/* ** Insert a new row into the FTS content table. */ int sqlite3Fts5StorageContentInsert( Fts5Storage *p, sqlite3_value **apVal, i64 *piRowid ){ Fts5Config *pConfig = p->pConfig; int rc = SQLITE_OK; /* Insert the new row into the %_content table. */ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){ if( sqlite3_value_type(apVal[1])==SQLITE_INTEGER ){ *piRowid = sqlite3_value_int64(apVal[1]); }else{ rc = fts5StorageNewRowid(p, piRowid); } }else{ sqlite3_stmt *pInsert = 0; /* Statement to write %_content table */ int i; /* Counter variable */ rc = fts5StorageGetStmt(p, FTS5_STMT_INSERT_CONTENT, &pInsert, 0); for(i=1; rc==SQLITE_OK && i<=pConfig->nCol+1; i++){ rc = sqlite3_bind_value(pInsert, i, apVal[i]); } if( rc==SQLITE_OK ){ sqlite3_step(pInsert); rc = sqlite3_reset(pInsert); } *piRowid = sqlite3_last_insert_rowid(pConfig->db); } return rc; }
static void UdfInsertFunc(sqlite3_context* aCtx, int aCnt, sqlite3_value** aValues) { int err; const char* tail = 0; sqlite3* db = 0; TEST2(aCnt, 1); db = sqlite3_context_db_handle(aCtx);/* to test that sqlite3_context_db_handle() can be called */ TEST(db != 0); TEST(!TheStmt); err = sqlite3_prepare(TheDb, "INSERT INTO t1(x) VALUES(:Val)", -1, &TheStmt, &tail); if(err == SQLITE_OK) { err = sqlite3_bind_value(TheStmt, 1, aValues[0]); if(err == SQLITE_OK) { err = sqlite3_step(TheStmt); } } (void)sqlite3_finalize(TheStmt); TheStmt = 0; sqlite3_result_int(aCtx, err); }
int sqlite3Fts5StorageConfigValue( Fts5Storage *p, const char *z, sqlite3_value *pVal, int iVal ){ sqlite3_stmt *pReplace = 0; int rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_CONFIG, &pReplace, 0); if( rc==SQLITE_OK ){ sqlite3_bind_text(pReplace, 1, z, -1, SQLITE_STATIC); if( pVal ){ sqlite3_bind_value(pReplace, 2, pVal); }else{ sqlite3_bind_int(pReplace, 2, iVal); } sqlite3_step(pReplace); rc = sqlite3_reset(pReplace); } if( rc==SQLITE_OK && pVal ){ int iNew = p->pConfig->iCookie + 1; rc = sqlite3Fts5IndexSetCookie(p->pIndex, iNew); if( rc==SQLITE_OK ){ p->pConfig->iCookie = iNew; } } return rc; }
static void _bindSqlArg(const char *zKey, const sqlite3_int64 index, SqlArg_t *pArg, const Array_t *arr, sqlite3_stmt *pStmt, bool *bStop) { UNUSED_PARAM(zKey); UNUSED_PARAM(arr); UNUSED_PARAM(bStop); if (pArg->zText) sqlite3_bind_text(pStmt, (int) index + 1, pArg->zText, -1, NULL); else sqlite3_bind_value(pStmt, (int) index + 1, pArg->pValue); }
/* insert into %_content (rowid, content) values ([rowid], [zContent]) */ static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, const char *zContent, int nContent){ sqlite3_stmt *s; int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_value(s, 1, rowid); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_text(s, 2, zContent, nContent, SQLITE_STATIC); if( rc!=SQLITE_OK ) return rc; return sql_single_step_statement(v, CONTENT_INSERT_STMT, &s); }
/* ** Echo virtual table module xFilter method. */ static int echoFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ int rc; int i; echo_cursor *pCur = (echo_cursor *)pVtabCursor; echo_vtab *pVtab = (echo_vtab *)pVtabCursor->pVtab; sqlite3 *db = pVtab->db; if( simulateVtabError(pVtab, "xFilter") ){ return SQLITE_ERROR; } /* Check that idxNum matches idxStr */ assert( idxNum==hashString(idxStr) ); /* Log arguments to the ::echo_module Tcl variable */ appendToEchoModule(pVtab->interp, "xFilter"); appendToEchoModule(pVtab->interp, idxStr); for(i=0; i<argc; i++){ appendToEchoModule(pVtab->interp, (const char*)sqlite3_value_text(argv[i])); } sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0; /* Prepare the SQL statement created by echoBestIndex and bind the ** runtime parameters passed to this function to it. */ rc = sqlite3_prepare(db, idxStr, -1, &pCur->pStmt, 0); assert( pCur->pStmt || rc!=SQLITE_OK ); for(i=0; rc==SQLITE_OK && i<argc; i++){ rc = sqlite3_bind_value(pCur->pStmt, i+1, argv[i]); } /* If everything was successful, advance to the first row of the scan */ if( rc==SQLITE_OK ){ rc = echoNext(pVtabCursor); } return rc; }
static int echoFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ int rc; int i; echo_cursor *pCur = (echo_cursor *)pVtabCursor; echo_vtab *pVtab = (echo_vtab *)pVtabCursor->pVtab; sqlite3 *db = pVtab->db; if( simulateVtabError(pVtab, "xFilter") ){ return SQLITE_ERROR; } assert( idxNum==hashString(idxStr) ); appendToEchoModule(pVtab->interp, "xFilter"); appendToEchoModule(pVtab->interp, idxStr); for(i=0; i<argc; i++){ appendToEchoModule(pVtab->interp, (const char*)sqlite3_value_text(argv[i])); } sqlite3_finalize(pCur->pStmt); pCur->pStmt = 0; rc = sqlite3_prepare(db, idxStr, -1, &pCur->pStmt, 0); assert( pCur->pStmt || rc!=SQLITE_OK ); for(i=0; rc==SQLITE_OK && i<argc; i++){ rc = sqlite3_bind_value(pCur->pStmt, i+1, argv[i]); } if( rc==SQLITE_OK ){ rc = echoNext(pVtabCursor); } return rc; }
int echoUpdate( sqlite3_vtab *tab, int nData, sqlite3_value **apData, sqlite_int64 *pRowid ){ echo_vtab *pVtab = (echo_vtab *)tab; sqlite3 *db = pVtab->db; int rc = SQLITE_OK; sqlite3_stmt *pStmt; char *z = 0; int bindArgZero = 0; int bindArgOne = 0; int i; assert( nData==pVtab->nCol+2 || nData==1 ); assert( pVtab->inTransaction ); if( simulateVtabError(pVtab, "xUpdate") ){ return SQLITE_ERROR; } if( nData>1 && sqlite3_value_type(apData[0])==SQLITE_INTEGER ){ char *zSep = " SET"; z = sqlite3_mprintf("UPDATE %Q", pVtab->zTableName); if( !z ){ rc = SQLITE_NOMEM; } bindArgOne = (apData[1] && sqlite3_value_type(apData[1])==SQLITE_INTEGER); bindArgZero = 1; if( bindArgOne ){ string_concat(&z, " SET rowid=?1 ", 0, &rc); zSep = ","; } for(i=2; i<nData; i++){ if( apData[i]==0 ) continue; string_concat(&z, sqlite3_mprintf( "%s %Q=?%d", zSep, pVtab->aCol[i-2], i), 1, &rc); zSep = ","; } string_concat(&z, sqlite3_mprintf(" WHERE rowid=?%d", nData), 1, &rc); } else if( nData==1 && sqlite3_value_type(apData[0])==SQLITE_INTEGER ){ z = sqlite3_mprintf("DELETE FROM %Q WHERE rowid = ?1", pVtab->zTableName); if( !z ){ rc = SQLITE_NOMEM; } bindArgZero = 1; } else if( nData>2 && sqlite3_value_type(apData[0])==SQLITE_NULL ){ int ii; char *zInsert = 0; char *zValues = 0; zInsert = sqlite3_mprintf("INSERT INTO %Q (", pVtab->zTableName); if( !zInsert ){ rc = SQLITE_NOMEM; } if( sqlite3_value_type(apData[1])==SQLITE_INTEGER ){ bindArgOne = 1; zValues = sqlite3_mprintf("?"); string_concat(&zInsert, "rowid", 0, &rc); } assert((pVtab->nCol+2)==nData); for(ii=2; ii<nData; ii++){ string_concat(&zInsert, sqlite3_mprintf("%s%Q", zValues?", ":"", pVtab->aCol[ii-2]), 1, &rc); string_concat(&zValues, sqlite3_mprintf("%s?%d", zValues?", ":"", ii), 1, &rc); } string_concat(&z, zInsert, 1, &rc); string_concat(&z, ") VALUES(", 0, &rc); string_concat(&z, zValues, 1, &rc); string_concat(&z, ")", 0, &rc); } else{ assert(0); return SQLITE_ERROR; } if( rc==SQLITE_OK ){ rc = sqlite3_prepare(db, z, -1, &pStmt, 0); } assert( rc!=SQLITE_OK || pStmt ); sqlite3_free(z); if( rc==SQLITE_OK ) { if( bindArgZero ){ sqlite3_bind_value(pStmt, nData, apData[0]); } if( bindArgOne ){ sqlite3_bind_value(pStmt, 1, apData[1]); } for(i=2; i<nData && rc==SQLITE_OK; i++){ if( apData[i] ) rc = sqlite3_bind_value(pStmt, i, apData[i]); } if( rc==SQLITE_OK ){ sqlite3_step(pStmt); rc = sqlite3_finalize(pStmt); }else{ sqlite3_finalize(pStmt); } } if( pRowid && rc==SQLITE_OK ){ *pRowid = sqlite3_last_insert_rowid(db); } if( rc!=SQLITE_OK ){ tab->zErrMsg = sqlite3_mprintf("echo-vtab-error: %s", sqlite3_errmsg(db)); } return rc; }
int SQLiteSTMT::Bind(int iCol, const sqlite3_value* value) { return sqlite3_bind_value(handle, iCol, value); }
/* ** The xUpdate method for echo module virtual tables. ** ** apData[0] apData[1] apData[2..] ** ** INTEGER DELETE ** ** INTEGER NULL (nCol args) UPDATE (do not set rowid) ** INTEGER INTEGER (nCol args) UPDATE (with SET rowid = <arg1>) ** ** NULL NULL (nCol args) INSERT INTO (automatic rowid value) ** NULL INTEGER (nCol args) INSERT (incl. rowid value) ** */ int echoUpdate( sqlite3_vtab *tab, int nData, sqlite3_value **apData, sqlite_int64 *pRowid ){ echo_vtab *pVtab = (echo_vtab *)tab; sqlite3 *db = pVtab->db; int rc = SQLITE_OK; sqlite3_stmt *pStmt = 0; char *z = 0; /* SQL statement to execute */ int bindArgZero = 0; /* True to bind apData[0] to sql var no. nData */ int bindArgOne = 0; /* True to bind apData[1] to sql var no. 1 */ int i; /* Counter variable used by for loops */ assert( nData==pVtab->nCol+2 || nData==1 ); /* Ticket #3083 - make sure we always start a transaction prior to ** making any changes to a virtual table */ assert( pVtab->inTransaction ); if( simulateVtabError(pVtab, "xUpdate") ){ return SQLITE_ERROR; } /* If apData[0] is an integer and nData>1 then do an UPDATE */ if( nData>1 && sqlite3_value_type(apData[0])==SQLITE_INTEGER ){ char *zSep = " SET"; z = sqlite3_mprintf("UPDATE %Q", pVtab->zTableName); if( !z ){ rc = SQLITE_NOMEM; } bindArgOne = (apData[1] && sqlite3_value_type(apData[1])==SQLITE_INTEGER); bindArgZero = 1; if( bindArgOne ){ string_concat(&z, " SET rowid=?1 ", 0, &rc); zSep = ","; } for(i=2; i<nData; i++){ if( apData[i]==0 ) continue; string_concat(&z, sqlite3_mprintf( "%s %Q=?%d", zSep, pVtab->aCol[i-2], i), 1, &rc); zSep = ","; } string_concat(&z, sqlite3_mprintf(" WHERE rowid=?%d", nData), 1, &rc); } /* If apData[0] is an integer and nData==1 then do a DELETE */ else if( nData==1 && sqlite3_value_type(apData[0])==SQLITE_INTEGER ){ z = sqlite3_mprintf("DELETE FROM %Q WHERE rowid = ?1", pVtab->zTableName); if( !z ){ rc = SQLITE_NOMEM; } bindArgZero = 1; } /* If the first argument is NULL and there are more than two args, INSERT */ else if( nData>2 && sqlite3_value_type(apData[0])==SQLITE_NULL ){ int ii; char *zInsert = 0; char *zValues = 0; zInsert = sqlite3_mprintf("INSERT INTO %Q (", pVtab->zTableName); if( !zInsert ){ rc = SQLITE_NOMEM; } if( sqlite3_value_type(apData[1])==SQLITE_INTEGER ){ bindArgOne = 1; zValues = sqlite3_mprintf("?"); string_concat(&zInsert, "rowid", 0, &rc); } assert((pVtab->nCol+2)==nData); for(ii=2; ii<nData; ii++){ string_concat(&zInsert, sqlite3_mprintf("%s%Q", zValues?", ":"", pVtab->aCol[ii-2]), 1, &rc); string_concat(&zValues, sqlite3_mprintf("%s?%d", zValues?", ":"", ii), 1, &rc); } string_concat(&z, zInsert, 1, &rc); string_concat(&z, ") VALUES(", 0, &rc); string_concat(&z, zValues, 1, &rc); string_concat(&z, ")", 0, &rc); } /* Anything else is an error */ else{ assert(0); return SQLITE_ERROR; } if( rc==SQLITE_OK ){ rc = sqlite3_prepare(db, z, -1, &pStmt, 0); } assert( rc!=SQLITE_OK || pStmt ); sqlite3_free(z); if( rc==SQLITE_OK ) { if( bindArgZero ){ sqlite3_bind_value(pStmt, nData, apData[0]); } if( bindArgOne ){ sqlite3_bind_value(pStmt, 1, apData[1]); } for(i=2; i<nData && rc==SQLITE_OK; i++){ if( apData[i] ) rc = sqlite3_bind_value(pStmt, i, apData[i]); } if( rc==SQLITE_OK ){ sqlite3_step(pStmt); rc = sqlite3_finalize(pStmt); }else{ sqlite3_finalize(pStmt); } } if( pRowid && rc==SQLITE_OK ){ *pRowid = sqlite3_last_insert_rowid(db); } if( rc!=SQLITE_OK ){ tab->zErrMsg = sqlite3_mprintf("echo-vtab-error: %s", sqlite3_errmsg(db)); } return rc; }
/** * This function is invoked as: * * _TOKENIZE('<token_table>', <data_row_id>, <data>, <delimiter>, * <use_token_index>, <data_tag>) * * If <use_token_index> is omitted, it is treated as 0. * If <data_tag> is omitted, it is treated as NULL. * * It will split <data> on each instance of <delimiter> and insert each token * into <token_table>. The following columns in <token_table> are used: * token TEXT, source INTEGER, token_index INTEGER, tag (any type) * The token_index column is not required if <use_token_index> is 0. * The tag column is not required if <data_tag> is NULL. * * One row is inserted for each token in <data>. * In each inserted row, 'source' is <data_row_id>. * In the first inserted row, 'token' is the hex collation key of * the entire <data> string, and 'token_index' is 0. * In each row I (where 1 <= I < N, and N is the number of tokens in <data>) * 'token' will be set to the hex collation key of the I:th token (0-based). * If <use_token_index> != 0, 'token_index' is set to I. * If <data_tag> is not NULL, 'tag' is set to <data_tag>. * * In other words, there will be one row for the entire string, * and one row for each token except the first one. * * The function returns the number of tokens generated. */ static void tokenize(sqlite3_context * context, int argc, sqlite3_value ** argv) { //ALOGD("enter tokenize"); int err; int useTokenIndex = 0; int useDataTag = 0; if (!(argc >= 4 || argc <= 6)) { ALOGE("Tokenize requires 4 to 6 arguments"); sqlite3_result_null(context); return; } if (argc > 4) { useTokenIndex = sqlite3_value_int(argv[4]); } if (argc > 5) { useDataTag = (sqlite3_value_type(argv[5]) != SQLITE_NULL); } sqlite3 * handle = sqlite3_context_db_handle(context); UCollator* collator = (UCollator*)sqlite3_user_data(context); char const * tokenTable = (char const *)sqlite3_value_text(argv[0]); if (tokenTable == NULL) { ALOGE("tokenTable null"); sqlite3_result_null(context); return; } // Get or create the prepared statement for the insertions sqlite3_stmt * statement = (sqlite3_stmt *)sqlite3_get_auxdata(context, 0); if (!statement) { char const * tokenIndexCol = useTokenIndex ? ", token_index" : ""; char const * tokenIndexParam = useTokenIndex ? ", ?" : ""; char const * dataTagCol = useDataTag ? ", tag" : ""; char const * dataTagParam = useDataTag ? ", ?" : ""; char * sql = sqlite3_mprintf("INSERT INTO %s (token, source%s%s) VALUES (?, ?%s%s);", tokenTable, tokenIndexCol, dataTagCol, tokenIndexParam, dataTagParam); err = sqlite3_prepare_v2(handle, sql, -1, &statement, NULL); sqlite3_free(sql); if (err) { ALOGE("prepare failed"); sqlite3_result_null(context); return; } // This binds the statement to the table it was compiled against, which is argv[0]. // If this function is ever called with a different table the finalizer will be called // and sqlite3_get_auxdata() will return null above, forcing a recompile for the new table. sqlite3_set_auxdata(context, 0, statement, tokenize_auxdata_delete); } else { // Reset the cached statement so that binding the row ID will work properly sqlite3_reset(statement); } // Bind the row ID of the source row int64_t rowID = sqlite3_value_int64(argv[1]); err = sqlite3_bind_int64(statement, 2, rowID); if (err != SQLITE_OK) { ALOGE("bind failed"); sqlite3_result_null(context); return; } // Bind <data_tag> to the tag column if (useDataTag) { int dataTagParamIndex = useTokenIndex ? 4 : 3; err = sqlite3_bind_value(statement, dataTagParamIndex, argv[5]); if (err != SQLITE_OK) { ALOGE("bind failed"); sqlite3_result_null(context); return; } } // Get the raw bytes for the string to tokenize // the string will be modified by following code // however, sqlite did not reuse the string, so it is safe to not dup it UChar * origData = (UChar *)sqlite3_value_text16(argv[2]); if (origData == NULL) { sqlite3_result_null(context); return; } // Get the raw bytes for the delimiter const UChar * delim = (const UChar *)sqlite3_value_text16(argv[3]); if (delim == NULL) { ALOGE("can't get delimiter"); sqlite3_result_null(context); return; } UChar * token = NULL; UChar *state; int numTokens = 0; do { if (numTokens == 0) { token = origData; } // Reset the program so we can use it to perform the insert sqlite3_reset(statement); UErrorCode status = U_ZERO_ERROR; char keybuf[1024]; uint32_t result = ucol_getSortKey(collator, token, -1, (uint8_t*)keybuf, sizeof(keybuf)-1); if (result > sizeof(keybuf)) { // TODO allocate memory for this super big string ALOGE("ucol_getSortKey needs bigger buffer %d", result); break; } uint32_t keysize = result-1; uint32_t base16Size = keysize*2; char *base16buf = (char*)malloc(base16Size); base16Encode(base16buf, keybuf, keysize); err = sqlite3_bind_text(statement, 1, base16buf, base16Size, SQLITE_STATIC); if (err != SQLITE_OK) { ALOGE(" sqlite3_bind_text16 error %d", err); free(base16buf); break; } if (useTokenIndex) { err = sqlite3_bind_int(statement, 3, numTokens); if (err != SQLITE_OK) { ALOGE(" sqlite3_bind_int error %d", err); free(base16buf); break; } } err = sqlite3_step(statement); free(base16buf); if (err != SQLITE_DONE) { ALOGE(" sqlite3_step error %d", err); break; } numTokens++; if (numTokens == 1) { // first call u_strtok_r(origData, delim, &state); } } while ((token = u_strtok_r(NULL, delim, &state)) != NULL); sqlite3_result_int(context, numTokens); }
DLL_FUNCTION(int32_t) BU_SQLite_Bind_Value(sqlite3_stmt* pStmt, int32_t index, const sqlite3_value* pValue) { #pragma comment(linker, "/EXPORT:BU_SQLite_Bind_Value=_BU_SQLite_Bind_Value@12") return sqlite3_bind_value(pStmt, index, pValue); }
/* * Performs INSERT, UPDATE and DELETE operations * argc == 1 -> DELETE, argv[0] - object ID or SQL_NULL * argv[1]: SQL_NULL ? allocate object ID and return it in pRowid : ID for new object * * argc = 1 The single row with rowid equal to argv[0] is deleted. No insert occurs. argc > 1 argv[0] = NULL A new row is inserted with a rowid argv[1] and column values in argv[2] and following. If argv[1] is an SQL NULL, the a new unique rowid is generated automatically. argc > 1 argv[0] ≠ NULL argv[0] = argv[1] The row with rowid argv[0] is updated with new values in argv[2] and following parameters. argc > 1 argv[0] ≠ NULL argv[0] ≠ argv[1] The row with rowid argv[0] is updated with rowid argv[1] and new values in argv[2] and following parameters. This will occur when an SQL statement updates a rowid, as in the statement: UPDATE table SET rowid=rowid+1 WHERE ...; */ static int _update(sqlite3_vtab *pVTab, int argc, sqlite3_value **argv, sqlite_int64 *pRowid) { int result = SQLITE_OK; struct flexi_ClassDef_t *vtab = (struct flexi_ClassDef_t *) pVTab; sqlite3_stmt *pDel; sqlite3_stmt *pDelRtree; sqlite3_stmt *pInsObj; sqlite3_stmt *pInsProp; sqlite3_stmt *pUpdProp; if (argc == 1) // Delete { if (sqlite3_value_type(argv[0]) == SQLITE_NULL) // Nothing to delete. Exit { return SQLITE_OK; } sqlite3_int64 lOldID = sqlite3_value_int64(argv[0]); CHECK_CALL( flexi_Context_stmtInit(vtab->pCtx, STMT_DEL_OBJ, "delete from [.objects] where ObjectID = :1;", &pDel)); sqlite3_bind_int64(pDel, 1, lOldID); CHECK_STMT_STEP(pDel, vtab->pCtx->db); // TODO Move rtree delete init here pDelRtree = vtab->pCtx->pStmts[STMT_DEL_RTREE]; assert(pDelRtree); CHECK_CALL(sqlite3_reset(pDelRtree)); sqlite3_bind_int64(pDelRtree, 1, lOldID); CHECK_STMT_STEP(pDelRtree, vtab->pCtx->db); } else { if (sqlite3_value_type(argv[0]) == SQLITE_NULL) // Insert new row { const char *zInsObjSQL = "insert into [.objects] (ObjectID, ClassID, ctlo) values (:1, :2, :3); " "select last_insert_rowid();"; flexi_Context_stmtInit(vtab->pCtx, STMT_INS_OBJ, zInsObjSQL, &pInsObj); sqlite3_bind_value(pInsObj, 1, argv[1]); // Object ID, normally null sqlite3_bind_int64(pInsObj, 2, vtab->lClassID); sqlite3_bind_int(pInsObj, 3, vtab->xCtloMask); CHECK_STMT_STEP(pInsObj, vtab->pCtx->db); if (sqlite3_value_type(argv[1]) == SQLITE_NULL) { *pRowid = sqlite3_last_insert_rowid(vtab->pCtx->db); } else *pRowid = sqlite3_value_int64(argv[1]); const char *zInsPropSQL = "insert into [.ref-values] (ObjectID, PropertyID, PropIndex, ctlv, [Value])" " values (:1, :2, :3, :4, :5);"; CHECK_CALL(flexi_Context_stmtInit(vtab->pCtx, STMT_INS_PROP, zInsPropSQL, &pInsProp)); CHECK_CALL(flexi_upsert_props(vtab, *pRowid, pInsProp, 0, argc, argv)); } else { sqlite3_int64 lNewID = sqlite3_value_int64(argv[1]); *pRowid = lNewID; if (argv[0] != argv[1]) // Special case - Object ID update { sqlite3_int64 lOldID = sqlite3_value_int64(argv[0]); // TODO Move stmt init here sqlite3_stmt *pUpdObjID = vtab->pCtx->pStmts[STMT_UPD_OBJ_ID]; CHECK_CALL(sqlite3_reset(pUpdObjID)); sqlite3_bind_int64(pUpdObjID, 1, lNewID); sqlite3_bind_int64(pUpdObjID, 2, vtab->lClassID); sqlite3_bind_int64(pUpdObjID, 3, lOldID); CHECK_STMT_STEP(pUpdObjID, vtab->pCtx->db); } const char *zUpdPropSQL = "insert or replace into [.ref-values] (ObjectID, PropertyID, PropIndex, ctlv, [Value])" " values (:1, :2, :3, :4, :5);"; flexi_Context_stmtInit(vtab->pCtx, STMT_UPD_PROP, zUpdPropSQL, &pUpdProp); CHECK_CALL(flexi_upsert_props(vtab, *pRowid, pUpdProp, 1, argc, argv)); } } result = SQLITE_OK; goto EXIT; ONERROR: printf("%s", sqlite3_errmsg(vtab->pCtx->db)); EXIT: return result; }
/* * Saves property values for the given object ID */ static int flexi_upsert_props(struct flexi_ClassDef_t *pVTab, sqlite3_int64 lObjectID, sqlite3_stmt *pStmt, int bDeleteNulls, int argc, sqlite3_value **argv) { int result; sqlite3_stmt *pDelProp; CHECK_CALL(flexi_validate(pVTab, argc, argv)); // Values are coming from index 2 (0 and 1 used for object IDs) for (int ii = 2; ii < argc; ii++) { struct flexi_PropDef_t *pProp = &pVTab->pProps[ii - 2]; sqlite3_value *pVal = argv[ii]; /* * Check if this is range property. If so, actual value can be specified either directly * in format 'LoValue|HiValue', or via following computed bound properties. * Base range property has priority, so if it is not NULL, it will be used as property value */ int bIsNull = !(argv[ii] != NULL && sqlite3_value_type(argv[ii]) != SQLITE_NULL); if (IS_RANGE_PROPERTY(pProp->type)) { assert(ii + 2 < argc); if (bIsNull) { if (argv[ii + 1] != NULL && sqlite3_value_type(argv[ii + 1]) != SQLITE_NULL && argv[ii + 2] != NULL && sqlite3_value_type(argv[ii + 2]) != SQLITE_NULL) { bIsNull = 0; } } } // Check if value is not null if (!bIsNull) { // TODO Check if this is a mapped column CHECK_CALL(sqlite3_reset(pStmt)); sqlite3_bind_int64(pStmt, 1, lObjectID); sqlite3_bind_int64(pStmt, 2, pProp->iPropID); sqlite3_bind_int(pStmt, 3, 0); sqlite3_bind_int(pStmt, 4, pProp->xCtlv); if (!IS_RANGE_PROPERTY(pProp->type)) { sqlite3_bind_value(pStmt, 5, pVal); } else { // if (argv[ii] == NULL || sqlite3_value_type(argv[ii]) == SQLITE_NULL) // { // char *zRange = NULL; // switch (pProp->type) // { // case PROP_TYPE_INTEGER_RANGE: // zRange = sqlite3_mprintf("%li|%li", // sqlite3_value_int64(argv[ii + 1]), // sqlite3_value_int64(argv[ii + 2])); // break; // // case PROP_TYPE_DECIMAL_RANGE: // { // double d0 = sqlite3_value_double(argv[ii + 1]); // double d1 = sqlite3_value_double(argv[ii + 2]); // long long i0 = (long long) (d0 * 10000); // long long i1 = (long long) (d1 * 10000); // zRange = sqlite3_mprintf("%li|%li", i0, i1); // } // // break; // // default: // zRange = sqlite3_mprintf("%f|%f", // sqlite3_value_double(argv[ii + 1]), // sqlite3_value_double(argv[ii + 2])); // break; // } // // sqlite3_bind_text(pStmt, 5, zRange, -1, NULL); // sqlite3_free(zRange); // } // else // { // sqlite3_bind_value(pStmt, 5, pVal); // } // ii += 2; } CHECK_STMT_STEP(pStmt, pVTab->pCtx->db); } else { // Null value // TODO Check if this is a mapped column if (bDeleteNulls && pProp->cRngBound == 0) { const char *zDelPropSQL = "delete from [.ref-values] where ObjectID = :1 and PropertyID = :2 and PropIndex = :3;"; CHECK_CALL(flexi_Context_stmtInit(pVTab->pCtx, STMT_DEL_PROP, zDelPropSQL, &pDelProp)); sqlite3_bind_int64(pDelProp, 1, lObjectID); sqlite3_bind_int64(pDelProp, 2, pProp->iPropID); sqlite3_bind_int(pDelProp, 3, 0); CHECK_STMT_STEP(pDelProp, pVTab->pCtx->db); } } } result = SQLITE_OK; goto EXIT; ONERROR: if (pVTab->base.zErrMsg == NULL) { // TODO Set message? } EXIT: return result; }
/* * Generates dynamic SQL to find list of object IDs. * idxNum may be 0 or 1. When 1, idxStr will have all constraints appended by FindBestIndex. * Depending on number of constraint arguments in idxStr generated SQL will have of the following constructs: * 1. argc == 1 or all argv are for rtree search * 1.1. Unique index: select ObjectID from [.ref-values] where PropertyID = :1 and Value OP :2 and ctlv = * 1.2. Index: select ObjectID from [.ref-values] where PropertyID = :1 and Value OP :2 and ctlv = * 1.3. Match for full text search with index: * select id from [.full_text_data] where PropertyID = :1 and Value match :2 * 1.4. Linear scan without index: * select ObjectID from [.ref-values] where PropertyID = :1 and Value OP :2 * 1.5. Search by rtree: * select id from [.range_data] where ClassID = :1 and A0 OP :2 and A1 OP :3 and... * * 2.argc > 1 * General pattern would be: * <SQL for argv == 0> intersect <SQL for argv == 1>... */ static int _filter(sqlite3_vtab_cursor *pCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv) { static char *range_columns[] = {"A0", "A1", "B0", "B1", "C0", "C1", "D0", "D1"}; int result; struct flexi_VTabCursor *cur = (void *) pCursor; struct flexi_ClassDef_t *vtab = (struct flexi_ClassDef_t *) cur->base.pVtab; char *zSQL = NULL; // Subquery for [.range_data] char *zRangeSQL = NULL; if (idxNum == 0 || argc == 0) // No special index used. Apply linear scan { CHECK_STMT_PREPARE( vtab->pCtx->db, "select ObjectID from [.objects] where ClassID = :1;", &cur->pObjectIterator); sqlite3_bind_int64(cur->pObjectIterator, 1, vtab->lClassID); } else { assert(argc * 8 == strlen(idxStr)); const char *zIdxTuple = idxStr; for (int i = 0; i < argc; i++) { int op; int colIdx; sscanf(zIdxTuple, "%2X|%4X|", &op, &colIdx); colIdx--; zIdxTuple += 8; assert(colIdx >= -1 && colIdx < vtab->propsByName.count); if (zSQL != NULL) { void *pTmp = zSQL; zSQL = sqlite3_mprintf("%s intersect ", pTmp); sqlite3_free(pTmp); } char *zOp; switch (op) { case SQLITE_INDEX_CONSTRAINT_EQ: zOp = "="; break; case SQLITE_INDEX_CONSTRAINT_GT: zOp = ">"; break; case SQLITE_INDEX_CONSTRAINT_LE: zOp = "<="; break; case SQLITE_INDEX_CONSTRAINT_LT: zOp = "<"; break; case SQLITE_INDEX_CONSTRAINT_GE: zOp = ">="; break; default: assert(op == SQLITE_INDEX_CONSTRAINT_MATCH); zOp = "match"; break; } if (colIdx == -1) // Search by rowid / ObjectID { void *pTmp = zSQL; zSQL = sqlite3_mprintf( "%s select ObjectID from [.objects] where ObjectID %s :%d", pTmp, zOp, i + 1); sqlite3_free(pTmp); } else { struct flexi_PropDef_t *prop = &vtab->pProps[colIdx]; if (IS_RANGE_PROPERTY(prop->type)) // Special case: range data request { assert(prop->cRangeColumn > 0); if (zRangeSQL == NULL) { zRangeSQL = sqlite3_mprintf( "select id from [.range_data] where ClassID0 = %d and ClassID1 = %d ", vtab->lClassID, vtab->lClassID); } void *pTmp = zRangeSQL; zRangeSQL = sqlite3_mprintf("%s and %s %s :%d", pTmp, range_columns[prop->cRangeColumn - 1], zOp, i + 1); sqlite3_free(pTmp); } else // Normal column { void *zTmp = zSQL; if (op == SQLITE_INDEX_CONSTRAINT_MATCH && prop->bFullTextIndex) // full text search { // TODO Generate lookup on [.full_text_data] } else { zSQL = sqlite3_mprintf ("%sselect ObjectID from [.ref-values] where " "[PropertyID] = %d and [PropIndex] = 0 and ", zTmp, prop->iPropID); sqlite3_free(zTmp); if (op != SQLITE_INDEX_CONSTRAINT_MATCH) { zTmp = zSQL; zSQL = sqlite3_mprintf("%s[Value] %s :%d", zTmp, zOp, i + 1); sqlite3_free(zTmp); if (prop->bIndexed) { void *pTmp = zSQL; zSQL = sqlite3_mprintf("%s and (ctlv & %d) = %d", pTmp, CTLV_INDEX, CTLV_INDEX); sqlite3_free(pTmp); } else if (prop->bUnique) { void *pTmp = zSQL; zSQL = sqlite3_mprintf("%s and (ctlv & %d) = %d", pTmp, CTLV_UNIQUE_INDEX, CTLV_UNIQUE_INDEX); sqlite3_free(pTmp); } } else { /* * TODO * mem database * */ zTmp = zSQL; zSQL = sqlite3_mprintf("%smatch_text(:%d, [Value])", zTmp, i + 1); sqlite3_free(zTmp); } } } } } if (zRangeSQL != NULL) { void *pTmp = zSQL; zSQL = sqlite3_mprintf("%s intersect %s", pTmp, zRangeSQL); sqlite3_free(pTmp); } CHECK_STMT_PREPARE(vtab->pCtx->db, zSQL, &cur->pObjectIterator); // Bind arguments for (int ii = 0; ii < argc; ii++) { sqlite3_bind_value(cur->pObjectIterator, ii + 1, argv[ii]); } } CHECK_CALL(_next(pCursor)); result = SQLITE_OK; goto EXIT; ONERROR: EXIT: sqlite3_free(zSQL); sqlite3_free(zRangeSQL); return result; }