/* ** Execute SQL code. Return one of the SQLITE_ success/failure ** codes. Also write an error message into memory obtained from ** malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result ** the xCallback() function is called. pArg becomes the first ** argument to xCallback(). If xCallback=NULL then no callback ** is invoked, even for queries. */ int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; /* Return code */ const char *zLeftover; /* Tail of unprocessed SQL */ sqlite3_stmt *pStmt = 0; /* The current SQL statement */ char **azCols = 0; /* Names of result columns */ int nRetry = 0; /* Number of retry attempts */ int callbackIsInit; /* True if callback data is initialized */ if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK, 0); while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ int nCol; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } callbackIsInit = 0; nCol = sqlite3_column_count(pStmt); while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); if( azCols==0 ){ goto exec_out; } for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); /* sqlite3VdbeSetColName() installs column names as UTF8 ** strings so there is no way for sqlite3_column_name() to fail. */ assert( azCols[i]!=0 ); } callbackIsInit = 1; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ db->mallocFailed = 1; goto exec_out; } } } if( xCallback(pArg, nCol, azVals, azCols) ){ rc = SQLITE_ABORT; sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; sqlite3Error(db, SQLITE_ABORT, 0); goto exec_out; } } if( rc!=SQLITE_ROW ){ rc = sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; if( rc!=SQLITE_SCHEMA ){ nRetry = 0; zSql = zLeftover; while( sqlite3Isspace(zSql[0]) ) zSql++; } break; } } sqlite3DbFree(db, azCols); azCols = 0; } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){ int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db)); *pzErrMsg = sqlite3Malloc(nErrMsg); if( *pzErrMsg ){ memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); }else{ rc = SQLITE_NOMEM; sqlite3Error(db, SQLITE_NOMEM, 0); } }else if( pzErrMsg ){ *pzErrMsg = 0; } assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char** pzTail /* OUT: End of parsed string */ ){ Parse sParse; char *zErrMsg = 0; int rc = SQLITE_OK; if( sqlite3_malloc_failed ){ return SQLITE_NOMEM; } assert( ppStmt ); *ppStmt = 0; if( sqlite3SafetyOn(db) ){ return SQLITE_MISUSE; } memset(&sParse, 0, sizeof(sParse)); sParse.db = db; sqlite3RunParser(&sParse, zSql, &zErrMsg); if( sqlite3_malloc_failed ){ rc = SQLITE_NOMEM; sqlite3RollbackAll(db); sqlite3ResetInternalSchema(db, 0); db->flags &= ~SQLITE_InTrans; goto prepare_out; } if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; if( sParse.rc!=SQLITE_OK && sParse.checkSchema && !schemaIsValid(db) ){ sParse.rc = SQLITE_SCHEMA; } if( sParse.rc==SQLITE_SCHEMA ){ sqlite3ResetInternalSchema(db, 0); } if( pzTail ) *pzTail = sParse.zTail; rc = sParse.rc; #ifndef SQLITE_OMIT_EXPLAIN if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ sqlite3VdbeSetNumCols(sParse.pVdbe, 5); sqlite3VdbeSetColName(sParse.pVdbe, 0, "addr", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 1, "opcode", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 2, "p1", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 3, "p2", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 4, "p3", P3_STATIC); } #endif prepare_out: if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } if( rc==SQLITE_OK ){ *ppStmt = (sqlite3_stmt*)sParse.pVdbe; }else if( sParse.pVdbe ){ sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); } if( zErrMsg ){ sqlite3Error(db, rc, "%s", zErrMsg); sqliteFree(zErrMsg); }else{ sqlite3Error(db, rc, 0); } return rc; }
/* ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. */ int sqlite3_prepare( sqlite3 *db, /* Database handle. */ const char *zSql, /* UTF-8 encoded SQL statement. */ int nBytes, /* Length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ const char** pzTail /* OUT: End of parsed string */ ){ Parse sParse; char *zErrMsg = 0; int rc = SQLITE_OK; int i; /* Assert that malloc() has not failed */ assert( !sqlite3MallocFailed() ); assert( ppStmt ); *ppStmt = 0; if( sqlite3SafetyOn(db) ){ return SQLITE_MISUSE; } /* If any attached database schemas are locked, do not proceed with ** compilation. Instead return SQLITE_LOCKED immediately. */ for(i=0; i<db->nDb; i++) { Btree *pBt = db->aDb[i].pBt; if( pBt && sqlite3BtreeSchemaLocked(pBt) ){ const char *zDb = db->aDb[i].zName; sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb); sqlite3SafetyOff(db); return SQLITE_LOCKED; } } memset(&sParse, 0, sizeof(sParse)); sParse.db = db; if( nBytes>=0 && zSql[nBytes]!=0 ){ char *zSqlCopy = sqlite3StrNDup(zSql, nBytes); sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); sParse.zTail += zSql - zSqlCopy; sqliteFree(zSqlCopy); }else{ sqlite3RunParser(&sParse, zSql, &zErrMsg); } if( sqlite3MallocFailed() ){ sParse.rc = SQLITE_NOMEM; } if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; if( sParse.checkSchema && !schemaIsValid(db) ){ sParse.rc = SQLITE_SCHEMA; } if( sParse.rc==SQLITE_SCHEMA ){ sqlite3ResetInternalSchema(db, 0); } if( pzTail ) *pzTail = sParse.zTail; rc = sParse.rc; #ifndef SQLITE_OMIT_EXPLAIN if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ if( sParse.explain==2 ){ sqlite3VdbeSetNumCols(sParse.pVdbe, 3); sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P3_STATIC); }else{ sqlite3VdbeSetNumCols(sParse.pVdbe, 5); sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P3_STATIC); sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P3_STATIC); } } #endif if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } if( rc==SQLITE_OK ){ *ppStmt = (sqlite3_stmt*)sParse.pVdbe; }else if( sParse.pVdbe ){ sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); } if( zErrMsg ){ sqlite3Error(db, rc, "%s", zErrMsg); sqliteFree(zErrMsg); }else{ sqlite3Error(db, rc, 0); } rc = sqlite3ApiExit(db, rc); sqlite3ReleaseThreadData(); return rc; }
/* ** Execute SQL code. ** Return one of the SQLITE_ success/failure codes. ** Also write an error message into memory obtained from malloc() and make *pzErrMsg point to that message. ** ** If the SQL is a query, then for each row in the query result the xCallback() function is called. ** pArg becomes the first argument to xCallback(). ** If xCallback=NULL then no callback is invoked, even for queries. */ int sqlite3_exec( sqlite3 *db, /* The database on which the SQL executes */ const char *zSql, /* The SQL to be executed */ sqlite3_callback xCallback, /* Invoke this callback routine */ void *pArg, /* First argument to xCallback() */ char **pzErrMsg /* Write error messages here */ ){ int rc = SQLITE_OK; /* Return code */ const char *zLeftover; /* Tail of unprocessed SQL */ sqlite3_stmt *pStmt = 0; /* The current SQL statement */ char **azCols = 0; /* Names of result columns */ int callbackIsInit; /* True if callback data is initialized */ if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; if( zSql==0 ) zSql = ""; sqlite3_mutex_enter(db->mutex); sqlite3Error(db, SQLITE_OK); while( rc==SQLITE_OK && zSql[0] ){ int nCol; char **azVals = 0; pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover); assert( rc==SQLITE_OK || pStmt==0 ); if( rc!=SQLITE_OK ){ continue; } if( !pStmt ){ /* this happens for a comment or white-space */ zSql = zLeftover; continue; } callbackIsInit = 0; nCol = sqlite3_column_count(pStmt); while( 1 ){ int i; rc = sqlite3_step(pStmt); /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !callbackIsInit && db->flags&SQLITE_NullCallback)) ){ if( !callbackIsInit ){ azCols = sqlite3DbMallocRaw(db, (2*nCol+1)*sizeof(const char*)); if( azCols==0 ){ goto exec_out; } for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); /* sqlite3VdbeSetColName() installs column names as UTF8 ** strings so there is no way for sqlite3_column_name() to fail. */ assert( azCols[i]!=0 ); } callbackIsInit = 1; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ sqlite3OomFault(db); goto exec_out; } } azVals[i] = 0; } if( xCallback(pArg, nCol, azVals, azCols) ){ /* EVIDENCE-OF: R-38229-40159 If the callback function to ** sqlite3_exec() returns non-zero, then sqlite3_exec() will ** return SQLITE_ABORT. */ rc = SQLITE_ABORT; sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; sqlite3Error(db, SQLITE_ABORT); goto exec_out; } } if( rc!=SQLITE_ROW ){ rc = sqlite3VdbeFinalize((Vdbe *)pStmt); pStmt = 0; zSql = zLeftover; while( sqlite3Isspace(zSql[0]) ) zSql++; break; } } sqlite3DbFree(db, azCols); azCols = 0; } exec_out: if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt); sqlite3DbFree(db, azCols); rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && pzErrMsg ){ *pzErrMsg = sqlite3DbStrDup(0, sqlite3_errmsg(db)); if( *pzErrMsg==0 ){ rc = SQLITE_NOMEM_BKPT; sqlite3Error(db, SQLITE_NOMEM); } }else if( pzErrMsg ){ *pzErrMsg = 0; } assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Create a new collating function for database "db". The name is zName ** and the encoding is enc. */ static int createCollation( sqlite3* db, const char *zName, int enc, void* pCtx, int(*xCompare)(void*,int,const void*,int,const void*), void(*xDel)(void*) ){ CollSeq *pColl; int enc2; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. */ enc2 = enc & ~SQLITE_UTF16_ALIGNED; if( enc2==SQLITE_UTF16 ){ enc2 = SQLITE_UTF16NATIVE; } if( (enc2&~3)!=0 ){ sqlite3Error(db, SQLITE_ERROR, "unknown encoding"); return SQLITE_ERROR; } /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0); if( pColl && pColl->xCmp ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "Unable to delete/modify collation sequence due to active statements"); return SQLITE_BUSY; } sqlite3ExpirePreparedStatements(db); /* If collation sequence pColl was created directly by a call to ** sqlite3_create_collation, and not generated by synthCollSeq(), ** then any copies made by synthCollSeq() need to be invalidated. ** Also, collation destructor - CollSeq.xDel() - function may need ** to be called. */ if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName)); int j; for(j=0; j<3; j++){ CollSeq *p = &aColl[j]; if( p->enc==pColl->enc ){ if( p->xDel ){ p->xDel(p->pUser); } p->xCmp = 0; } } } } pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1); if( pColl ){ pColl->xCmp = xCompare; pColl->pUser = pCtx; pColl->xDel = xDel; pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED); } sqlite3Error(db, SQLITE_OK, 0); return SQLITE_OK; }
/* ** This routine does the work of opening a database on behalf of ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" ** is UTF-8 encoded. */ static int openDatabase( const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb /* OUT: Returned database handle */ ){ sqlite3 *db; int rc; CollSeq *pColl; assert( !sqlite3MallocFailed() ); /* Allocate the sqlite data structure */ db = sqliteMalloc( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; db->errMask = 0xff; db->priorNewRowid = 0; db->magic = SQLITE_MAGIC_BUSY; db->nDb = 2; db->aDb = db->aDbStatic; db->autoCommit = 1; db->flags |= SQLITE_ShortColNames #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif ; sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0); #endif /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ if( createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0) || createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0) || createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0) || (db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0))==0 ){ assert( sqlite3MallocFailed() ); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } /* Also add a UTF-8 case-insensitive collation sequence. */ createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); /* Set flags on the built-in collating sequences */ db->pDfltColl->type = SQLITE_COLL_BINARY; pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0); if( pColl ){ pColl->type = SQLITE_COLL_NOCASE; } /* Open the backend database driver */ rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ sqlite3Error(db, rc, 0); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } db->aDb[0].pSchema = sqlite3SchemaGet(db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(0); /* The default safety_level for the main database is 'full'; for the temp ** database it is 'NONE'. This matches the pager layer defaults. */ db->aDb[0].zName = "main"; db->aDb[0].safety_level = 3; #ifndef SQLITE_OMIT_TEMPDB db->aDb[1].zName = "temp"; db->aDb[1].safety_level = 1; #endif db->magic = SQLITE_MAGIC_OPEN; if( sqlite3MallocFailed() ){ goto opendb_out; } /* Register all built-in functions, but do not attempt to read the ** database schema yet. This is delayed until the first time the database ** is accessed. */ sqlite3Error(db, SQLITE_OK, 0); sqlite3RegisterBuiltinFunctions(db); /* Load automatic extensions - extensions that have been registered ** using the sqlite3_automatic_extension() API. */ (void)sqlite3AutoLoadExtensions(db); if( sqlite3_errcode(db)!=SQLITE_OK ){ goto opendb_out; } #ifdef SQLITE_ENABLE_FTS1 if( !sqlite3MallocFailed() ){ extern int sqlite3Fts1Init(sqlite3*); rc = sqlite3Fts1Init(db); } #endif #ifdef SQLITE_ENABLE_FTS2 if( !sqlite3MallocFailed() && rc==SQLITE_OK ){ extern int sqlite3Fts2Init(sqlite3*); rc = sqlite3Fts2Init(db); } #endif #ifdef SQLITE_ENABLE_ICU if( !sqlite3MallocFailed() && rc==SQLITE_OK ){ extern int sqlite3IcuInit(sqlite3*); rc = sqlite3IcuInit(db); } #endif sqlite3Error(db, rc, 0); /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking ** mode. Doing nothing at all also makes NORMAL the default. */ #ifdef SQLITE_DEFAULT_LOCKING_MODE db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), SQLITE_DEFAULT_LOCKING_MODE); #endif opendb_out: if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){ sqlite3_close(db); db = 0; } *ppDb = db; return sqlite3ApiExit(0, rc); }
int sqlite3_table_column_metadata( sqlite3 *db, /* Connection handle */ const char *zDbName, /* Database name or NULL */ const char *zTableName, /* Table name */ const char *zColumnName, /* Column name */ char const **pzDataType, /* OUTPUT: Declared data type */ char const **pzCollSeq, /* OUTPUT: Collation sequence name */ int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ int *pPrimaryKey, /* OUTPUT: True if column part of PK */ int *pAutoinc /* OUTPUT: True if colums is auto-increment */ ){ int rc; char *zErrMsg = 0; Table *pTab = 0; Column *pCol = 0; int iCol; char const *zDataType = 0; char const *zCollSeq = 0; int notnull = 0; int primarykey = 0; int autoinc = 0; /* Ensure the database schema has been loaded */ if( sqlite3SafetyOn(db) ){ return SQLITE_MISUSE; } rc = sqlite3Init(db, &zErrMsg); if( SQLITE_OK!=rc ){ goto error_out; } /* Locate the table in question */ pTab = sqlite3FindTable(db, zTableName, zDbName); if( !pTab || pTab->pSelect ){ pTab = 0; goto error_out; } /* Find the column for which info is requested */ if( sqlite3IsRowid(zColumnName) ){ iCol = pTab->iPKey; if( iCol>=0 ){ pCol = &pTab->aCol[iCol]; } }else{ for(iCol=0; iCol<pTab->nCol; iCol++){ pCol = &pTab->aCol[iCol]; if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ break; } } if( iCol==pTab->nCol ){ pTab = 0; goto error_out; } } /* The following block stores the meta information that will be returned ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey ** and autoinc. At this point there are two possibilities: ** ** 1. The specified column name was rowid", "oid" or "_rowid_" ** and there is no explicitly declared IPK column. ** ** 2. The table is not a view and the column name identified an ** explicitly declared column. Copy meta information from *pCol. */ if( pCol ){ zDataType = pCol->zType; zCollSeq = pCol->zColl; notnull = (pCol->notNull?1:0); primarykey = (pCol->isPrimKey?1:0); autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0); }else{ zDataType = "INTEGER"; primarykey = 1; } if( !zCollSeq ){ zCollSeq = "BINARY"; } error_out: if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } /* Whether the function call succeeded or failed, set the output parameters ** to whatever their local counterparts contain. If an error did occur, ** this has the effect of zeroing all output parameters. */ if( pzDataType ) *pzDataType = zDataType; if( pzCollSeq ) *pzCollSeq = zCollSeq; if( pNotNull ) *pNotNull = notnull; if( pPrimaryKey ) *pPrimaryKey = primarykey; if( pAutoinc ) *pAutoinc = autoinc; if( SQLITE_OK==rc && !pTab ){ sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".", zColumnName, 0); rc = SQLITE_ERROR; } sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); sqliteFree(zErrMsg); return sqlite3ApiExit(db, rc); }
/* ** This function is exactly the same as sqlite3_create_function(), except ** that it is designed to be called by internal code. The difference is ** that if a malloc() fails in sqlite3_create_function(), an error code ** is returned and the mallocFailed flag cleared. */ int sqlite3CreateFunc( sqlite3 *db, const char *zFunctionName, int nArg, int enc, void *pUserData, void (*xFunc)(sqlite3_context*,int,sqlite3_value **), void (*xStep)(sqlite3_context*,int,sqlite3_value **), void (*xFinal)(sqlite3_context*) ){ FuncDef *p; int nName; if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } if( zFunctionName==0 || (xFunc && (xFinal || xStep)) || (!xFunc && (xFinal && !xStep)) || (!xFunc && (!xFinal && xStep)) || (nArg<-1 || nArg>127) || (255<(nName = strlen(zFunctionName))) ){ sqlite3Error(db, SQLITE_ERROR, "bad parameters"); return SQLITE_ERROR; } #ifndef SQLITE_OMIT_UTF16 /* If SQLITE_UTF16 is specified as the encoding type, transform this ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. ** ** If SQLITE_ANY is specified, add three versions of the function ** to the hash table. */ if( enc==SQLITE_UTF16 ){ enc = SQLITE_UTF16NATIVE; }else if( enc==SQLITE_ANY ){ int rc; rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, pUserData, xFunc, xStep, xFinal); if( rc!=SQLITE_OK ) return rc; rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, pUserData, xFunc, xStep, xFinal); if( rc!=SQLITE_OK ) return rc; enc = SQLITE_UTF16BE; } #else enc = SQLITE_UTF8; #endif /* Check if an existing function is being overridden or deleted. If so, ** and there are active VMs, then return SQLITE_BUSY. If a function ** is being overridden/deleted but there are no active VMs, allow the ** operation to continue but invalidate all precompiled statements. */ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0); if( p && p->iPrefEnc==enc && p->nArg==nArg ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "Unable to delete/modify user-function due to active statements"); assert( !sqlite3MallocFailed() ); return SQLITE_BUSY; }else{ sqlite3ExpirePreparedStatements(db); } } p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); if( p ){ p->flags = 0; p->xFunc = xFunc; p->xStep = xStep; p->xFinalize = xFinal; p->pUserData = pUserData; p->nArg = nArg; } return SQLITE_OK; }
/* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; if( !db ){ return SQLITE_OK; } if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } #ifdef SQLITE_SSE { extern void sqlite3SseCleanup(sqlite3*); sqlite3SseCleanup(db); } #endif sqlite3ResetInternalSchema(db, 0); /* If a transaction is open, the ResetInternalSchema() call above ** will not have called the xDisconnect() method on any virtual ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() ** call will do so. We need to do this before the check for active ** SQL statements below, as the v-table implementation may be storing ** some prepared statements internally. */ sqlite3VtabRollback(db); /* If there are any outstanding VMs, return SQLITE_BUSY. */ if( db->pVdbe ){ sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements"); return SQLITE_BUSY; } assert( !sqlite3SafetyCheck(db) ); /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database ** cannot be opened for some reason. So this routine needs to run in ** that case. But maybe there should be an extra magic value for the ** "failed to open" state. ** ** TODO: Coverage tests do not test the case where this condition is ** true. It's hard to see how to cause it without messing with threads. */ if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){ /* printf("DID NOT CLOSE\n"); fflush(stdout); */ return SQLITE_ERROR; } for(j=0; j<db->nDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqliteFree(pFunc); } } for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); /* Invoke any destructors registered for collation sequence user data. */ for(j=0; j<3; j++){ if( pColl[j].xDel ){ pColl[j].xDel(pColl[j].pUser); } } sqliteFree(pColl); } sqlite3HashClear(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ Module *pMod = (Module *)sqliteHashData(i); if( pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } sqliteFree(pMod); } sqlite3HashClear(&db->aModule); #endif sqlite3HashClear(&db->aFunc); sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ if( db->pErr ){ sqlite3ValueFree(db->pErr); } sqlite3CloseExtensions(db); db->magic = SQLITE_MAGIC_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database ** structure? */ sqliteFree(db->aDb[1].pSchema); sqliteFree(db); sqlite3ReleaseThreadData(); return SQLITE_OK; }
/* ** Execute the statement pStmt, either until a row of data is ready, the ** statement is completely executed or an error occurs. */ int sqlite3_step(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; sqlite3 *db; int rc; /* Assert that malloc() has not failed */ assert( !sqlite3MallocFailed() ); if( p==0 || p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_MISUSE; } if( p->aborted ){ return SQLITE_ABORT; } if( p->pc<=0 && p->expired ){ if( p->rc==SQLITE_OK ){ p->rc = SQLITE_SCHEMA; } return SQLITE_ERROR; } db = p->db; if( sqlite3SafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } if( p->pc<0 ){ #ifndef SQLITE_OMIT_TRACE /* Invoke the trace callback if there is one */ if( db->xTrace && !db->init.busy ){ assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); assert( p->aOp[p->nOp-1].p3!=0 ); assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); sqlite3SafetyOff(db); db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3); if( sqlite3SafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } } if( db->xProfile && !db->init.busy ){ double rNow; sqlite3OsCurrentTime(&rNow); p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; } #endif /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned ** on in debugging mode. */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3); } #endif /* SQLITE_DEBUG */ db->activeVdbeCnt++; p->pc = 0; } #ifndef SQLITE_OMIT_EXPLAIN if( p->explain ){ rc = sqlite3VdbeList(p); }else #endif /* SQLITE_OMIT_EXPLAIN */ { rc = sqlite3VdbeExec(p); } if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } #ifndef SQLITE_OMIT_TRACE /* Invoke the profile callback if there is one */ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){ double rNow; u64 elapseTime; sqlite3OsCurrentTime(&rNow); elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); assert( p->aOp[p->nOp-1].p3!=0 ); assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime); } #endif sqlite3Error(p->db, rc, 0); p->rc = sqlite3ApiExit(p->db, p->rc); return rc; }
/* ** Create an sqlite3_backup process to copy the contents of zSrcDb from ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return ** a pointer to the new sqlite3_backup object. ** ** If an error occurs, NULL is returned and an error code and error message ** stored in database handle pDestDb. */ sqlite3_backup *sqlite3_backup_init( sqlite3* pDestDb, /* Database to write to */ const char *zDestDb, /* Name of database within pDestDb */ sqlite3* pSrcDb, /* Database connection to read from */ const char *zSrcDb /* Name of database within pSrcDb */ ){ sqlite3_backup *p; /* Value to return */ #ifdef SQLITE_ENABLE_API_ARMOR if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif /* Lock the source database handle. The destination database ** handle is not locked in this routine, but it is locked in ** sqlite3_backup_step(). The user is required to ensure that no ** other thread accesses the destination handle for the duration ** of the backup operation. Any attempt to use the destination ** database connection while a backup is in progress may cause ** a malfunction or a deadlock. */ sqlite3_mutex_enter(pSrcDb->mutex); sqlite3_mutex_enter(pDestDb->mutex); if( pSrcDb==pDestDb ){ sqlite3ErrorWithMsg( pDestDb, SQLITE_ERROR, "source and destination must be distinct" ); p = 0; }else { /* Allocate space for a new sqlite3_backup object... ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a ** call to sqlite3_backup_init() and is destroyed by a call to ** sqlite3_backup_finish(). */ p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup)); if( !p ){ sqlite3Error(pDestDb, SQLITE_NOMEM_BKPT); } } /* If the allocation succeeded, populate the new object. */ if( p ){ p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; p->iNext = 1; p->isAttached = 0; if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK ){ /* One (or both) of the named databases did not exist or an OOM ** error was hit. Or there is a transaction open on the destination ** database. The error has already been written into the pDestDb ** handle. All that is left to do here is free the sqlite3_backup ** structure. */ sqlite3_free(p); p = 0; } } if( p ){ p->pSrc->nBackup++; } sqlite3_mutex_leave(pDestDb->mutex); sqlite3_mutex_leave(pSrcDb->mutex); return p; }
/* ** Copy nPage pages from the source b-tree to the destination. */ int sqlite3_backup_step(sqlite3_backup *p, int nPage) { int returnCode, pages; Parse parse; DB_ENV *dbenv; BtShared *pBtDest, *pBtSrc; pBtDest = pBtSrc = NULL; if (p->rc != SQLITE_OK || nPage == 0) return p->rc; sqlite3_mutex_enter(p->pSrcDb->mutex); sqlite3_mutex_enter(p->pDestDb->mutex); /* * Make sure the schema has been read in, so the keyInfo * can be retrieved for the indexes. No-op if already read. * If the schema has not been read then an update must have * changed it, so backup will restart. */ memset(&parse, 0, sizeof(parse)); parse.db = p->pSrcDb; p->rc = sqlite3ReadSchema(&parse); if (p->rc != SQLITE_OK) goto err; /* * This process updated the source database, so * the backup process has to restart. */ if (p->pSrc->updateDuringBackup > p->lastUpdate) { p->rc = SQLITE_LOCKED; if ((p->rc = backupCleanup(p)) != SQLITE_OK) goto err; else backupReset(p); } pages = nPage; if (!p->cleaned) { const char *home; const char inmem[9] = ":memory:"; int storage; pBtDest = p->pDest->pBt; storage = p->pDest->pBt->dbStorage; if (storage == DB_STORE_NAMED) p->openDest = 1; if (strcmp(p->destName, "temp") == 0) p->pDest->schema = NULL; else p->pDestDb->aDb[p->iDb].pSchema = NULL; p->rc = btreeDeleteEnvironment(p->pDest, p->fullName, 1); if (storage == DB_STORE_INMEM && strcmp(p->destName, "temp") != 0) home = inmem; else home = p->fullName; if (p->rc != SQLITE_BUSY) p->pDest = p->pDestDb->aDb[p->iDb].pBt = NULL; if (p->rc != SQLITE_OK) goto err; /* * Call sqlite3OpenTempDatabase instead of * sqlite3BtreeOpen, because sqlite3OpenTempDatabase * automatically chooses the right flags before calling * sqlite3BtreeOpen. */ if (strcmp(p->destName, "temp") == 0) { memset(&parse, 0, sizeof(parse)); parse.db = p->pDestDb; p->rc = sqlite3OpenTempDatabase(&parse); p->pDest = p->pDestDb->aDb[p->iDb].pBt; if (p->pDest && p->iDb != 1) p->pDest->schema = p->pDestDb->aDb[p->iDb].pSchema; } else { p->rc = sqlite3BtreeOpen(NULL, home, p->pDestDb, &p->pDest, SQLITE_DEFAULT_CACHE_SIZE | SQLITE_OPEN_MAIN_DB, p->pDestDb->openFlags); p->pDestDb->aDb[p->iDb].pBt = p->pDest; if (p->pDest) { p->pDestDb->aDb[p->iDb].pSchema = sqlite3SchemaGet(p->pDestDb, p->pDest); if (p->pDestDb->aDb[p->iDb].pSchema == NULL) p->rc = SQLITE_NOMEM; } } if (p->pDest) p->pDest->nBackup++; #ifdef SQLITE_HAS_CODEC /* * In the case of a temporary source database, use the * encryption of the main database. */ if (strcmp(p->srcName, "temp") == 0) { int iDb = sqlite3FindDbName(p->pSrcDb, "main"); pBtSrc = p->pSrcDb->aDb[iDb].pBt->pBt; } else pBtSrc = p->pSrc->pBt; if (p->rc == SQLITE_OK) { if (p->iDb == 0) p->rc = sqlite3_key(p->pDestDb, pBtSrc->encrypt_pwd, pBtSrc->encrypt_pwd_len); else p->rc = sqlite3CodecAttach(p->pDestDb, p->iDb, pBtSrc->encrypt_pwd, pBtSrc->encrypt_pwd_len); } #endif if (p->rc != SQLITE_OK) goto err; p->cleaned = 1; } /* * Begin a transaction, unfortuantely the lock on * the schema has to be released to allow the sqlite_master * table to be cleared, which could allow another thread to * alter it, however accessing the backup database during * backup is already an illegal condition with undefined * results. */ if (!sqlite3BtreeIsInTrans(p->pDest)) { if (!p->pDest->connected) { p->rc = btreeOpenEnvironment(p->pDest, 1); if (p->rc != SQLITE_OK) goto err; } if ((p->rc = btreeBeginTransInternal(p->pDest, 2)) != SQLITE_OK) goto err; } /* Only this process should be accessing the backup environment. */ if (p->pDest->pBt->nRef > 1) { p->rc = SQLITE_BUSY; goto err; } /* * Begin a transaction, a lock error or update could have caused * it to be released in a previous call to step. */ if (!p->srcTxn) { dbenv = p->pSrc->pBt->dbenv; if ((p->rc = dberr2sqlite(dbenv->txn_begin(dbenv, p->pSrc->family_txn, &p->srcTxn, 0), NULL)) != SQLITE_OK) goto err; } /* * An update could have dropped or created a table, so recalculate * the list of tables. */ if (!p->tables) { if ((p->rc = btreeGetPageCount(p->pSrc, &p->tables, &p->nPagecount, p->srcTxn)) != SQLITE_OK) { sqlite3Error(p->pSrcDb, p->rc, 0); goto err; } p->nRemaining = p->nPagecount; } /* Copy the pages. */ p->rc = btreeCopyPages(p, &pages); if (p->rc == SQLITE_DONE) { p->nRemaining = 0; sqlite3ResetOneSchema(p->pDestDb, p->iDb); memset(&parse, 0, sizeof(parse)); parse.db = p->pDestDb; p->rc = sqlite3ReadSchema(&parse); if (p->rc == SQLITE_OK) p->rc = SQLITE_DONE; } else if (p->rc != SQLITE_OK) goto err; /* * The number of pages left to copy is an estimate, so * do not let the number go to zero unless we are really * done. */ if (p->rc != SQLITE_DONE) { if ((u32)pages >= p->nRemaining) p->nRemaining = 1; else p->nRemaining -= pages; } err: /* * This process updated the source database, so * the backup process has to restart. */ if (p->pSrc->updateDuringBackup > p->lastUpdate && (p->rc == SQLITE_OK || p->rc == SQLITE_DONE)) { int cleanCode; returnCode = p->rc; p->rc = SQLITE_LOCKED; if ((cleanCode = backupCleanup(p)) != SQLITE_OK) returnCode = p->rc = cleanCode; else backupReset(p); } else { returnCode = backupCleanup(p); if (returnCode == SQLITE_OK || (p->rc != SQLITE_OK && p->rc != SQLITE_DONE)) returnCode = p->rc; else p->rc = returnCode; } /* * On a locked or busy error the backup process is rolled back, * but can be restarted by the user. */ if ( returnCode == SQLITE_LOCKED || returnCode == SQLITE_BUSY ) backupReset(p); else if ( returnCode != SQLITE_OK && returnCode != SQLITE_DONE ) { sqlite3Error(p->pDestDb, p->rc, 0); } sqlite3_mutex_leave(p->pDestDb->mutex); sqlite3_mutex_leave(p->pSrcDb->mutex); return (returnCode); }
/* ** Create an sqlite3_backup process to copy the contents of zSrcDb from ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return ** a pointer to the new sqlite3_backup object. ** ** If an error occurs, NULL is returned and an error code and error message ** stored in database handle pDestDb. ** pDestDb Database to write to ** zDestDb Name of database within pDestDb ** pSrcDb Database connection to read from ** zSrcDb Name of database within pSrcDb */ sqlite3_backup *sqlite3_backup_init(sqlite3* pDestDb, const char *zDestDb, sqlite3* pSrcDb, const char *zSrcDb) { sqlite3_backup *p; /* Value to return */ Parse parse; DB_ENV *dbenv; int ret; p = NULL; ret = 0; if (!pDestDb || !pSrcDb) return 0; sqlite3_mutex_enter(pSrcDb->mutex); sqlite3_mutex_enter(pDestDb->mutex); if (pSrcDb == pDestDb) { sqlite3Error(pDestDb, SQLITE_ERROR, "source and destination must be distinct"); goto err; } /* Allocate space for a new sqlite3_backup object */ p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup)); if (!p) { sqlite3Error(pDestDb, SQLITE_NOMEM, 0); goto err; } memset(p, 0, sizeof(sqlite3_backup)); p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb); p->pDest = findBtree(pDestDb, pDestDb, zDestDb); p->pDestDb = pDestDb; p->pSrcDb = pSrcDb; if (0 == p->pSrc) { p->rc = p->pSrcDb->errCode; goto err; } if (0 == p->pDest) { p->rc = p->pDestDb->errCode; goto err; } p->iDb = sqlite3FindDbName(pDestDb, zDestDb); p->srcName = sqlite3_malloc((int)strlen(zSrcDb) + 1); p->destName = sqlite3_malloc((int)strlen(zDestDb) + 1); if (0 == p->srcName || 0 == p->destName) { p->rc = SQLITE_NOMEM; goto err; } strncpy(p->srcName, zSrcDb, strlen(zSrcDb) + 1); strncpy(p->destName, zDestDb, strlen(zDestDb) + 1); if (p->pDest->pBt->full_name) { const char *fullName = p->pDest->pBt->full_name; p->fullName = sqlite3_malloc((int)strlen(fullName) + 1); if (!p->fullName) { p->rc = SQLITE_NOMEM; goto err; } strncpy(p->fullName, fullName, strlen(fullName) + 1); } /* * Make sure the schema has been read in, so the keyInfo * can be retrieved for the indexes. No-op if already read. */ memset(&parse, 0, sizeof(parse)); parse.db = p->pSrcDb; p->rc = sqlite3ReadSchema(&parse); if (p->rc != SQLITE_OK) { if (parse.zErrMsg != NULL) sqlite3DbFree(p->pSrcDb, parse.zErrMsg); goto err; } /* Begin a transaction on the source. */ if (!p->pSrc->connected) { if ((p->rc = btreeOpenEnvironment(p->pSrc, 1)) != SQLITE_OK) goto err; } dbenv = p->pSrc->pBt->dbenv; p->rc = dberr2sqlite(dbenv->txn_begin(dbenv, p->pSrc->family_txn, &p->srcTxn, 0), NULL); if (p->rc != SQLITE_OK) { sqlite3Error(pSrcDb, p->rc, 0); goto err; } /* * Get the page count and list of tables to copy. This will * result in a read lock on the schema table, held in the * read transaction. */ if ((p->rc = btreeGetPageCount(p->pSrc, &p->tables, &p->nPagecount, p->srcTxn)) != SQLITE_OK) { sqlite3Error(pSrcDb, p->rc, 0); goto err; } p->nRemaining = p->nPagecount; p->pSrc->nBackup++; p->pDest->nBackup++; p->lastUpdate = p->pSrc->updateDuringBackup; goto done; err: if (p != 0) { if (pDestDb->errCode == SQLITE_OK) sqlite3Error(pDestDb, p->rc, 0); if (p->srcTxn) p->srcTxn->abort(p->srcTxn); if (p->srcName != 0) sqlite3_free(p->srcName); if (p->destName != 0) sqlite3_free(p->destName); if (p->fullName != 0) sqlite3_free(p->fullName); if (p->tables != 0) sqlite3_free(p->tables); sqlite3_free(p); p = NULL; } done: sqlite3_mutex_leave(pDestDb->mutex); sqlite3_mutex_leave(pSrcDb->mutex); return p; }