/* * Close the supplied Rbtree. Delete everything associated with it. */ static int memRbtreeClose(Rbtree* tree) { HashElem *p; memRbtreeCommit(tree); while( (p=sqliteHashFirst(&tree->tblHash))!=0 ) { tree->eTransState = TRANS_ROLLBACK; memRbtreeDropTable(tree, sqliteHashKeysize(p)); } sqliteHashClear(&tree->tblHash); sqliteFree(tree); return SQLITE_OK; }
/* * Check that each table in the Rbtree meets the requirements for a red-black * binary tree. If an error is found, return an explanation of the problem in * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored. */ static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot) { char * msg = 0; HashElem *p; for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)) { BtRbTree *pTree = sqliteHashData(p); check_redblack_tree(pTree, &msg); } return msg; }
/* ** Free all resources held by the schema structure. The void* argument points ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the ** pointer itself, it just cleans up subsiduary resources (i.e. the contents ** of the schema hash tables). ** ** The Schema.cache_size variable is not cleared. */ void sqlite3SchemaFree(void *p){ Hash temp1; Hash temp2; HashElem *pElem; Schema *pSchema = (Schema *)p; temp1 = pSchema->tblHash; temp2 = pSchema->trigHash; sqlite3HashInit(&pSchema->trigHash, 0); sqlite3HashClear(&pSchema->aFKey); sqlite3HashClear(&pSchema->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pSchema->tblHash, 0); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(pTab); } sqlite3HashClear(&temp1); pSchema->pSeqTab = 0; pSchema->flags &= ~DB_SchemaLoaded; }
/* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab++; openStatTable(pParse, iDb, iStatCur, 0); iMem = pParse->nMem; for(k=sqliteHashFirst(&db->aDb[iDb].tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, iStatCur, iMem); } loadAnalysis(pParse, iDb); }
/* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, 0); iMem = pParse->nMem+1; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, iStatCur, iMem); } loadAnalysis(pParse, iDb); }
/* ** Given table pTab, return a list of all the triggers attached to ** the table. The list is connected by Trigger.pNext pointers. ** ** All of the triggers on pTab that are in the same database as pTab ** are already attached to pTab->pTrigger. But there might be additional ** triggers on pTab in the TEMP schema. This routine prepends all ** TEMP triggers on pTab to the beginning of the pTab->pTrigger list ** and returns the combined list. ** ** To state it another way: This routine returns a list of all triggers ** that fire off of pTab. The list will include any TEMP triggers on ** pTab as well as the triggers lised in pTab->pTrigger. */ Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){ Schema * const pTmpSchema = pParse->db->aDb[1].pSchema; Trigger *pList = 0; /* List of triggers to return */ if( pTmpSchema!=pTab->pSchema ){ HashElem *p; for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){ Trigger *pTrig = (Trigger *)sqliteHashData(p); if( pTrig->pTabSchema==pTab->pSchema && 0==sqlite3StrICmp(pTrig->table, pTab->zName) ){ pTrig->pNext = (pList ? pList : pTab->pTrigger); pList = pTrig; } } } return (pList ? pList : pTab->pTrigger); }
/* ** Reset an Agg structure. Delete all its contents. ** ** For installable aggregate functions, if the step function has been ** called, make sure the finalizer function has also been called. The ** finalizer might need to free memory that was allocated as part of its ** private context. If the finalizer has not been called yet, call it ** now. */ void sqliteVdbeAggReset(Agg *pAgg){ int i; HashElem *p; for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){ AggElem *pElem = sqliteHashData(p); assert( pAgg->apFunc!=0 ); for(i=0; i<pAgg->nMem; i++){ Mem *pMem = &pElem->aMem[i]; if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){ sqlite_func ctx; ctx.pFunc = pAgg->apFunc[i]; ctx.s.flags = MEM_Null; ctx.pAgg = pMem->z; ctx.cnt = pMem->i; ctx.isStep = 0; ctx.isError = 0; (*pAgg->apFunc[i]->xFinalize)(&ctx); if( pMem->z!=0 && pMem->z!=pMem->zShort ){ sqliteFree(pMem->z); } if( ctx.s.flags & MEM_Dyn ){ sqliteFree(ctx.s.z); } }else if( pMem->flags & MEM_Dyn ){ sqliteFree(pMem->z); } } sqliteFree(pElem); } sqliteHashClear(&pAgg->hash); sqliteFree(pAgg->apFunc); pAgg->apFunc = 0; pAgg->pCurrent = 0; pAgg->pSearch = 0; pAgg->nMem = 0; }
/* ** Query status information for a single database connection */ SQLITE_API int sqlite3_db_status( sqlite3 *db, /* The database connection whose status is desired */ int op, /* Status verb */ int *pCurrent, /* Write current value here */ int *pHighwater, /* Write high-water mark here */ int resetFlag /* Reset high-water mark if true */ ){ int rc = SQLITE_OK; /* Return code */ sqlite3_mutex_enter(db->mutex); switch( op ){ case SQLITE_DBSTATUS_LOOKASIDE_USED: { *pCurrent = db->lookaside.nOut; *pHighwater = db->lookaside.mxOut; if( resetFlag ){ db->lookaside.mxOut = db->lookaside.nOut; } break; } case SQLITE_DBSTATUS_LOOKASIDE_HIT: case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE: case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: { testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT ); testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE ); testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL ); assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 ); assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 ); *pCurrent = 0; *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT]; if( resetFlag ){ db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0; } break; } /* ** Return an approximation for the amount of memory currently used ** by all pagers associated with the given database connection. The ** highwater mark is meaningless and is returned as zero. */ case SQLITE_DBSTATUS_CACHE_USED: { int totalUsed = 0; int i; sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ Pager *pPager = sqlite3BtreePager(pBt); totalUsed += sqlite3PagerMemUsed(pPager); } } sqlite3BtreeLeaveAll(db); *pCurrent = totalUsed; *pHighwater = 0; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store the schema for all databases (main, temp, and any ATTACHed ** databases. *pHighwater is set to zero. */ case SQLITE_DBSTATUS_SCHEMA_USED: { int i; /* Used to iterate through schemas */ int nByte = 0; /* Used to accumulate return value */ sqlite3BtreeEnterAll(db); db->pnBytesFreed = &nByte; for(i=0; i<db->nDb; i++){ Schema *pSchema = db->aDb[i].pSchema; if( ALWAYS(pSchema!=0) ){ HashElem *p; nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * ( pSchema->tblHash.count + pSchema->trigHash.count + pSchema->idxHash.count + pSchema->fkeyHash.count ); nByte += sqlite3MallocSize(pSchema->tblHash.ht); nByte += sqlite3MallocSize(pSchema->trigHash.ht); nByte += sqlite3MallocSize(pSchema->idxHash.ht); nByte += sqlite3MallocSize(pSchema->fkeyHash.ht); for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p)); } for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ sqlite3DeleteTable(db, (Table *)sqliteHashData(p)); } } } db->pnBytesFreed = 0; sqlite3BtreeLeaveAll(db); *pHighwater = 0; *pCurrent = nByte; break; } /* ** *pCurrent gets an accurate estimate of the amount of memory used ** to store all prepared statements. ** *pHighwater is set to zero. */ case SQLITE_DBSTATUS_STMT_USED: { struct Vdbe *pVdbe; /* Used to iterate through VMs */ int nByte = 0; /* Used to accumulate return value */ db->pnBytesFreed = &nByte; for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ sqlite3VdbeClearObject(db, pVdbe); sqlite3DbFree(db, pVdbe); } db->pnBytesFreed = 0; *pHighwater = 0; *pCurrent = nByte; break; } /* ** Set *pCurrent to the total cache hits or misses encountered by all ** pagers the database handle is connected to. *pHighwater is always set ** to zero. */ case SQLITE_DBSTATUS_CACHE_HIT: case SQLITE_DBSTATUS_CACHE_MISS: case SQLITE_DBSTATUS_CACHE_WRITE:{ int i; int nRet = 0; assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 ); assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 ); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt ){ Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt); sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet); } } *pHighwater = 0; *pCurrent = nRet; break; } /* Set *pCurrent to non-zero if there are unresolved deferred foreign ** key constraints. Set *pCurrent to zero if all foreign key constraints ** have been satisfied. The *pHighwater is always set to zero. */ case SQLITE_DBSTATUS_DEFERRED_FKS: { *pHighwater = 0; *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0; break; } default: { rc = SQLITE_ERROR; } } sqlite3_mutex_leave(db->mutex); return rc; }
SWITCH_DECLARE(switch_hash_index_t *) switch_hash_first(char *deprecate_me, switch_hash_t *hash) { return (switch_hash_index_t *) sqliteHashFirst(&hash->table); }
/* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA id = value ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. */ void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){ char *zLeft = 0; char *zRight = 0; sqlite *db = pParse->db; Vdbe *v = sqliteGetVdbe(pParse); if( v==0 ) return; zLeft = sqliteStrNDup(pLeft->z, pLeft->n); sqliteDequote(zLeft); if( minusFlag ){ zRight = 0; sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0); }else{ zRight = sqliteStrNDup(pRight->z, pRight->n); sqliteDequote(zRight); } if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){ sqliteFree(zLeft); sqliteFree(zRight); return; } /* ** PRAGMA default_cache_size ** PRAGMA default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** The default cache size is stored in meta-value 2 of page 1 of the ** database file. The cache size is actually the absolute value of ** this memory location. The sign of meta-value 2 determines the ** synchronous setting. A negative value means synchronous is off ** and a positive value means synchronous is on. */ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){ static VdbeOpList getCacheSize[] = { { OP_ReadCookie, 0, 2, 0}, { OP_AbsValue, 0, 0, 0}, { OP_Dup, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 6, 0}, { OP_Integer, 0, 0, 0}, /* 5 */ { OP_ColumnName, 0, 1, "cache_size"}, { OP_Callback, 1, 0, 0}, }; int addr; if( pRight->z==pLeft->z ){ addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqliteVdbeChangeP1(v, addr+5, MAX_PAGES); }else{ int size = atoi(zRight); if( size<0 ) size = -size; sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_Integer, size, 0); sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2); addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_Ge, 0, addr+3); sqliteVdbeAddOp(v, OP_Negative, 0, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 2); sqliteEndWriteOperation(pParse); db->cache_size = db->cache_size<0 ? -size : size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); } }else /* ** PRAGMA cache_size ** PRAGMA cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The local setting can be different from ** the persistent cache size value that is stored in the database ** file itself. The value returned is the maximum number of ** pages in the page cache. The second form sets the local ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqliteStrICmp(zLeft,"cache_size")==0 ){ static VdbeOpList getCacheSize[] = { { OP_ColumnName, 0, 1, "cache_size"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ int size = db->cache_size;; if( size<0 ) size = -size; sqliteVdbeAddOp(v, OP_Integer, size, 0); sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); }else{ int size = atoi(zRight); if( size<0 ) size = -size; if( db->cache_size<0 ) size = -size; db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); } }else /* ** PRAGMA default_synchronous ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL ** ** The first form returns the persistent value of the "synchronous" setting ** that is stored in the database. This is the synchronous setting that ** is used whenever the database is opened unless overridden by a separate ** "synchronous" pragma. The second form changes the persistent and the ** local synchronous setting to the value given. ** ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls ** to make sure data is committed to disk. Write operations are very fast, ** but a power failure can leave the database in an inconsistent state. ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to ** make sure data is being written to disk. The risk of corruption due to ** a power loss in this mode is negligible but non-zero. If synchronous ** is FULL, extra fsync()s occur to reduce the risk of corruption to near ** zero, but with a write performance penalty. The default mode is NORMAL. */ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){ static VdbeOpList getSync[] = { { OP_ColumnName, 0, 1, "synchronous"}, { OP_ReadCookie, 0, 3, 0}, { OP_Dup, 0, 0, 0}, { OP_If, 0, 0, 0}, /* 3 */ { OP_ReadCookie, 0, 2, 0}, { OP_Integer, 0, 0, 0}, { OP_Lt, 0, 5, 0}, { OP_AddImm, 1, 0, 0}, { OP_Callback, 1, 0, 0}, { OP_Halt, 0, 0, 0}, { OP_AddImm, -1, 0, 0}, /* 10 */ { OP_Callback, 1, 0, 0} }; if( pRight->z==pLeft->z ){ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync); sqliteVdbeChangeP2(v, addr+3, addr+10); }else{ int addr; int size = db->cache_size; if( size<0 ) size = -size; sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2); sqliteVdbeAddOp(v, OP_Dup, 0, 0); addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_Ne, 0, addr+3); sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0); sqliteVdbeAddOp(v, OP_AbsValue, 0, 0); db->safety_level = getSafetyLevel(zRight)+1; if( db->safety_level==1 ){ sqliteVdbeAddOp(v, OP_Negative, 0, 0); size = -size; } sqliteVdbeAddOp(v, OP_SetCookie, 0, 2); sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 3); sqliteEndWriteOperation(pParse); db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level); } }else /* ** PRAGMA synchronous ** PRAGMA synchronous=OFF|ON|NORMAL|FULL ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ if( sqliteStrICmp(zLeft,"synchronous")==0 ){ static VdbeOpList getSync[] = { { OP_ColumnName, 0, 1, "synchronous"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0); sqliteVdbeAddOpList(v, ArraySize(getSync), getSync); }else{ int size = db->cache_size; if( size<0 ) size = -size; db->safety_level = getSafetyLevel(zRight)+1; if( db->safety_level==1 ) size = -size; db->cache_size = size; sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size); sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level); } }else #ifndef NDEBUG if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){ if( getBoolean(zRight) ){ always_code_trigger_setup = 1; }else{ always_code_trigger_setup = 0; } }else #endif if( flagPragma(pParse, zLeft, zRight) ){ /* The flagPragma() call also generates any necessary code */ }else if( sqliteStrICmp(zLeft, "table_info")==0 ){ Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ static VdbeOpList tableInfoPreface[] = { { OP_ColumnName, 0, 0, "cid"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 0, "type"}, { OP_ColumnName, 3, 0, "notnull"}, { OP_ColumnName, 4, 0, "dflt_value"}, { OP_ColumnName, 5, 1, "pk"}, }; int i; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); sqliteViewGetColumnNames(pParse, pTab); for(i=0; i<pTab->nCol; i++){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0); sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0); sqliteVdbeAddOp(v, OP_Callback, 6, 0); } } }else if( sqliteStrICmp(zLeft, "index_info")==0 ){ Index *pIdx; Table *pTab; pIdx = sqliteFindIndex(db, zRight, 0); if( pIdx ){ static VdbeOpList tableInfoPreface[] = { { OP_ColumnName, 0, 0, "seqno"}, { OP_ColumnName, 1, 0, "cid"}, { OP_ColumnName, 2, 1, "name"}, }; int i; pTab = pIdx->pTable; sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface); for(i=0; i<pIdx->nColumn; i++){ int cnum = pIdx->aiColumn[i]; sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_Integer, cnum, 0); assert( pTab->nCol>cnum ); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); } } }else if( sqliteStrICmp(zLeft, "index_list")==0 ){ Index *pIdx; Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ v = sqliteGetVdbe(pParse); pIdx = pTab->pIndex; } if( pTab && pIdx ){ int i = 0; static VdbeOpList indexListPreface[] = { { OP_ColumnName, 0, 0, "seq"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 1, "unique"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); while(pIdx){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0); sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); ++i; pIdx = pIdx->pNext; } } }else if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){ FKey *pFK; Table *pTab; pTab = sqliteFindTable(db, zRight, 0); if( pTab ){ v = sqliteGetVdbe(pParse); pFK = pTab->pFKey; } if( pTab && pFK ){ int i = 0; static VdbeOpList indexListPreface[] = { { OP_ColumnName, 0, 0, "id"}, { OP_ColumnName, 1, 0, "seq"}, { OP_ColumnName, 2, 0, "table"}, { OP_ColumnName, 3, 0, "from"}, { OP_ColumnName, 4, 1, "to"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); while(pFK){ int j; for(j=0; j<pFK->nCol; j++){ sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeAddOp(v, OP_Integer, j, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[pFK->aCol[j].iFrom].zName, 0); sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0); sqliteVdbeAddOp(v, OP_Callback, 5, 0); } ++i; pFK = pFK->pNextFrom; } } }else if( sqliteStrICmp(zLeft, "database_list")==0 ){ int i; static VdbeOpList indexListPreface[] = { { OP_ColumnName, 0, 0, "seq"}, { OP_ColumnName, 1, 0, "name"}, { OP_ColumnName, 2, 1, "file"}, }; sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zName!=0 ); sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0); sqliteVdbeOp3(v, OP_String, 0, 0, sqliteBtreeGetFilename(db->aDb[i].pBt), 0); sqliteVdbeAddOp(v, OP_Callback, 3, 0); } }else /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqliteStrICmp(zLeft, "temp_store")==0 ){ static VdbeOpList getTmpDbLoc[] = { { OP_ColumnName, 0, 1, "temp_store"}, { OP_Callback, 1, 0, 0}, }; if( pRight->z==pLeft->z ){ sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0); sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc); }else{ changeTempStorage(pParse, zRight); } }else /* ** PRAGMA default_temp_store ** PRAGMA default_temp_store = "default"|"memory"|"file" ** ** Return or set the value of the persistent temp_store flag. Any ** change does not take effect until the next time the database is ** opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){ static VdbeOpList getTmpDbLoc[] = { { OP_ColumnName, 0, 1, "temp_store"}, { OP_ReadCookie, 0, 5, 0}, { OP_Callback, 1, 0, 0}}; if( pRight->z==pLeft->z ){ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc); }else{ sqliteBeginWriteOperation(pParse, 0, 0); sqliteVdbeAddOp(v, OP_Integer, getTempStore(zRight), 0); sqliteVdbeAddOp(v, OP_SetCookie, 0, 5); sqliteEndWriteOperation(pParse); } }else #ifndef NDEBUG if( sqliteStrICmp(zLeft, "parser_trace")==0 ){ extern void sqliteParserTrace(FILE*, char *); if( getBoolean(zRight) ){ sqliteParserTrace(stdout, "parser: "); }else{ sqliteParserTrace(0, 0); } }else #endif if( sqliteStrICmp(zLeft, "integrity_check")==0 ){ int i, j, addr; /* Code that initializes the integrity check program. Set the ** error count 0 */ static VdbeOpList initCode[] = { { OP_Integer, 0, 0, 0}, { OP_MemStore, 0, 1, 0}, { OP_ColumnName, 0, 1, "integrity_check"}, }; /* Code to do an BTree integrity check on a single database file. */ static VdbeOpList checkDb[] = { { OP_SetInsert, 0, 0, "2"}, { OP_Integer, 0, 0, 0}, /* 1 */ { OP_OpenRead, 0, 2, 0}, { OP_Rewind, 0, 7, 0}, /* 3 */ { OP_Column, 0, 3, 0}, /* 4 */ { OP_SetInsert, 0, 0, 0}, { OP_Next, 0, 4, 0}, /* 6 */ { OP_IntegrityCk, 0, 0, 0}, /* 7 */ { OP_Dup, 0, 1, 0}, { OP_String, 0, 0, "ok"}, { OP_StrEq, 0, 12, 0}, /* 10 */ { OP_MemIncr, 0, 0, 0}, { OP_String, 0, 0, "*** in database "}, { OP_String, 0, 0, 0}, /* 13 */ { OP_String, 0, 0, " ***\n"}, { OP_Pull, 3, 0, 0}, { OP_Concat, 4, 1, 0}, { OP_Callback, 1, 0, 0}, }; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static VdbeOpList endCode[] = { { OP_MemLoad, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 0, 0}, /* 2 */ { OP_String, 0, 0, "ok"}, { OP_Callback, 1, 0, 0}, }; /* Initialize the VDBE program */ sqliteVdbeAddOpList(v, ArraySize(initCode), initCode); /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; /* Do an integrity check of the B-Tree */ addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb); sqliteVdbeChangeP1(v, addr+1, i); sqliteVdbeChangeP2(v, addr+3, addr+7); sqliteVdbeChangeP2(v, addr+6, addr+4); sqliteVdbeChangeP2(v, addr+7, i); sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb)); sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC); /* Make sure all the indices are constructed correctly. */ sqliteCodeVerifySchema(pParse, i); for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; sqliteVdbeAddOp(v, OP_Integer, i, 0); sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ if( pIdx->tnum==0 ) continue; sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0); sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0); } sqliteVdbeAddOp(v, OP_Integer, 0, 0); sqliteVdbeAddOp(v, OP_MemStore, 1, 1); loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0); sqliteVdbeAddOp(v, OP_MemIncr, 1, 0); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int k, jmp2; static VdbeOpList idxErr[] = { { OP_MemIncr, 0, 0, 0}, { OP_String, 0, 0, "rowid "}, { OP_Recno, 1, 0, 0}, { OP_String, 0, 0, " missing from index "}, { OP_String, 0, 0, 0}, /* 4 */ { OP_Concat, 4, 0, 0}, { OP_Callback, 1, 0, 0}, }; sqliteVdbeAddOp(v, OP_Recno, 1, 0); for(k=0; k<pIdx->nColumn; k++){ int idx = pIdx->aiColumn[k]; if( idx==pTab->iPKey ){ sqliteVdbeAddOp(v, OP_Recno, 1, 0); }else{ sqliteVdbeAddOp(v, OP_Column, 1, idx); } } sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0); if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx); jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0); addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr); sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC); sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v)); } sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1); sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v)); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static VdbeOpList cntIdx[] = { { OP_Integer, 0, 0, 0}, { OP_MemStore, 2, 1, 0}, { OP_Rewind, 0, 0, 0}, /* 2 */ { OP_MemIncr, 2, 0, 0}, { OP_Next, 0, 0, 0}, /* 4 */ { OP_MemLoad, 1, 0, 0}, { OP_MemLoad, 2, 0, 0}, { OP_Eq, 0, 0, 0}, /* 7 */ { OP_MemIncr, 0, 0, 0}, { OP_String, 0, 0, "wrong # of entries in index "}, { OP_String, 0, 0, 0}, /* 10 */ { OP_Concat, 2, 0, 0}, { OP_Callback, 1, 0, 0}, }; if( pIdx->tnum==0 ) continue; addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx); sqliteVdbeChangeP1(v, addr+2, j+2); sqliteVdbeChangeP2(v, addr+2, addr+5); sqliteVdbeChangeP1(v, addr+4, j+2); sqliteVdbeChangeP2(v, addr+4, addr+3); sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx)); sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC); } } } addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode); sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode)); }else {} sqliteFree(zLeft); sqliteFree(zRight); }
SWITCH_DECLARE(switch_hash_index_t *) switch_core_hash_first(switch_hash_t *hash) { return (switch_hash_index_t *) sqliteHashFirst(&hash->table); }
/* ** Close an existing SQLite database */ EXPORT_C int sqlite3_close(sqlite3 *db){ HashElem *i; int j; if( !db ){ return SQLITE_OK; } if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } sqlite3_mutex_enter(db->mutex); #ifdef SQLITE_SSE { extern void sqlite3SseCleanup(sqlite3*); sqlite3SseCleanup(db); } #endif sqlite3ResetInternalSchema(db, 0); /* If a transaction is open, the ResetInternalSchema() call above ** will not have called the xDisconnect() method on any virtual ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() ** call will do so. We need to do this before the check for active ** SQL statements below, as the v-table implementation may be storing ** some prepared statements internally. */ sqlite3VtabRollback(db); /* If there are any outstanding VMs, return SQLITE_BUSY. */ if( db->pVdbe ){ sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements"); sqlite3_mutex_leave(db->mutex); return SQLITE_BUSY; } assert( !sqlite3SafetyCheck(db) ); /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database ** cannot be opened for some reason. So this routine needs to run in ** that case. But maybe there should be an extra magic value for the ** "failed to open" state. ** ** TODO: Coverage tests do not test the case where this condition is ** true. It's hard to see how to cause it without messing with threads. */ if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){ /* printf("DID NOT CLOSE\n"); fflush(stdout); */ sqlite3_mutex_leave(db->mutex); return SQLITE_ERROR; } for(j=0; j<db->nDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqlite3_free(pFunc); } } for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); /* Invoke any destructors registered for collation sequence user data. */ for(j=0; j<3; j++){ if( pColl[j].xDel ){ pColl[j].xDel(pColl[j].pUser); } } sqlite3_free(pColl); } sqlite3HashClear(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ Module *pMod = (Module *)sqliteHashData(i); if( pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } sqlite3_free(pMod); } sqlite3HashClear(&db->aModule); #endif sqlite3HashClear(&db->aFunc); sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ if( db->pErr ){ sqlite3ValueFree(db->pErr); } sqlite3CloseExtensions(db); db->magic = SQLITE_MAGIC_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database ** structure? */ sqlite3_free(db->aDb[1].pSchema); sqlite3_mutex_leave(db->mutex); sqlite3_mutex_free(db->mutex); sqlite3_free(db); return SQLITE_OK; }
/* ** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] ** arrays. The contents of sqlite_stat2 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR ** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined ** during compilation and the sqlite_stat2 table is present, no data is ** read from it. ** ** If SQLITE_ENABLE_STAT2 was defined during compilation and the ** sqlite_stat2 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** ** If an OOM error occurs, this function always sets db->mallocFailed. ** This means if the caller does not care about other errors, the return ** code may be ignored. */ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; int rc; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); /* Clear any prior statistics */ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = (Index *) sqliteHashData(i); sqlite3DefaultRowEst(pIdx); sqlite3DeleteIndexSamples(db, pIdx); pIdx->aSample = 0; } /* Check to make sure the sqlite_stat1 table exists */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zName; if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ return SQLITE_ERROR; } /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite3MPrintf(db, "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); sqlite3DbFree(db, zSql); } /* Load the statistics from the sqlite_stat2 table. */ #ifdef SQLITE_ENABLE_STAT2 if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ sqlite3_stmt *pStmt = 0; zSql = sqlite3MPrintf(db, "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); sqlite3DbFree(db, zSql); } if( rc==SQLITE_OK ){ while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex; /* Index name */ Index *pIdx; /* Pointer to the index object */ zIndex = (char *)sqlite3_column_text(pStmt, 0); pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0; if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz); if( pIdx->aSample==0 ){ db->mallocFailed = 1; break; } memset(pIdx->aSample, 0, sz); } assert( pIdx->aSample ); { IndexSample *pSample = &pIdx->aSample[iSample]; pSample->eType = (u8)eType; if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ pSample->u.r = sqlite3_column_double(pStmt, 2); }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ const char *z = (const char *)( (eType==SQLITE_BLOB) ? sqlite3_column_blob(pStmt, 2): sqlite3_column_text(pStmt, 2) ); int n = sqlite3_column_bytes(pStmt, 2); if( n>24 ){ n = 24; } pSample->nByte = (u8)n; if( n < 1){ pSample->u.z = 0; }else{ pSample->u.z = sqlite3DbStrNDup(0, z, n); if( pSample->u.z==0 ){ db->mallocFailed = 1; break; } } } } } } } rc = sqlite3_finalize(pStmt); } } #endif if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } return rc; }
/* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA [database.]id [= value] ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. ** ** If the left side is "database.id" then pId1 is the database name ** and pId2 is the id. If the left side is just "id" then pId1 is the ** id and pId2 is any empty string. */ void sqlite3Pragma( Parse *pParse, Token *pId1, /* First part of [database.]id field */ Token *pId2, /* Second part of [database.]id field, or NULL */ Token *pValue, /* Token for <value>, or NULL */ int minusFlag /* True if a '-' sign preceded <value> */ ){ char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ const char *zDb = 0; /* The database name */ Token *pId; /* Pointer to <id> token */ int iDb; /* Database index for <database> */ sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; /* Interpret the [database.] part of the pragma statement. iDb is the ** index of the database this pragma is being applied to in db.aDb[]. */ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); if( iDb<0 ) return; pDb = &db->aDb[iDb]; zLeft = sqlite3NameFromToken(pId); if( !zLeft ) return; if( minusFlag ){ zRight = sqlite3MPrintf("-%T", pValue); }else{ zRight = sqlite3NameFromToken(pValue); } zDb = ((iDb>0)?pDb->zName:0); if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } /* ** PRAGMA [database.]default_cache_size ** PRAGMA [database.]default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** The default cache size is stored in meta-value 2 of page 1 of the ** database file. The cache size is actually the absolute value of ** this memory location. The sign of meta-value 2 determines the ** synchronous setting. A negative value means synchronous is off ** and a positive value means synchronous is on. */ if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ static const VdbeOpList getCacheSize[] = { { OP_ReadCookie, 0, 2, 0}, /* 0 */ { OP_AbsValue, 0, 0, 0}, { OP_Dup, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 6, 0}, { OP_Integer, 0, 0, 0}, /* 5 */ { OP_Callback, 1, 0, 0}, }; int addr; if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, "cache_size", P3_STATIC); addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES); }else{ int size = atoi(zRight); if( size<0 ) size = -size; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp(v, OP_Integer, size, 0); sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2); addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0); sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3); sqlite3VdbeAddOp(v, OP_Negative, 0, 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2); pDb->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->cache_size); } }else /* ** PRAGMA [database.]page_size ** PRAGMA [database.]page_size=N ** ** The first form reports the current setting for the ** database page size in bytes. The second form sets the ** database page size value. The value can only be set if ** the database has not yet been created. */ if( sqlite3StrICmp(zLeft,"page_size")==0 ){ Btree *pBt = pDb->pBt; if( !zRight ){ int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0; returnSingleInt(pParse, "page_size", size); }else{ sqlite3BtreeSetPageSize(pBt, atoi(zRight), sqlite3BtreeGetReserve(pBt)); } }else /* ** PRAGMA [database.]cache_size ** PRAGMA [database.]cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The local setting can be different from ** the persistent cache size value that is stored in the database ** file itself. The value returned is the maximum number of ** pages in the page cache. The second form sets the local ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "cache_size", pDb->cache_size); }else{ int size = atoi(zRight); if( size<0 ) size = -size; pDb->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->cache_size); } }else /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ if( !zRight ){ returnSingleInt(pParse, "temp_store", db->temp_store); }else{ changeTempStorage(pParse, zRight); } }else /* ** PRAGMA [database.]synchronous ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ pDb->safety_level = getSafetyLevel(zRight)+1; sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level); } } }else #if 0 /* Used once during development. No longer needed */ if( sqlite3StrICmp(zLeft, "trigger_overhead_test")==0 ){ if( getBoolean(zRight) ){ sqlite3_always_code_trigger_setup = 1; }else{ sqlite3_always_code_trigger_setup = 0; } }else #endif if( flagPragma(pParse, zLeft, zRight) ){ /* The flagPragma() subroutine also generates any necessary code ** there is nothing more to do here */ }else /* ** PRAGMA table_info(<table>) ** ** Return a single row for each column of the named table. The columns of ** the returned data set are: ** ** cid: Column id (numbered from left to right, starting at 0) ** name: Column name ** type: Column declaration type. ** notnull: True if 'NOT NULL' is part of column declaration ** dflt_value: The default value for the column, if any. */ if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int i; sqlite3VdbeSetNumCols(v, 6); sqlite3VdbeSetColName(v, 0, "cid", P3_STATIC); sqlite3VdbeSetColName(v, 1, "name", P3_STATIC); sqlite3VdbeSetColName(v, 2, "type", P3_STATIC); sqlite3VdbeSetColName(v, 3, "notnull", P3_STATIC); sqlite3VdbeSetColName(v, 4, "dflt_value", P3_STATIC); sqlite3VdbeSetColName(v, 5, "pk", P3_STATIC); sqlite3ViewGetColumnNames(pParse, pTab); for(i=0; i<pTab->nCol; i++){ sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zName, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0); sqlite3VdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zDflt, P3_STATIC); sqlite3VdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0); sqlite3VdbeAddOp(v, OP_Callback, 6, 0); } } }else if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ Index *pIdx; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int i; pTab = pIdx->pTable; sqlite3VdbeSetNumCols(v, 3); sqlite3VdbeSetColName(v, 0, "seqno", P3_STATIC); sqlite3VdbeSetColName(v, 1, "cid", P3_STATIC); sqlite3VdbeSetColName(v, 2, "name", P3_STATIC); for(i=0; i<pIdx->nColumn; i++){ int cnum = pIdx->aiColumn[i]; sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeAddOp(v, OP_Integer, cnum, 0); assert( pTab->nCol>cnum ); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0); sqlite3VdbeAddOp(v, OP_Callback, 3, 0); } } }else if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ Index *pIdx; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ v = sqlite3GetVdbe(pParse); pIdx = pTab->pIndex; if( pIdx ){ int i = 0; sqlite3VdbeSetNumCols(v, 3); sqlite3VdbeSetColName(v, 0, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 1, "name", P3_STATIC); sqlite3VdbeSetColName(v, 2, "unique", P3_STATIC); while(pIdx){ sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0); sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0); sqlite3VdbeAddOp(v, OP_Callback, 3, 0); ++i; pIdx = pIdx->pNext; } } } }else if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ FKey *pFK; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ v = sqlite3GetVdbe(pParse); pFK = pTab->pFKey; if( pFK ){ int i = 0; sqlite3VdbeSetNumCols(v, 5); sqlite3VdbeSetColName(v, 0, "id", P3_STATIC); sqlite3VdbeSetColName(v, 1, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 2, "table", P3_STATIC); sqlite3VdbeSetColName(v, 3, "from", P3_STATIC); sqlite3VdbeSetColName(v, 4, "to", P3_STATIC); while(pFK){ int j; for(j=0; j<pFK->nCol; j++){ sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeAddOp(v, OP_Integer, j, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[pFK->aCol[j].iFrom].zName, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->aCol[j].zCol, 0); sqlite3VdbeAddOp(v, OP_Callback, 5, 0); } ++i; pFK = pFK->pNextFrom; } } } }else if( sqlite3StrICmp(zLeft, "database_list")==0 ){ int i; if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 3); sqlite3VdbeSetColName(v, 0, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 1, "name", P3_STATIC); sqlite3VdbeSetColName(v, 2, "file", P3_STATIC); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zName!=0 ); sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); sqlite3VdbeAddOp(v, OP_Callback, 3, 0); } }else #ifndef NDEBUG if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ extern void sqlite3ParserTrace(FILE*, char *); if( getBoolean(zRight) ){ sqlite3ParserTrace(stdout, "parser: "); }else{ sqlite3ParserTrace(0, 0); } }else #endif if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){ int i, j, addr; /* Code that initializes the integrity check program. Set the ** error count 0 */ static const VdbeOpList initCode[] = { { OP_Integer, 0, 0, 0}, { OP_MemStore, 0, 1, 0}, }; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const VdbeOpList endCode[] = { { OP_MemLoad, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 0, 0}, /* 2 */ { OP_String8, 0, 0, "ok"}, { OP_Callback, 1, 0, 0}, }; /* Initialize the VDBE program */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC); sqlite3VdbeAddOpList(v, ArraySize(initCode), initCode); /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; int cnt = 0; sqlite3CodeVerifySchema(pParse, i); /* Do an integrity check of the B-Tree */ for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto pragma_out; sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0); cnt++; } } assert( cnt>0 ); sqlite3VdbeAddOp(v, OP_IntegrityCk, cnt, i); sqlite3VdbeAddOp(v, OP_Dup, 0, 1); addr = sqlite3VdbeOp3(v, OP_String8, 0, 0, "ok", P3_STATIC); sqlite3VdbeAddOp(v, OP_Eq, 0, addr+6); sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName), P3_DYNAMIC); sqlite3VdbeAddOp(v, OP_Pull, 1, 0); sqlite3VdbeAddOp(v, OP_Concat, 0, 1); sqlite3VdbeAddOp(v, OP_Callback, 1, 0); /* Make sure all the indices are constructed correctly. */ sqlite3CodeVerifySchema(pParse, i); for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); sqlite3VdbeAddOp(v, OP_Integer, 0, 0); sqlite3VdbeAddOp(v, OP_MemStore, 1, 1); loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0); sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2; static const VdbeOpList idxErr[] = { { OP_MemIncr, 0, 0, 0}, { OP_String8, 0, 0, "rowid "}, { OP_Recno, 1, 0, 0}, { OP_String8, 0, 0, " missing from index "}, { OP_String8, 0, 0, 0}, /* 4 */ { OP_Concat, 2, 0, 0}, { OP_Callback, 1, 0, 0}, }; sqlite3GenerateIndexKey(v, pIdx, 1); jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC); sqlite3VdbeChangeP2(v, jmp2, sqlite3VdbeCurrentAddr(v)); } sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1); sqlite3VdbeChangeP2(v, loopTop, sqlite3VdbeCurrentAddr(v)); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static const VdbeOpList cntIdx[] = { { OP_Integer, 0, 0, 0}, { OP_MemStore, 2, 1, 0}, { OP_Rewind, 0, 0, 0}, /* 2 */ { OP_MemIncr, 2, 0, 0}, { OP_Next, 0, 0, 0}, /* 4 */ { OP_MemLoad, 1, 0, 0}, { OP_MemLoad, 2, 0, 0}, { OP_Eq, 0, 0, 0}, /* 7 */ { OP_MemIncr, 0, 0, 0}, { OP_String8, 0, 0, "wrong # of entries in index "}, { OP_String8, 0, 0, 0}, /* 10 */ { OP_Concat, 0, 0, 0}, { OP_Callback, 1, 0, 0}, }; if( pIdx->tnum==0 ) continue; addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); sqlite3VdbeChangeP1(v, addr+2, j+2); sqlite3VdbeChangeP2(v, addr+2, addr+5); sqlite3VdbeChangeP1(v, addr+4, j+2); sqlite3VdbeChangeP2(v, addr+4, addr+3); sqlite3VdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx)); sqlite3VdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC); } } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); sqlite3VdbeChangeP2(v, addr+2, addr+ArraySize(endCode)); }else /* ** PRAGMA encoding ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" ** ** In it's first form, this pragma returns the encoding of the main ** database. If the database is not initialized, it is initialized now. ** ** The second form of this pragma is a no-op if the main database file ** has not already been initialized. In this case it sets the default ** encoding that will be used for the main database file if a new file ** is created. If an existing main database file is opened, then the ** default text encoding for the existing database is used. ** ** In all cases new databases created using the ATTACH command are ** created to use the same default text encoding as the main database. If ** the main database has not been initialized and/or created when ATTACH ** is executed, this is done before the ATTACH operation. ** ** In the second form this pragma sets the text encoding to be used in ** new database files created using this database handle. It is only ** useful if invoked immediately after the main database i */ if( sqlite3StrICmp(zLeft, "encoding")==0 ){ static struct EncName { char *zName; u8 enc; } encnames[] = { { "UTF-8", SQLITE_UTF8 }, { "UTF8", SQLITE_UTF8 }, { "UTF-16le", SQLITE_UTF16LE }, { "UTF16le", SQLITE_UTF16LE }, { "UTF-16be", SQLITE_UTF16BE }, { "UTF16be", SQLITE_UTF16BE }, { "UTF-16", 0 /* Filled in at run-time */ }, { "UTF16", 0 /* Filled in at run-time */ }, { 0, 0 } }; struct EncName *pEnc; encnames[6].enc = encnames[7].enc = SQLITE_UTF16NATIVE; if( !zRight ){ /* "PRAGMA encoding" */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, "encoding", P3_STATIC); sqlite3VdbeAddOp(v, OP_String8, 0, 0); for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( pEnc->enc==pParse->db->enc ){ sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC); break; } } sqlite3VdbeAddOp(v, OP_Callback, 1, 0); }else{ /* "PRAGMA encoding = XXX" */ /* Only change the value of sqlite.enc if the database handle is not ** initialized. If the main database exists, the new sqlite.enc value ** will be overwritten when the schema is next loaded. If it does not ** already exists, it will be created to use the new encoding value. */ if( !(pParse->db->flags&SQLITE_Initialized) ){ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ pParse->db->enc = pEnc->enc; break; } } if( !pEnc->zName ){ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); } } } }else #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* ** Report the current state of file logs for all databases */ if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ static const char *const azLockName[] = { "unlocked", "shared", "reserved", "pending", "exclusive" }; int i; Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeSetNumCols(v, 2); sqlite3VdbeSetColName(v, 0, "database", P3_STATIC); sqlite3VdbeSetColName(v, 1, "status", P3_STATIC); for(i=0; i<db->nDb; i++){ Btree *pBt; Pager *pPager; if( db->aDb[i].zName==0 ) continue; sqlite3VdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, P3_STATIC); pBt = db->aDb[i].pBt; if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){ sqlite3VdbeOp3(v, OP_String, 0, 0, "closed", P3_STATIC); }else{ int j = sqlite3pager_lockstate(pPager); sqlite3VdbeOp3(v, OP_String, 0, 0, (j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC); } sqlite3VdbeAddOp(v, OP_Callback, 2, 0); } }else #endif {} pragma_out: sqliteFree(zLeft); sqliteFree(zRight); }
/* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; if( !db ){ return SQLITE_OK; } if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } #ifdef SQLITE_SSE sqlite3_finalize(db->pFetch); #endif /* If there are any outstanding VMs, return SQLITE_BUSY. */ if( db->pVdbe ){ sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements"); return SQLITE_BUSY; } assert( !sqlite3SafetyCheck(db) ); /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database ** cannot be opened for some reason. So this routine needs to run in ** that case. But maybe there should be an extra magic value for the ** "failed to open" state. */ if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){ /* printf("DID NOT CLOSE\n"); fflush(stdout); */ return SQLITE_ERROR; } for(j=0; j<db->nDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqliteFree(pFunc); } } for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); sqliteFree(pColl); } sqlite3HashClear(&db->aCollSeq); sqlite3HashClear(&db->aFunc); sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ if( db->pValue ){ sqlite3ValueFree(db->pValue); } if( db->pErr ){ sqlite3ValueFree(db->pErr); } #ifndef SQLITE_OMIT_GLOBALRECOVER { sqlite3 *pPrev; sqlite3OsEnterMutex(); pPrev = pDbList; while( pPrev && pPrev->pNext!=db ){ pPrev = pPrev->pNext; } if( pPrev ){ pPrev->pNext = db->pNext; }else{ assert( pDbList==db ); pDbList = db->pNext; } sqlite3OsLeaveMutex(); } #endif db->magic = SQLITE_MAGIC_ERROR; sqliteFree(db); return SQLITE_OK; }
/* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; if( !db ){ return SQLITE_OK; } if( sqlite3SafetyCheck(db) ){ return SQLITE_MISUSE; } #ifdef SQLITE_SSE sqlite3_finalize(db->pFetch); #endif /* If there are any outstanding VMs, return SQLITE_BUSY. */ if( db->pVdbe ){ sqlite3Error(db, SQLITE_BUSY, "Unable to close due to unfinalised statements"); return SQLITE_BUSY; } assert( !sqlite3SafetyCheck(db) ); /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database ** cannot be opened for some reason. So this routine needs to run in ** that case. But maybe there should be an extra magic value for the ** "failed to open" state. */ if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){ /* printf("DID NOT CLOSE\n"); fflush(stdout); */ return SQLITE_ERROR; } for(j=0; j<db->nDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; if( j!=1 ){ pDb->pSchema = 0; } } } sqlite3ResetInternalSchema(db, 0); assert( db->nDb<=2 ); assert( db->aDb==db->aDbStatic ); for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ FuncDef *pFunc, *pNext; for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ pNext = pFunc->pNext; sqliteFree(pFunc); } } for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ CollSeq *pColl = (CollSeq *)sqliteHashData(i); sqliteFree(pColl); } sqlite3HashClear(&db->aCollSeq); sqlite3HashClear(&db->aFunc); sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ if( db->pErr ){ sqlite3ValueFree(db->pErr); } db->magic = SQLITE_MAGIC_ERROR; /* The temp-database schema is allocated differently from the other schema ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). ** So it needs to be freed here. Todo: Why not roll the temp schema into ** the same sqliteMalloc() as the one that allocates the database ** structure? */ sqliteFree(db->aDb[1].pSchema); sqliteFree(db); sqlite3ReleaseThreadData(); return SQLITE_OK; }
/* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA [database.]id [= value] ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. ** ** If the left side is "database.id" then pId1 is the database name ** and pId2 is the id. If the left side is just "id" then pId1 is the ** id and pId2 is any empty string. */ void sqlite3Pragma( Parse *pParse, Token *pId1, /* First part of [database.]id field */ Token *pId2, /* Second part of [database.]id field, or NULL */ Token *pValue, /* Token for <value>, or NULL */ int minusFlag /* True if a '-' sign preceded <value> */ ){ char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ const char *zDb = 0; /* The database name */ Token *pId; /* Pointer to <id> token */ int iDb; /* Database index for <database> */ sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; /* Interpret the [database.] part of the pragma statement. iDb is the ** index of the database this pragma is being applied to in db.aDb[]. */ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); if( iDb<0 ) return; pDb = &db->aDb[iDb]; zLeft = sqlite3NameFromToken(pId); if( !zLeft ) return; if( minusFlag ){ zRight = sqlite3MPrintf("-%T", pValue); }else{ zRight = sqlite3NameFromToken(pValue); } zDb = ((iDb>0)?pDb->zName:0); if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** PRAGMA [database.]default_cache_size ** PRAGMA [database.]default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** The default cache size is stored in meta-value 2 of page 1 of the ** database file. The cache size is actually the absolute value of ** this memory location. The sign of meta-value 2 determines the ** synchronous setting. A negative value means synchronous is off ** and a positive value means synchronous is on. */ if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ static const VdbeOpList getCacheSize[] = { { OP_ReadCookie, 0, 2, 0}, /* 0 */ { OP_AbsValue, 0, 0, 0}, { OP_Dup, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 6, 0}, { OP_Integer, 0, 0, 0}, /* 5 */ { OP_Callback, 1, 0, 0}, }; int addr; if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P3_STATIC); addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES); }else{ int size = atoi(zRight); if( size<0 ) size = -size; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp(v, OP_Integer, size, 0); sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2); addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0); sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3); sqlite3VdbeAddOp(v, OP_Negative, 0, 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } }else /* ** PRAGMA [database.]page_size ** PRAGMA [database.]page_size=N ** ** The first form reports the current setting for the ** database page size in bytes. The second form sets the ** database page size value. The value can only be set if ** the database has not yet been created. */ if( sqlite3StrICmp(zLeft,"page_size")==0 ){ Btree *pBt = pDb->pBt; if( !zRight ){ int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0; returnSingleInt(pParse, "page_size", size); }else{ sqlite3BtreeSetPageSize(pBt, atoi(zRight), -1); } }else #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ /* ** PRAGMA [database.]auto_vacuum ** PRAGMA [database.]auto_vacuum=N ** ** Get or set the (boolean) value of the database 'auto-vacuum' parameter. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){ Btree *pBt = pDb->pBt; if( !zRight ){ int auto_vacuum = pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM; returnSingleInt(pParse, "auto_vacuum", auto_vacuum); }else{ sqlite3BtreeSetAutoVacuum(pBt, getBoolean(zRight)); } }else #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** PRAGMA [database.]cache_size ** PRAGMA [database.]cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The local setting can be different from ** the persistent cache size value that is stored in the database ** file itself. The value returned is the maximum number of ** pages in the page cache. The second form sets the local ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); }else{ int size = atoi(zRight); if( size<0 ) size = -size; pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } }else /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ if( !zRight ){ returnSingleInt(pParse, "temp_store", db->temp_store); }else{ changeTempStorage(pParse, zRight); } }else /* ** PRAGMA temp_store_directory ** PRAGMA temp_store_directory = ""|"directory_name" ** ** Return or set the local value of the temp_store_directory flag. Changing ** the value sets a specific directory to be used for temporary files. ** Setting to a null string reverts to the default temporary directory search. ** If temporary directory is changed, then invalidateTempStorage. ** */ if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){ if( !zRight ){ if( sqlite3_temp_directory ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "temp_store_directory", P3_STATIC); sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3_temp_directory, 0); sqlite3VdbeAddOp(v, OP_Callback, 1, 0); } }else{ if( zRight[0] && !sqlite3OsIsDirWritable(zRight) ){ sqlite3ErrorMsg(pParse, "not a writable directory"); goto pragma_out; } if( TEMP_STORE==0 || (TEMP_STORE==1 && db->temp_store<=1) || (TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqliteFree(sqlite3_temp_directory); if( zRight[0] ){ sqlite3_temp_directory = zRight; zRight = 0; }else{ sqlite3_temp_directory = 0; } } }else /* ** PRAGMA [database.]synchronous ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ pDb->safety_level = getSafetyLevel(zRight)+1; } } }else #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_FLAG_PRAGMAS if( flagPragma(pParse, zLeft, zRight) ){ /* The flagPragma() subroutine also generates any necessary code ** there is nothing more to do here */ }else #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS /* ** PRAGMA table_info(<table>) ** ** Return a single row for each column of the named table. The columns of ** the returned data set are: ** ** cid: Column id (numbered from left to right, starting at 0) ** name: Column name ** type: Column declaration type. ** notnull: True if 'NOT NULL' is part of column declaration ** dflt_value: The default value for the column, if any. */ if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int i; Column *pCol; sqlite3VdbeSetNumCols(v, 6); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P3_STATIC); sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P3_STATIC); sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P3_STATIC); sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P3_STATIC); sqlite3ViewGetColumnNames(pParse, pTab); for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pCol->zName, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pCol->zType ? pCol->zType : "numeric", 0); sqlite3VdbeAddOp(v, OP_Integer, pCol->notNull, 0); sqlite3ExprCode(pParse, pCol->pDflt); sqlite3VdbeAddOp(v, OP_Integer, pCol->isPrimKey, 0); sqlite3VdbeAddOp(v, OP_Callback, 6, 0); } } }else if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ Index *pIdx; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int i; pTab = pIdx->pTable; sqlite3VdbeSetNumCols(v, 3); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P3_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P3_STATIC); for(i=0; i<pIdx->nColumn; i++){ int cnum = pIdx->aiColumn[i]; sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeAddOp(v, OP_Integer, cnum, 0); assert( pTab->nCol>cnum ); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0); sqlite3VdbeAddOp(v, OP_Callback, 3, 0); } } }else if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ Index *pIdx; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ v = sqlite3GetVdbe(pParse); pIdx = pTab->pIndex; if( pIdx ){ int i = 0; sqlite3VdbeSetNumCols(v, 3); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P3_STATIC); while(pIdx){ sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0); sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0); sqlite3VdbeAddOp(v, OP_Callback, 3, 0); ++i; pIdx = pIdx->pNext; } } } }else if( sqlite3StrICmp(zLeft, "database_list")==0 ){ int i; if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 3); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P3_STATIC); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zName!=0 ); sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); sqlite3VdbeAddOp(v, OP_Callback, 3, 0); } }else if( sqlite3StrICmp(zLeft, "collation_list")==0 ){ int i = 0; HashElem *p; sqlite3VdbeSetNumCols(v, 2); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC); for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ CollSeq *pColl = (CollSeq *)sqliteHashData(p); sqlite3VdbeAddOp(v, OP_Integer, i++, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pColl->zName, 0); sqlite3VdbeAddOp(v, OP_Callback, 2, 0); } }else #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ #ifndef SQLITE_OMIT_FOREIGN_KEY if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ FKey *pFK; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ v = sqlite3GetVdbe(pParse); pFK = pTab->pFKey; if( pFK ){ int i = 0; sqlite3VdbeSetNumCols(v, 5); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P3_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P3_STATIC); sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P3_STATIC); sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P3_STATIC); while(pFK){ int j; for(j=0; j<pFK->nCol; j++){ char *zCol = pFK->aCol[j].zCol; sqlite3VdbeAddOp(v, OP_Integer, i, 0); sqlite3VdbeAddOp(v, OP_Integer, j, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[pFK->aCol[j].iFrom].zName, 0); sqlite3VdbeOp3(v, zCol ? OP_String8 : OP_Null, 0, 0, zCol, 0); sqlite3VdbeAddOp(v, OP_Callback, 5, 0); } ++i; pFK = pFK->pNextFrom; } } } }else #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef NDEBUG if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ extern void sqlite3ParserTrace(FILE*, char *); if( zRight ){ if( getBoolean(zRight) ){ sqlite3ParserTrace(stderr, "parser: "); }else{ sqlite3ParserTrace(0, 0); } } }else #endif /* Reinstall the LIKE and GLOB functions. The variant of LIKE ** used will be case sensitive or not depending on the RHS. */ if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){ if( zRight ){ sqlite3RegisterLikeFunctions(db, getBoolean(zRight)); } }else #ifndef SQLITE_OMIT_INTEGRITY_CHECK if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){ int i, j, addr; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const VdbeOpList endCode[] = { { OP_MemLoad, 0, 0, 0}, { OP_Integer, 0, 0, 0}, { OP_Ne, 0, 0, 0}, /* 2 */ { OP_String8, 0, 0, "ok"}, { OP_Callback, 1, 0, 0}, }; /* Initialize the VDBE program */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P3_STATIC); sqlite3VdbeAddOp(v, OP_MemInt, 0, 0); /* Initialize error count to 0 */ /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; Hash *pTbls; int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; sqlite3CodeVerifySchema(pParse, i); /* Do an integrity check of the B-Tree */ pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0); cnt++; } } assert( cnt>0 ); sqlite3VdbeAddOp(v, OP_IntegrityCk, cnt, i); sqlite3VdbeAddOp(v, OP_Dup, 0, 1); addr = sqlite3VdbeOp3(v, OP_String8, 0, 0, "ok", P3_STATIC); sqlite3VdbeAddOp(v, OP_Eq, 0, addr+7); sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName), P3_DYNAMIC); sqlite3VdbeAddOp(v, OP_Pull, 1, 0); sqlite3VdbeAddOp(v, OP_Concat, 0, 1); sqlite3VdbeAddOp(v, OP_Callback, 1, 0); sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0); /* Make sure all the indices are constructed correctly. */ sqlite3CodeVerifySchema(pParse, i); for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); sqlite3VdbeAddOp(v, OP_MemInt, 0, 1); loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0); sqlite3VdbeAddOp(v, OP_MemIncr, 1, 1); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2; static const VdbeOpList idxErr[] = { { OP_MemIncr, 1, 0, 0}, { OP_String8, 0, 0, "rowid "}, { OP_Rowid, 1, 0, 0}, { OP_String8, 0, 0, " missing from index "}, { OP_String8, 0, 0, 0}, /* 4 */ { OP_Concat, 2, 0, 0}, { OP_Callback, 1, 0, 0}, }; sqlite3GenerateIndexKey(v, pIdx, 1); jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC); sqlite3VdbeJumpHere(v, jmp2); } sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1); sqlite3VdbeJumpHere(v, loopTop); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static const VdbeOpList cntIdx[] = { { OP_MemInt, 0, 2, 0}, { OP_Rewind, 0, 0, 0}, /* 1 */ { OP_MemIncr, 1, 2, 0}, { OP_Next, 0, 0, 0}, /* 3 */ { OP_MemLoad, 1, 0, 0}, { OP_MemLoad, 2, 0, 0}, { OP_Eq, 0, 0, 0}, /* 6 */ { OP_MemIncr, 1, 0, 0}, { OP_String8, 0, 0, "wrong # of entries in index "}, { OP_String8, 0, 0, 0}, /* 9 */ { OP_Concat, 0, 0, 0}, { OP_Callback, 1, 0, 0}, }; if( pIdx->tnum==0 ) continue; addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); sqlite3VdbeChangeP1(v, addr+1, j+2); sqlite3VdbeChangeP2(v, addr+1, addr+4); sqlite3VdbeChangeP1(v, addr+3, j+2); sqlite3VdbeChangeP2(v, addr+3, addr+2); sqlite3VdbeJumpHere(v, addr+6); sqlite3VdbeChangeP3(v, addr+9, pIdx->zName, P3_STATIC); } } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); sqlite3VdbeJumpHere(v, addr+2); }else #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_UTF16 /* ** PRAGMA encoding ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" ** ** In it's first form, this pragma returns the encoding of the main ** database. If the database is not initialized, it is initialized now. ** ** The second form of this pragma is a no-op if the main database file ** has not already been initialized. In this case it sets the default ** encoding that will be used for the main database file if a new file ** is created. If an existing main database file is opened, then the ** default text encoding for the existing database is used. ** ** In all cases new databases created using the ATTACH command are ** created to use the same default text encoding as the main database. If ** the main database has not been initialized and/or created when ATTACH ** is executed, this is done before the ATTACH operation. ** ** In the second form this pragma sets the text encoding to be used in ** new database files created using this database handle. It is only ** useful if invoked immediately after the main database i */ if( sqlite3StrICmp(zLeft, "encoding")==0 ){ static struct EncName { char *zName; u8 enc; } encnames[] = { { "UTF-8", SQLITE_UTF8 }, { "UTF8", SQLITE_UTF8 }, { "UTF-16le", SQLITE_UTF16LE }, { "UTF16le", SQLITE_UTF16LE }, { "UTF-16be", SQLITE_UTF16BE }, { "UTF16be", SQLITE_UTF16BE }, { "UTF-16", 0 /* Filled in at run-time */ }, { "UTF16", 0 /* Filled in at run-time */ }, { 0, 0 } }; struct EncName *pEnc; encnames[6].enc = encnames[7].enc = SQLITE_UTF16NATIVE; if( !zRight ){ /* "PRAGMA encoding" */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P3_STATIC); sqlite3VdbeAddOp(v, OP_String8, 0, 0); for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( pEnc->enc==ENC(pParse->db) ){ sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC); break; } } sqlite3VdbeAddOp(v, OP_Callback, 1, 0); }else{ /* "PRAGMA encoding = XXX" */ /* Only change the value of sqlite.enc if the database handle is not ** initialized. If the main database exists, the new sqlite.enc value ** will be overwritten when the schema is next loaded. If it does not ** already exists, it will be created to use the new encoding value. */ if( !(DbHasProperty(db, 0, DB_SchemaLoaded)) || DbHasProperty(db, 0, DB_Empty) ){ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ ENC(pParse->db) = pEnc->enc; break; } } if( !pEnc->zName ){ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); } } } }else #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS /* ** PRAGMA [database.]schema_version ** PRAGMA [database.]schema_version = <integer> ** ** PRAGMA [database.]user_version ** PRAGMA [database.]user_version = <integer> ** ** The pragma's schema_version and user_version are used to set or get ** the value of the schema-version and user-version, respectively. Both ** the schema-version and the user-version are 32-bit signed integers ** stored in the database header. ** ** The schema-cookie is usually only manipulated internally by SQLite. It ** is incremented by SQLite whenever the database schema is modified (by ** creating or dropping a table or index). The schema version is used by ** SQLite each time a query is executed to ensure that the internal cache ** of the schema used when compiling the SQL query matches the schema of ** the database against which the compiled query is actually executed. ** Subverting this mechanism by using "PRAGMA schema_version" to modify ** the schema-version is potentially dangerous and may lead to program ** crashes or database corruption. Use with caution! ** ** The user-version is not used internally by SQLite. It may be used by ** applications for any purpose. */ if( sqlite3StrICmp(zLeft, "schema_version")==0 || sqlite3StrICmp(zLeft, "user_version")==0 ){ int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */ if( zLeft[0]=='s' || zLeft[0]=='S' ){ iCookie = 0; }else{ iCookie = 5; } if( zRight ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_Integer, 0, 0, 0}, /* 1 */ { OP_SetCookie, 0, 0, 0}, /* 2 */ }; int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, atoi(zRight)); sqlite3VdbeChangeP1(v, addr+2, iDb); sqlite3VdbeChangeP2(v, addr+2, iCookie); }else{ /* Read the specified cookie value */ static const VdbeOpList readCookie[] = { { OP_ReadCookie, 0, 0, 0}, /* 0 */ { OP_Callback, 1, 0, 0} }; int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP2(v, addr, iCookie); sqlite3VdbeSetNumCols(v, 1); } } #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* ** Report the current state of file logs for all databases */ if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ static const char *const azLockName[] = { "unlocked", "shared", "reserved", "pending", "exclusive" }; int i; Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeSetNumCols(v, 2); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P3_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P3_STATIC); for(i=0; i<db->nDb; i++){ Btree *pBt; Pager *pPager; if( db->aDb[i].zName==0 ) continue; sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, P3_STATIC); pBt = db->aDb[i].pBt; if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){ sqlite3VdbeOp3(v, OP_String8, 0, 0, "closed", P3_STATIC); }else{ int j = sqlite3pager_lockstate(pPager); sqlite3VdbeOp3(v, OP_String8, 0, 0, (j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC); } sqlite3VdbeAddOp(v, OP_Callback, 2, 0); } }else #endif #ifdef SQLITE_SSE /* ** Check to see if the sqlite_statements table exists. Create it ** if it does not. */ if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){ extern int sqlite3CreateStatementsTable(Parse*); sqlite3CreateStatementsTable(pParse); }else #endif #if SQLITE_HAS_CODEC if( sqlite3StrICmp(zLeft, "key")==0 ){ sqlite3_key(db, zRight, strlen(zRight)); }else #endif {} if( v ){ /* Code an OP_Expire at the end of each PRAGMA program to cause ** the VDBE implementing the pragma to expire. Most (all?) pragmas ** are only valid for a single execution. */ sqlite3VdbeAddOp(v, OP_Expire, 1, 0); /* ** Reset the safety level, in case the fullfsync flag or synchronous ** setting changed. */ if( db->autoCommit ){ sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level, (db->flags&SQLITE_FullFSync)!=0); } } pragma_out: sqliteFree(zLeft); sqliteFree(zRight); }
/* ** Process a pragma statement. ** ** Pragmas are of this form: ** ** PRAGMA [database.]id [= value] ** ** The identifier might also be a string. The value is a string, and ** identifier, or a number. If minusFlag is true, then the value is ** a number that was preceded by a minus sign. ** ** If the left side is "database.id" then pId1 is the database name ** and pId2 is the id. If the left side is just "id" then pId1 is the ** id and pId2 is any empty string. */ void sqlite3Pragma( Parse *pParse, Token *pId1, /* First part of [database.]id field */ Token *pId2, /* Second part of [database.]id field, or NULL */ Token *pValue, /* Token for <value>, or NULL */ int minusFlag /* True if a '-' sign preceded <value> */ ){ char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ const char *zDb = 0; /* The database name */ Token *pId; /* Pointer to <id> token */ int iDb; /* Database index for <database> */ sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db); if( v==0 ) return; pParse->nMem = 2; /* Interpret the [database.] part of the pragma statement. iDb is the ** index of the database this pragma is being applied to in db.aDb[]. */ iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); if( iDb<0 ) return; pDb = &db->aDb[iDb]; /* If the temp database has been explicitly named as part of the ** pragma, make sure it is open. */ if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ return; } zLeft = sqlite3NameFromToken(db, pId); if( !zLeft ) return; if( minusFlag ){ zRight = sqlite3MPrintf(db, "-%T", pValue); }else{ zRight = sqlite3NameFromToken(db, pValue); } zDb = ((pId2 && pId2->n>0)?pDb->zName:0); if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ goto pragma_out; } #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** PRAGMA [database.]default_cache_size ** PRAGMA [database.]default_cache_size=N ** ** The first form reports the current persistent setting for the ** page cache size. The value returned is the maximum number of ** pages in the page cache. The second form sets both the current ** page cache size value and the persistent page cache size value ** stored in the database file. ** ** The default cache size is stored in meta-value 2 of page 1 of the ** database file. The cache size is actually the absolute value of ** this memory location. The sign of meta-value 2 determines the ** synchronous setting. A negative value means synchronous is off ** and a positive value means synchronous is on. */ if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ static const VdbeOpList getCacheSize[] = { { OP_ReadCookie, 0, 1, 2}, /* 0 */ { OP_IfPos, 1, 6, 0}, { OP_Integer, 0, 2, 0}, { OP_Subtract, 1, 2, 1}, { OP_IfPos, 1, 6, 0}, { OP_Integer, 0, 1, 0}, /* 5 */ { OP_ResultRow, 1, 1, 0}, }; int addr; if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeUsesBtree(v, iDb); if( !zRight ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC); pParse->nMem += 2; addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE); }else{ int size = atoi(zRight); if( size<0 ) size = -size; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, size, 1); sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2); addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0); sqlite3VdbeAddOp2(v, OP_Integer, -size, 1); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1); pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } }else /* ** PRAGMA [database.]page_size ** PRAGMA [database.]page_size=N ** ** The first form reports the current setting for the ** database page size in bytes. The second form sets the ** database page size value. The value can only be set if ** the database has not yet been created. */ if( sqlite3StrICmp(zLeft,"page_size")==0 ){ Btree *pBt = pDb->pBt; if( !zRight ){ int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0; returnSingleInt(pParse, "page_size", size); }else{ /* Malloc may fail when setting the page-size, as there is an internal ** buffer that the pager module resizes using sqlite3_realloc(). */ db->nextPagesize = atoi(zRight); if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1) ){ db->mallocFailed = 1; } } }else /* ** PRAGMA [database.]max_page_count ** PRAGMA [database.]max_page_count=N ** ** The first form reports the current setting for the ** maximum number of pages in the database file. The ** second form attempts to change this setting. Both ** forms return the current setting. */ if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){ Btree *pBt = pDb->pBt; int newMax = 0; if( zRight ){ newMax = atoi(zRight); } if( pBt ){ newMax = sqlite3BtreeMaxPageCount(pBt, newMax); } returnSingleInt(pParse, "max_page_count", newMax); }else /* ** PRAGMA [database.]page_count ** ** Return the number of pages in the specified database. */ if( sqlite3StrICmp(zLeft,"page_count")==0 ){ Vdbe *v; int iReg; v = sqlite3GetVdbe(pParse); if( !v || sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3CodeVerifySchema(pParse, iDb); iReg = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "page_count", P4_STATIC); }else /* ** PRAGMA [database.]locking_mode ** PRAGMA [database.]locking_mode = (normal|exclusive) */ if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){ const char *zRet = "normal"; int eMode = getLockingMode(zRight); if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ /* Simple "PRAGMA locking_mode;" statement. This is a query for ** the current default locking mode (which may be different to ** the locking-mode of the main database). */ eMode = db->dfltLockMode; }else{ Pager *pPager; if( pId2->n==0 ){ /* This indicates that no database name was specified as part ** of the PRAGMA command. In this case the locking-mode must be ** set on all attached databases, as well as the main db file. ** ** Also, the sqlite3.dfltLockMode variable is set so that ** any subsequently attached databases also use the specified ** locking mode. */ int ii; assert(pDb==&db->aDb[0]); for(ii=2; ii<db->nDb; ii++){ pPager = sqlite3BtreePager(db->aDb[ii].pBt); sqlite3PagerLockingMode(pPager, eMode); } db->dfltLockMode = eMode; } pPager = sqlite3BtreePager(pDb->pBt); eMode = sqlite3PagerLockingMode(pPager, eMode); } assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE); if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ zRet = "exclusive"; } sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); }else /* ** PRAGMA [database.]journal_mode ** PRAGMA [database.]journal_mode = (delete|persist|off) */ if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){ int eMode; static char * const azModeName[] = {"delete", "persist", "off", "truncate"}; if( zRight==0 ){ eMode = PAGER_JOURNALMODE_QUERY; }else{ int n = strlen(zRight); eMode = sizeof(azModeName)/sizeof(azModeName[0]) - 1; while( eMode>=0 && sqlite3StrNICmp(zRight, azModeName[eMode], n)!=0 ){ eMode--; } } if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){ /* Simple "PRAGMA journal_mode;" statement. This is a query for ** the current default journal mode (which may be different to ** the journal-mode of the main database). */ eMode = db->dfltJournalMode; }else{ Pager *pPager; if( pId2->n==0 ){ /* This indicates that no database name was specified as part ** of the PRAGMA command. In this case the journal-mode must be ** set on all attached databases, as well as the main db file. ** ** Also, the sqlite3.dfltJournalMode variable is set so that ** any subsequently attached databases also use the specified ** journal mode. */ int ii; assert(pDb==&db->aDb[0]); for(ii=1; ii<db->nDb; ii++){ if( db->aDb[ii].pBt ){ pPager = sqlite3BtreePager(db->aDb[ii].pBt); sqlite3PagerJournalMode(pPager, eMode); } } db->dfltJournalMode = eMode; } pPager = sqlite3BtreePager(pDb->pBt); eMode = sqlite3PagerJournalMode(pPager, eMode); } assert( eMode==PAGER_JOURNALMODE_DELETE || eMode==PAGER_JOURNALMODE_TRUNCATE || eMode==PAGER_JOURNALMODE_PERSIST || eMode==PAGER_JOURNALMODE_OFF ); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", P4_STATIC); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, azModeName[eMode], P4_STATIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); }else /* ** PRAGMA [database.]journal_size_limit ** PRAGMA [database.]journal_size_limit=N ** ** Get or set the (boolean) value of the database 'auto-vacuum' parameter. */ if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){ Pager *pPager = sqlite3BtreePager(pDb->pBt); i64 iLimit = -2; if( zRight ){ int iLimit32 = atoi(zRight); if( iLimit32<-1 ){ iLimit32 = -1; } iLimit = iLimit32; } iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); returnSingleInt(pParse, "journal_size_limit", (int)iLimit); }else #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ /* ** PRAGMA [database.]auto_vacuum ** PRAGMA [database.]auto_vacuum=N ** ** Get or set the (boolean) value of the database 'auto-vacuum' parameter. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){ Btree *pBt = pDb->pBt; if( sqlite3ReadSchema(pParse) ){ goto pragma_out; } if( !zRight ){ int auto_vacuum = pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM; returnSingleInt(pParse, "auto_vacuum", auto_vacuum); }else{ int eAuto = getAutoVacuum(zRight); db->nextAutovac = eAuto; if( eAuto>=0 ){ /* Call SetAutoVacuum() to set initialize the internal auto and ** incr-vacuum flags. This is required in case this connection ** creates the database file. It is important that it is created ** as an auto-vacuum capable db. */ int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ /* When setting the auto_vacuum mode to either "full" or ** "incremental", write the value of meta[6] in the database ** file. Before writing to meta[6], check that meta[3] indicates ** that this really is an auto-vacuum capable database. */ static const VdbeOpList setMeta6[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_ReadCookie, 0, 1, 3}, /* 1 */ { OP_If, 1, 0, 0}, /* 2 */ { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ { OP_Integer, 0, 1, 0}, /* 4 */ { OP_SetCookie, 0, 6, 1}, /* 5 */ }; int iAddr; iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6); sqlite3VdbeChangeP1(v, iAddr, iDb); sqlite3VdbeChangeP1(v, iAddr+1, iDb); sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4); sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1); sqlite3VdbeChangeP1(v, iAddr+5, iDb); sqlite3VdbeUsesBtree(v, iDb); } } } }else #endif /* ** PRAGMA [database.]incremental_vacuum(N) ** ** Do N steps of incremental vacuuming on a database. */ #ifndef SQLITE_OMIT_AUTOVACUUM if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){ int iLimit, addr; if( sqlite3ReadSchema(pParse) ){ goto pragma_out; } if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ iLimit = 0x7fffffff; } sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); sqlite3VdbeAddOp1(v, OP_ResultRow, 1); sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); sqlite3VdbeJumpHere(v, addr); }else #endif #ifndef SQLITE_OMIT_PAGER_PRAGMAS /* ** PRAGMA [database.]cache_size ** PRAGMA [database.]cache_size=N ** ** The first form reports the current local setting for the ** page cache size. The local setting can be different from ** the persistent cache size value that is stored in the database ** file itself. The value returned is the maximum number of ** pages in the page cache. The second form sets the local ** page cache size value. It does not change the persistent ** cache size stored on the disk so the cache size will revert ** to its default value when the database is closed and reopened. ** N should be a positive integer. */ if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); }else{ int size = atoi(zRight); if( size<0 ) size = -size; pDb->pSchema->cache_size = size; sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); } }else /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** ** Return or set the local value of the temp_store flag. Changing ** the local value does not make changes to the disk file and the default ** value will be restored the next time the database is opened. ** ** Note that it is possible for the library compile-time options to ** override this setting */ if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ if( !zRight ){ returnSingleInt(pParse, "temp_store", db->temp_store); }else{ changeTempStorage(pParse, zRight); } }else /* ** PRAGMA temp_store_directory ** PRAGMA temp_store_directory = ""|"directory_name" ** ** Return or set the local value of the temp_store_directory flag. Changing ** the value sets a specific directory to be used for temporary files. ** Setting to a null string reverts to the default temporary directory search. ** If temporary directory is changed, then invalidateTempStorage. ** */ if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){ if( !zRight ){ if( sqlite3_temp_directory ){ sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "temp_store_directory", P4_STATIC); sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); } }else{ #ifndef SQLITE_OMIT_WSD if( zRight[0] ){ int rc; int res; rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); if( rc!=SQLITE_OK || res==0 ){ sqlite3ErrorMsg(pParse, "not a writable directory"); goto pragma_out; } } if( SQLITE_TEMP_STORE==0 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) || (SQLITE_TEMP_STORE==2 && db->temp_store==1) ){ invalidateTempStorage(pParse); } sqlite3_free(sqlite3_temp_directory); if( zRight[0] ){ sqlite3_temp_directory = sqlite3DbStrDup(0, zRight); }else{ sqlite3_temp_directory = 0; } #endif /* SQLITE_OMIT_WSD */ } }else /* ** PRAGMA [database.]synchronous ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL ** ** Return or set the local value of the synchronous flag. Changing ** the local value does not make changes to the disk file and the ** default value will be restored the next time the database is ** opened. */ if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ if( sqlite3ReadSchema(pParse) ) goto pragma_out; if( !zRight ){ returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ pDb->safety_level = getSafetyLevel(zRight)+1; } } }else #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_FLAG_PRAGMAS if( flagPragma(pParse, zLeft, zRight) ){ /* The flagPragma() subroutine also generates any necessary code ** there is nothing more to do here */ }else #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS /* ** PRAGMA table_info(<table>) ** ** Return a single row for each column of the named table. The columns of ** the returned data set are: ** ** cid: Column id (numbered from left to right, starting at 0) ** name: Column name ** type: Column declaration type. ** notnull: True if 'NOT NULL' is part of column declaration ** dflt_value: The default value for the column, if any. */ if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int i; int nHidden = 0; Column *pCol; sqlite3VdbeSetNumCols(v, 6); pParse->nMem = 6; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC); sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC); sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC); sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC); sqlite3ViewGetColumnNames(pParse, pTab); for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ const Token *pDflt; if( IsHiddenColumn(pCol) ){ nHidden++; continue; } sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1); sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pCol->zType ? pCol->zType : "", 0); sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4); if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){ sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, 5); } sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); } } }else if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ Index *pIdx; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int i; pTab = pIdx->pTable; sqlite3VdbeSetNumCols(v, 3); pParse->nMem = 3; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC); for(i=0; i<pIdx->nColumn; i++){ int cnum = pIdx->aiColumn[i]; sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2); assert( pTab->nCol>cnum ); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); } } }else if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ Index *pIdx; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ v = sqlite3GetVdbe(pParse); pIdx = pTab->pIndex; if( pIdx ){ int i = 0; sqlite3VdbeSetNumCols(v, 3); pParse->nMem = 3; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC); while(pIdx){ sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0); sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); ++i; pIdx = pIdx->pNext; } } } }else if( sqlite3StrICmp(zLeft, "database_list")==0 ){ int i; if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 3); pParse->nMem = 3; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC); for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt==0 ) continue; assert( db->aDb[i].zName!=0 ); sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); } }else if( sqlite3StrICmp(zLeft, "collation_list")==0 ){ int i = 0; HashElem *p; sqlite3VdbeSetNumCols(v, 2); pParse->nMem = 2; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ CollSeq *pColl = (CollSeq *)sqliteHashData(p); sqlite3VdbeAddOp2(v, OP_Integer, i++, 1); sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); } }else #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ #ifndef SQLITE_OMIT_FOREIGN_KEY if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ FKey *pFK; Table *pTab; if( sqlite3ReadSchema(pParse) ) goto pragma_out; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ v = sqlite3GetVdbe(pParse); pFK = pTab->pFKey; if( pFK ){ int i = 0; sqlite3VdbeSetNumCols(v, 5); pParse->nMem = 5; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC); sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC); sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC); sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC); while(pFK){ int j; for(j=0; j<pFK->nCol; j++){ char *zCol = pFK->aCol[j].zCol; sqlite3VdbeAddOp2(v, OP_Integer, i, 1); sqlite3VdbeAddOp2(v, OP_Integer, j, 2); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0); sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, pTab->aCol[pFK->aCol[j].iFrom].zName, 0); sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); } ++i; pFK = pFK->pNextFrom; } } } }else #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ #ifndef NDEBUG if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ if( zRight ){ if( getBoolean(zRight) ){ sqlite3ParserTrace(stderr, "parser: "); }else{ sqlite3ParserTrace(0, 0); } } }else #endif /* Reinstall the LIKE and GLOB functions. The variant of LIKE ** used will be case sensitive or not depending on the RHS. */ if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){ if( zRight ){ sqlite3RegisterLikeFunctions(db, getBoolean(zRight)); } }else #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 #endif #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Pragma "quick_check" is an experimental reduced version of ** integrity_check designed to detect most database corruption ** without most of the overhead of a full integrity-check. */ if( sqlite3StrICmp(zLeft, "integrity_check")==0 || sqlite3StrICmp(zLeft, "quick_check")==0 ){ int i, j, addr, mxErr; /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_IfNeg, 1, 0, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, }; int isQuick = (zLeft[0]=='q'); /* Initialize the VDBE program */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; pParse->nMem = 6; sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC); /* Set the maximum error count */ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; if( zRight ){ mxErr = atoi(zRight); if( mxErr<=0 ){ mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; } } sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */ /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; Hash *pTbls; int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; sqlite3CodeVerifySchema(pParse, i); addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); /* Do an integrity check of the B-Tree ** ** Begin by filling registers 2, 3, ... with the root pages numbers ** for all tables and indices in the database. */ pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); cnt++; } } if( cnt==0 ) continue; /* Make sure sufficient number of registers have been allocated */ if( pParse->nMem < cnt+4 ){ pParse->nMem = cnt+4; } /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), P4_DYNAMIC); sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */ loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0); sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2; static const VdbeOpList idxErr[] = { { OP_AddImm, 1, -1, 0}, { OP_String8, 0, 3, 0}, /* 1 */ { OP_Rowid, 1, 4, 0}, { OP_String8, 0, 5, 0}, /* 3 */ { OP_String8, 0, 6, 0}, /* 4 */ { OP_Concat, 4, 3, 3}, { OP_Concat, 5, 3, 3}, { OP_Concat, 6, 3, 3}, { OP_ResultRow, 3, 1, 0}, { OP_IfPos, 1, 0, 0}, /* 9 */ { OP_Halt, 0, 0, 0}, }; sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1); jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC); sqlite3VdbeJumpHere(v, addr+9); sqlite3VdbeJumpHere(v, jmp2); } sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1); sqlite3VdbeJumpHere(v, loopTop); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static const VdbeOpList cntIdx[] = { { OP_Integer, 0, 3, 0}, { OP_Rewind, 0, 0, 0}, /* 1 */ { OP_AddImm, 3, 1, 0}, { OP_Next, 0, 0, 0}, /* 3 */ { OP_Eq, 2, 0, 3}, /* 4 */ { OP_AddImm, 1, -1, 0}, { OP_String8, 0, 2, 0}, /* 6 */ { OP_String8, 0, 3, 0}, /* 7 */ { OP_Concat, 3, 2, 2}, { OP_ResultRow, 2, 1, 0}, }; if( pIdx->tnum==0 ) continue; addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); sqlite3VdbeChangeP1(v, addr+1, j+2); sqlite3VdbeChangeP2(v, addr+1, addr+4); sqlite3VdbeChangeP1(v, addr+3, j+2); sqlite3VdbeChangeP2(v, addr+3, addr+2); sqlite3VdbeJumpHere(v, addr+4); sqlite3VdbeChangeP4(v, addr+6, "wrong # of entries in index ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC); } } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); sqlite3VdbeChangeP2(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr+1); sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); }else #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_UTF16 /* ** PRAGMA encoding ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" ** ** In its first form, this pragma returns the encoding of the main ** database. If the database is not initialized, it is initialized now. ** ** The second form of this pragma is a no-op if the main database file ** has not already been initialized. In this case it sets the default ** encoding that will be used for the main database file if a new file ** is created. If an existing main database file is opened, then the ** default text encoding for the existing database is used. ** ** In all cases new databases created using the ATTACH command are ** created to use the same default text encoding as the main database. If ** the main database has not been initialized and/or created when ATTACH ** is executed, this is done before the ATTACH operation. ** ** In the second form this pragma sets the text encoding to be used in ** new database files created using this database handle. It is only ** useful if invoked immediately after the main database i */ if( sqlite3StrICmp(zLeft, "encoding")==0 ){ static const struct EncName { char *zName; u8 enc; } encnames[] = { { "UTF-8", SQLITE_UTF8 }, { "UTF8", SQLITE_UTF8 }, { "UTF-16le", SQLITE_UTF16LE }, { "UTF16le", SQLITE_UTF16LE }, { "UTF-16be", SQLITE_UTF16BE }, { "UTF16be", SQLITE_UTF16BE }, { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ { 0, 0 } }; const struct EncName *pEnc; if( !zRight ){ /* "PRAGMA encoding" */ if( sqlite3ReadSchema(pParse) ) goto pragma_out; sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC); sqlite3VdbeAddOp2(v, OP_String8, 0, 1); for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( pEnc->enc==ENC(pParse->db) ){ sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC); break; } } sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); }else{ /* "PRAGMA encoding = XXX" */ /* Only change the value of sqlite.enc if the database handle is not ** initialized. If the main database exists, the new sqlite.enc value ** will be overwritten when the schema is next loaded. If it does not ** already exists, it will be created to use the new encoding value. */ if( !(DbHasProperty(db, 0, DB_SchemaLoaded)) || DbHasProperty(db, 0, DB_Empty) ){ for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; break; } } if( !pEnc->zName ){ sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); } } } }else #endif /* SQLITE_OMIT_UTF16 */ #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS /* ** PRAGMA [database.]schema_version ** PRAGMA [database.]schema_version = <integer> ** ** PRAGMA [database.]user_version ** PRAGMA [database.]user_version = <integer> ** ** The pragma's schema_version and user_version are used to set or get ** the value of the schema-version and user-version, respectively. Both ** the schema-version and the user-version are 32-bit signed integers ** stored in the database header. ** ** The schema-cookie is usually only manipulated internally by SQLite. It ** is incremented by SQLite whenever the database schema is modified (by ** creating or dropping a table or index). The schema version is used by ** SQLite each time a query is executed to ensure that the internal cache ** of the schema used when compiling the SQL query matches the schema of ** the database against which the compiled query is actually executed. ** Subverting this mechanism by using "PRAGMA schema_version" to modify ** the schema-version is potentially dangerous and may lead to program ** crashes or database corruption. Use with caution! ** ** The user-version is not used internally by SQLite. It may be used by ** applications for any purpose. */ if( sqlite3StrICmp(zLeft, "schema_version")==0 || sqlite3StrICmp(zLeft, "user_version")==0 || sqlite3StrICmp(zLeft, "freelist_count")==0 ){ int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */ sqlite3VdbeUsesBtree(v, iDb); switch( zLeft[0] ){ case 's': case 'S': iCookie = 0; break; case 'f': case 'F': iCookie = 1; iDb = (-1*(iDb+1)); assert(iDb<=0); break; default: iCookie = 5; break; } if( zRight && iDb>=0 ){ /* Write the specified cookie value */ static const VdbeOpList setCookie[] = { { OP_Transaction, 0, 1, 0}, /* 0 */ { OP_Integer, 0, 1, 0}, /* 1 */ { OP_SetCookie, 0, 0, 1}, /* 2 */ }; int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP1(v, addr+1, atoi(zRight)); sqlite3VdbeChangeP1(v, addr+2, iDb); sqlite3VdbeChangeP2(v, addr+2, iCookie); }else{ /* Read the specified cookie value */ static const VdbeOpList readCookie[] = { { OP_ReadCookie, 0, 1, 0}, /* 0 */ { OP_ResultRow, 1, 1, 0} }; int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie); sqlite3VdbeChangeP1(v, addr, iDb); sqlite3VdbeChangeP3(v, addr, iCookie); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT); } }else #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) /* ** Report the current state of file logs for all databases */ if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ static const char *const azLockName[] = { "unlocked", "shared", "reserved", "pending", "exclusive" }; int i; Vdbe *v = sqlite3GetVdbe(pParse); sqlite3VdbeSetNumCols(v, 2); pParse->nMem = 2; sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC); sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC); for(i=0; i<db->nDb; i++){ Btree *pBt; Pager *pPager; const char *zState = "unknown"; int j; if( db->aDb[i].zName==0 ) continue; sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC); pBt = db->aDb[i].pBt; if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){ zState = "closed"; }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0, SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ zState = azLockName[j]; } sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC); sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); } }else #endif #ifdef SQLITE_SSE /* ** Check to see if the sqlite_statements table exists. Create it ** if it does not. */ if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){ extern int sqlite3CreateStatementsTable(Parse*); sqlite3CreateStatementsTable(pParse); }else #endif #if SQLITE_HAS_CODEC if( sqlite3StrICmp(zLeft, "key")==0 ){ sqlite3_key(db, zRight, strlen(zRight)); }else #endif #if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD) if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){ #if SQLITE_HAS_CODEC if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ extern void sqlite3_activate_see(const char*); sqlite3_activate_see(&zRight[4]); } #endif #ifdef SQLITE_ENABLE_CEROD if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ extern void sqlite3_activate_cerod(const char*); sqlite3_activate_cerod(&zRight[6]); } #endif } #endif {} if( v ){ /* Code an OP_Expire at the end of each PRAGMA program to cause ** the VDBE implementing the pragma to expire. Most (all?) pragmas ** are only valid for a single execution. */ sqlite3VdbeAddOp2(v, OP_Expire, 1, 0); /* ** Reset the safety level, in case the fullfsync flag or synchronous ** setting changed. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS if( db->autoCommit ){ sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level, (db->flags&SQLITE_FullFSync)!=0); } #endif } pragma_out: sqlite3DbFree(db, zLeft); sqlite3DbFree(db, zRight); }