->rc = SQLITE_NOMEM; } else p->pDestDb->aDb[p->iDb].pSchema = NULL; } if (p->pDest) p->pDest->nBackup++; #ifdef SQLITE_HAS_CODEC /* * In the case of a temporary source database, use the * encryption of the main database. */ if (strcmp(p->srcName, "temp") == 0) { int iDb = sqlite3FindDbName(p->pSrcDb, "main"); pBtSrc = p->pSrcDb->aDb[iDb].pBt->pBt; } else pBtSrc = p->pSrc->pBt; if (p->rc == SQLITE_OK) { if (p->iDb == 0) p->rc = sqlite3_key(p->pDestDb, pBtSrc->encrypt_pwd, pBtSrc->encrypt_pwd_len); else p->rc = sqlite3CodecAttach(p->pDestDb, p->iDb, pBtSrc->encrypt_pwd, pBtSrc->encrypt_pwd_len); } #endif if (p->rc != SQLITE_OK) goto err; p->cleaned = 1; } /* * Begin a transaction, unfortuantely the lock on * the schema has to be released to allow the sqlite_master * table to be cleared, which could allow another thread to * alter it, however accessing the backup database during * backup is already an illegal condition with undefined * results. */ if (!sqlite3BtreeIsInTrans(p->pDest)) { if (!p->pDest->connected) { p->rc = btreeOpenEnvironment(p->pDest, 1); if (p->rc != SQLITE_OK) goto err; } if ((p->rc = sqlite3BtreeBeginTrans(p->pDest, 2)) != SQLITE_OK) goto err; } /* Only this process should be accessing the backup environment. */ if (p->pDest->pBt->nRef > 1) { p->rc = SQLITE_BUSY; goto err; } /* * Begin a transaction, a lock error or update could have caused * it to be released in a previous call to step. */ if (!p->srcTxn) { dbenv = p->pSrc->pBt->dbenv; if ((p->rc = dberr2sqlite(dbenv->txn_begin(dbenv, p->pSrc->family_txn, &p->srcTxn, 0))) != SQLITE_OK) goto err; } /* * An update could have dropped or created a table, so recalculate * the list of tables. */ if (!p->tables) { if ((p->rc = btreeGetPageCount(p->pSrc, &p->tables, &p->nPagecount, p->srcTxn)) != SQLITE_OK) { sqlite3Error(p->pSrcDb, p->rc, 0); goto err; } p->nRemaining = p->nPagecount; } /* Copy the pages. */ p->rc = btreeCopyPages(p, &pages); if (p->rc == SQLITE_DONE) { p->nRemaining = 0; sqlite3ResetInternalSchema(p->pDestDb, p->iDb); memset(&parse, 0, sizeof(parse)); parse.db = p->pDestDb; p->rc = sqlite3ReadSchema(&parse); if (p->rc == SQLITE_OK) p->rc = SQLITE_DONE; } else if (p->rc != SQLITE_OK) goto err; /* * The number of pages left to copy is an estimate, so * do not let the number go to zero unless we are really * done. */ if (p->rc != SQLITE_DONE) { if ((u32)pages >= p->nRemaining) p->nRemaining = 1; else p->nRemaining -= pages; } err: /* * This process updated the source database, so * the backup process has to restart. */ if (p->pSrc->updateDuringBackup > p->lastUpdate && (p->rc == SQLITE_OK || p->rc == SQLITE_DONE)) { int cleanCode; returnCode = p->rc; p->rc = SQLITE_LOCKED; if ((cleanCode = backupCleanup(p)) != SQLITE_OK) returnCode = p->rc = cleanCode; else backupReset(p); } else { returnCode = backupCleanup(p); if (returnCode == SQLITE_OK || (p->rc != SQLITE_OK && p->rc != SQLITE_DONE)) returnCode = p->rc; else p->rc = returnCode; } /* * On a locked or busy error the backup process is rolled back, * but can be restarted by the user. */ if ( returnCode == SQLITE_LOCKED || returnCode == SQLITE_BUSY ) backupReset(p); else if ( returnCode != SQLITE_OK && returnCode != SQLITE_DONE ) { sqlite3Error(p->pDestDb, p->rc, 0); } sqlite3_mutex_leave(p->pDestDb->mutex); sqlite3_mutex_leave(p->pSrcDb->mutex); return (returnCode); }
/* Close or free all handles and commit or rollback the transaction. */ static int backupCleanup(sqlite3_backup *p) { int rc, rc2, ret; void *app; DB *db; rc = rc2 = SQLITE_OK; if (!p || p->rc == SQLITE_OK) return rc; rc2 = sqlite3BtreeCloseCursor(&p->destCur); if (rc2 != SQLITE_OK) rc = rc2; if (p->srcCur) { db = p->srcCur->dbp; app = db->app_private; if ((ret = p->srcCur->close(p->srcCur)) == 0) ret = db->close(db, DB_NOSYNC); rc2 = dberr2sqlite(ret); /* * The KeyInfo was allocated in btreeSetupIndex, * so have to deallocate it here. */ if (app) sqlite3DbFree(p->pSrcDb, app); } if (rc2 != SQLITE_OK) rc = rc2; p->srcCur = 0; /* * May retry on a locked or busy error, so keep * these values. */ if (p->rc != SQLITE_LOCKED && p->rc != SQLITE_BUSY) { if (p->srcName) sqlite3_free(p->srcName); if (p->destName != 0) sqlite3_free(p->destName); p->srcName = p->destName = NULL; } if (p->tables != 0) sqlite3_free(p->tables); p->tables = NULL; if (p->pSrc->nBackup) p->pSrc->nBackup--; if (p->pDest != NULL && p->pDest->nBackup) p->pDest->nBackup--; if (p->srcTxn) { if (p->rc == SQLITE_DONE) ret = p->srcTxn->commit(p->srcTxn, 0); else ret = p->srcTxn->abort(p->srcTxn); rc2 = dberr2sqlite(ret); } p->srcTxn = 0; if (rc2 != SQLITE_OK && sqlite3BtreeIsInTrans(p->pDest)) { rc = rc2; if (p->rc == SQLITE_DONE) rc2 = sqlite3BtreeCommit(p->pDest); else rc2 = sqlite3BtreeRollback(p->pDest); if (rc2 != SQLITE_OK) rc = rc2; } if (p->pDest && p->openDest) { char path[512]; /* * If successfully done then delete the old backup, if * an error then delete the current database and restore * the old backup. */ sqlite3_snprintf(sizeof(path), path, "%s%s", p->fullName, BACKUP_SUFFIX); if (p->rc == SQLITE_DONE) { rc2 = btreeDeleteEnvironment(p->pDest, path, 0); } else { rc2 = btreeDeleteEnvironment(p->pDest, p->fullName, 0); if (!__os_exists(NULL, path, 0)) __os_rename(NULL, path, p->fullName, 0); } if (rc == SQLITE_OK) rc = rc2; if (rc == SQLITE_OK) { p->pDest = NULL; p->pDestDb->aDb[p->iDb].pBt = NULL; p->openDest = 0; rc = sqlite3BtreeOpen(p->fullName, p->pDestDb, &p->pDest, SQLITE_DEFAULT_CACHE_SIZE | SQLITE_OPEN_MAIN_DB, p->pDestDb->openFlags); p->pDestDb->aDb[p->iDb].pBt = p->pDest; if (rc == SQLITE_OK) { p->pDestDb->aDb[p->iDb].pSchema = sqlite3SchemaGet(p->pDestDb, p->pDest); if (!p->pDestDb->aDb[p->iDb].pSchema) p->rc = SQLITE_NOMEM; } else p->pDestDb->aDb[p->iDb].pSchema = NULL; if (rc == SQLITE_OK) p->pDest->pBt->db_oflags |= DB_CREATE; /* * Have to delete the schema here on error to avoid * assert failure. */ if (p->pDest == NULL && p->pDestDb->aDb[p->iDb].pSchema != NULL) { sqlite3SchemaClear( p->pDestDb->aDb[p->iDb].pSchema); p->pDestDb->aDb[p->iDb].pSchema = NULL; } #ifdef SQLITE_HAS_CODEC if (rc == SQLITE_OK) { if (p->iDb == 0) rc = sqlite3_key(p->pDestDb, p->pSrc->pBt->encrypt_pwd, p->pSrc->pBt->encrypt_pwd_len); else rc = sqlite3CodecAttach(p->pDestDb, p->iDb, p->pSrc->pBt->encrypt_pwd, p->pSrc->pBt->encrypt_pwd_len); } #endif } } if (p->rc != SQLITE_LOCKED && p->rc != SQLITE_BUSY) { if (p->fullName != 0) sqlite3_free(p->fullName); p->fullName = NULL; } p->lastUpdate = p->pSrc->updateDuringBackup; return rc; }
int sqlcipher_codec_ctx_migrate(codec_ctx *ctx) { u32 meta; int rc = 0; int command_idx = 0; int password_sz; int saved_flags; int saved_nChange; int saved_nTotalChange; void (*saved_xTrace)(void*,const char*); Db *pDb = 0; sqlite3 *db = ctx->pBt->db; const char *db_filename = sqlite3_db_filename(db, "main"); char *migrated_db_filename = sqlite3_mprintf("%s-migrated", db_filename); char *pragma_hmac_off = "PRAGMA cipher_use_hmac = OFF;"; char *pragma_4k_kdf_iter = "PRAGMA kdf_iter = 4000;"; char *pragma_1x_and_4k; char *set_user_version; char *key; int key_sz; int user_version = 0; int upgrade_1x_format = 0; int upgrade_4k_format = 0; static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; key_sz = ctx->read_ctx->pass_sz + 1; key = sqlcipher_malloc(key_sz); memset(key, 0, key_sz); memcpy(key, ctx->read_ctx->pass, ctx->read_ctx->pass_sz); if(db_filename){ const char* commands[5]; char *attach_command = sqlite3_mprintf("ATTACH DATABASE '%s-migrated' as migrate KEY '%q';", db_filename, key); int rc = sqlcipher_check_connection(db_filename, key, ctx->read_ctx->pass_sz, "", &user_version); if(rc == SQLITE_OK){ CODEC_TRACE(("No upgrade required - exiting\n")); goto exit; } // Version 2 - check for 4k with hmac format rc = sqlcipher_check_connection(db_filename, key, ctx->read_ctx->pass_sz, pragma_4k_kdf_iter, &user_version); if(rc == SQLITE_OK) { CODEC_TRACE(("Version 2 format found\n")); upgrade_4k_format = 1; } // Version 1 - check both no hmac and 4k together pragma_1x_and_4k = sqlite3_mprintf("%s%s", pragma_hmac_off, pragma_4k_kdf_iter); rc = sqlcipher_check_connection(db_filename, key, ctx->read_ctx->pass_sz, pragma_1x_and_4k, &user_version); sqlite3_free(pragma_1x_and_4k); if(rc == SQLITE_OK) { CODEC_TRACE(("Version 1 format found\n")); upgrade_1x_format = 1; upgrade_4k_format = 1; } if(upgrade_1x_format == 0 && upgrade_4k_format == 0) { CODEC_TRACE(("Upgrade format not determined\n")); goto handle_error; } set_user_version = sqlite3_mprintf("PRAGMA migrate.user_version = %d;", user_version); commands[0] = upgrade_4k_format == 1 ? pragma_4k_kdf_iter : ""; commands[1] = upgrade_1x_format == 1 ? pragma_hmac_off : ""; commands[2] = attach_command; commands[3] = "SELECT sqlcipher_export('migrate');"; commands[4] = set_user_version; for(command_idx = 0; command_idx < ArraySize(commands); command_idx++){ const char *command = commands[command_idx]; if(strcmp(command, "") == 0){ continue; } rc = sqlite3_exec(db, command, NULL, NULL, NULL); if(rc != SQLITE_OK){ break; } } sqlite3_free(attach_command); sqlite3_free(set_user_version); sqlcipher_free(key, key_sz); if(rc == SQLITE_OK){ Btree *pDest; Btree *pSrc; int i = 0; if( !db->autoCommit ){ CODEC_TRACE(("cannot migrate from within a transaction")); goto handle_error; } if( db->nVdbeActive>1 ){ CODEC_TRACE(("cannot migrate - SQL statements in progress")); goto handle_error; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_xTrace = db->xTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin; db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder); db->xTrace = 0; pDest = db->aDb[0].pBt; pDb = &(db->aDb[db->nDb-1]); pSrc = pDb->pBt; rc = sqlite3_exec(db, "BEGIN;", NULL, NULL, NULL); rc = sqlite3BtreeBeginTrans(pSrc, 2); rc = sqlite3BtreeBeginTrans(pDest, 2); assert( 1==sqlite3BtreeIsInTrans(pDest) ); assert( 1==sqlite3BtreeIsInTrans(pSrc) ); sqlite3CodecGetKey(db, db->nDb - 1, (void**)&key, &password_sz); sqlite3CodecAttach(db, 0, key, password_sz); sqlite3pager_get_codec(pDest->pBt->pPager, (void**)&ctx); ctx->skip_read_hmac = 1; for(i=0; i<ArraySize(aCopy); i+=2){ sqlite3BtreeGetMeta(pSrc, aCopy[i], &meta); rc = sqlite3BtreeUpdateMeta(pDest, aCopy[i], meta+aCopy[i+1]); if( NEVER(rc!=SQLITE_OK) ) goto handle_error; } rc = sqlite3BtreeCopyFile(pDest, pSrc); ctx->skip_read_hmac = 0; if( rc!=SQLITE_OK ) goto handle_error; rc = sqlite3BtreeCommit(pDest); db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->xTrace = saved_xTrace; db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } sqlite3ResetAllSchemasOfConnection(db); remove(migrated_db_filename); sqlite3_free(migrated_db_filename); } else { CODEC_TRACE(("*** migration failure** \n\n")); } } goto exit; handle_error: CODEC_TRACE(("An error occurred attempting to migrate the database\n")); rc = SQLITE_ERROR; exit: return rc; }
/* ** This routine implements the OP_Vacuum opcode of the VDBE. */ int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ int rc = SQLITE_OK; /* Return code from service routines */ #if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM const char *zFilename; /* full pathname of the database file */ int nFilename; /* number of characters in zFilename[] */ char *zTemp = 0; /* a temporary file in same directory as zFilename */ int i; /* Loop counter */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; char *zSql = 0; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", (char*)0); rc = SQLITE_ERROR; goto end_of_vacuum; } /* Get the full pathname of the database file and create a ** temporary filename in the same directory as the original file. */ pMain = db->aDb[0].pBt; zFilename = sqlite3BtreeGetFilename(pMain); assert( zFilename ); if( zFilename[0]=='\0' ){ /* The in-memory database. Do nothing. Return directly to avoid causing ** an error trying to DETACH the vacuum_db (which never got attached) ** in the exit-handler. */ return SQLITE_OK; } nFilename = strlen(zFilename); zTemp = sqliteMalloc( nFilename+100 ); if( zTemp==0 ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } strcpy(zTemp, zFilename); i = 0; do { zTemp[nFilename] = '-'; randomName((unsigned char*)&zTemp[nFilename+1]); } while( i<10 && sqlite3OsFileExists(zTemp) ); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimisation would be to use a non-journaled pager. */ zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp); if( !zSql ){ rc = SQLITE_NOMEM; goto end_of_vacuum; } rc = execSql(db, zSql); sqliteFree(zSql); zSql = 0; if( rc!=SQLITE_OK ) goto end_of_vacuum; assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); pTemp = db->aDb[db->nDb-1].pBt; sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), sqlite3BtreeGetReserve(pMain)); assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) ); execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); /* Begin a transaction */ rc = execSql(db, "BEGIN;"); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ rc = execExecSql(db, "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE type='table' " "UNION ALL " "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' " "UNION ALL " "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) " " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'" "UNION ALL " "SELECT 'CREATE VIEW vacuum_db.' || substr(sql,13,100000000) " " FROM sqlite_master WHERE type='view'" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy ** the contents to the temporary database. */ rc = execExecSql(db, "SELECT 'INSERT INTO vacuum_db.' || quote(name) " "|| ' SELECT * FROM ' || quote(name) || ';'" "FROM sqlite_master " "WHERE type = 'table';" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers from the main database to the temporary database. ** This was deferred before in case the triggers interfered with copying ** the data. It's possible the indices should be deferred until this ** point also. */ rc = execExecSql(db, "SELECT 'CREATE TRIGGER vacuum_db.' || substr(sql, 16, 1000000) " "FROM sqlite_master WHERE type='trigger'" ); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* At this point, unless the main db was completely empty, there is now a ** transaction open on the vacuum database, but not on the main database. ** Open a btree level transaction on the main database. This allows a ** call to sqlite3BtreeCopyFile(). The main database btree level ** transaction is then committed, so the SQL level never knows it was ** opened for writing. This way, the SQL transaction used to create the ** temporary database never needs to be committed. */ if( sqlite3BtreeIsInTrans(pTemp) ){ u32 meta; assert( 0==sqlite3BtreeIsInTrans(pMain) ); rc = sqlite3BtreeBeginTrans(pMain, 1); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy Btree meta values 3 and 4. These correspond to SQL layer meta ** values 2 and 3, the default values of a couple of pragmas. */ rc = sqlite3BtreeGetMeta(pMain, 3, &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, 3, meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeGetMeta(pMain, 4, &meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeUpdateMeta(pTemp, 4, meta); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCopyFile(pMain, pTemp); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeCommit(pMain); } end_of_vacuum: /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( rc==SQLITE_OK ){ rc = execSql(db, "DETACH vacuum_db;"); }else{ execSql(db, "DETACH vacuum_db;"); } if( zTemp ){ sqlite3OsDelete(zTemp); sqliteFree(zTemp); } if( zSql ) sqliteFree( zSql ); sqlite3ResetInternalSchema(db, 0); #endif return rc; }