コード例 #1
0
ファイル: btree_rb.c プロジェクト: AliYousuf/abanq-port
/*
 * Close the supplied Rbtree. Delete everything associated with it.
 */
static int memRbtreeClose(Rbtree* tree)
{
    HashElem *p;
    memRbtreeCommit(tree);
    while( (p=sqliteHashFirst(&tree->tblHash))!=0 ) {
        tree->eTransState = TRANS_ROLLBACK;
        memRbtreeDropTable(tree, sqliteHashKeysize(p));
    }
    sqliteHashClear(&tree->tblHash);
    sqliteFree(tree);
    return SQLITE_OK;
}
コード例 #2
0
ファイル: btree_rb.c プロジェクト: AliYousuf/abanq-port
/*
 * Check that each table in the Rbtree meets the requirements for a red-black
 * binary tree. If an error is found, return an explanation of the problem in
 * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored.
 */
static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
{
    char * msg = 0;
    HashElem *p;

    for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)) {
        BtRbTree *pTree = sqliteHashData(p);
        check_redblack_tree(pTree, &msg);
    }

    return msg;
}
コード例 #3
0
ファイル: callback.c プロジェクト: DoganA/nightingale-deps
/*
** Free all resources held by the schema structure. The void* argument points
** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the 
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
** of the schema hash tables).
**
** The Schema.cache_size variable is not cleared.
*/
void sqlite3SchemaFree(void *p){
  Hash temp1;
  Hash temp2;
  HashElem *pElem;
  Schema *pSchema = (Schema *)p;

  temp1 = pSchema->tblHash;
  temp2 = pSchema->trigHash;
  sqlite3HashInit(&pSchema->trigHash, 0);
  sqlite3HashClear(&pSchema->aFKey);
  sqlite3HashClear(&pSchema->idxHash);
  for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
    sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
  }
  sqlite3HashClear(&temp2);
  sqlite3HashInit(&pSchema->tblHash, 0);
  for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
    Table *pTab = sqliteHashData(pElem);
    sqlite3DeleteTable(pTab);
  }
  sqlite3HashClear(&temp1);
  pSchema->pSeqTab = 0;
  pSchema->flags &= ~DB_SchemaLoaded;
}
コード例 #4
0
ファイル: analyze.c プロジェクト: stephen-hill/musicCube
/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem;
  for(k=sqliteHashFirst(&db->aDb[iDb].tblHash);  k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}
コード例 #5
0
ファイル: analyze.c プロジェクト: tantalor/sqlite-3.7.3.p1
/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 2;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem+1;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}
コード例 #6
0
ファイル: trigger.c プロジェクト: Ramananda/sqlcipher
/*
** Given table pTab, return a list of all the triggers attached to 
** the table. The list is connected by Trigger.pNext pointers.
**
** All of the triggers on pTab that are in the same database as pTab
** are already attached to pTab->pTrigger.  But there might be additional
** triggers on pTab in the TEMP schema.  This routine prepends all
** TEMP triggers on pTab to the beginning of the pTab->pTrigger list
** and returns the combined list.
**
** To state it another way:  This routine returns a list of all triggers
** that fire off of pTab.  The list will include any TEMP triggers on
** pTab as well as the triggers lised in pTab->pTrigger.
*/
Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
  Schema * const pTmpSchema = pParse->db->aDb[1].pSchema;
  Trigger *pList = 0;                  /* List of triggers to return */

  if( pTmpSchema!=pTab->pSchema ){
    HashElem *p;
    for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
      Trigger *pTrig = (Trigger *)sqliteHashData(p);
      if( pTrig->pTabSchema==pTab->pSchema
       && 0==sqlite3StrICmp(pTrig->table, pTab->zName) 
      ){
        pTrig->pNext = (pList ? pList : pTab->pTrigger);
        pList = pTrig;
      }
    }
  }

  return (pList ? pList : pTab->pTrigger);
}
コード例 #7
0
ファイル: vdbeaux.c プロジェクト: AliYousuf/univ-aca-mips
/*
** Reset an Agg structure.  Delete all its contents. 
**
** For installable aggregate functions, if the step function has been
** called, make sure the finalizer function has also been called.  The
** finalizer might need to free memory that was allocated as part of its
** private context.  If the finalizer has not been called yet, call it
** now.
*/
void sqliteVdbeAggReset(Agg *pAgg){
  int i;
  HashElem *p;
  for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
    AggElem *pElem = sqliteHashData(p);
    assert( pAgg->apFunc!=0 );
    for(i=0; i<pAgg->nMem; i++){
      Mem *pMem = &pElem->aMem[i];
      if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
        sqlite_func ctx;
        ctx.pFunc = pAgg->apFunc[i];
        ctx.s.flags = MEM_Null;
        ctx.pAgg = pMem->z;
        ctx.cnt = pMem->i;
        ctx.isStep = 0;
        ctx.isError = 0;
        (*pAgg->apFunc[i]->xFinalize)(&ctx);
        if( pMem->z!=0 && pMem->z!=pMem->zShort ){
          sqliteFree(pMem->z);
        }
        if( ctx.s.flags & MEM_Dyn ){
          sqliteFree(ctx.s.z);
        }
      }else if( pMem->flags & MEM_Dyn ){
        sqliteFree(pMem->z);
      }
    }
    sqliteFree(pElem);
  }
  sqliteHashClear(&pAgg->hash);
  sqliteFree(pAgg->apFunc);
  pAgg->apFunc = 0;
  pAgg->pCurrent = 0;
  pAgg->pSearch = 0;
  pAgg->nMem = 0;
}
コード例 #8
0
/*
 ** Query status information for a single database connection
 */
SQLITE_API int sqlite3_db_status(
                                 sqlite3 *db,          /* The database connection whose status is desired */
                                 int op,               /* Status verb */
                                 int *pCurrent,        /* Write current value here */
                                 int *pHighwater,      /* Write high-water mark here */
                                 int resetFlag         /* Reset high-water mark if true */
){
    int rc = SQLITE_OK;   /* Return code */
    sqlite3_mutex_enter(db->mutex);
    switch( op ){
        case SQLITE_DBSTATUS_LOOKASIDE_USED: {
            *pCurrent = db->lookaside.nOut;
            *pHighwater = db->lookaside.mxOut;
            if( resetFlag ){
                db->lookaside.mxOut = db->lookaside.nOut;
            }
            break;
        }
            
        case SQLITE_DBSTATUS_LOOKASIDE_HIT:
        case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE:
        case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: {
            testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT );
            testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE );
            testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL );
            assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 );
            assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 );
            *pCurrent = 0;
            *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT];
            if( resetFlag ){
                db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0;
            }
            break;
        }
            
            /*
             ** Return an approximation for the amount of memory currently used
             ** by all pagers associated with the given database connection.  The
             ** highwater mark is meaningless and is returned as zero.
             */
        case SQLITE_DBSTATUS_CACHE_USED: {
            int totalUsed = 0;
            int i;
            sqlite3BtreeEnterAll(db);
            for(i=0; i<db->nDb; i++){
                Btree *pBt = db->aDb[i].pBt;
                if( pBt ){
                    Pager *pPager = sqlite3BtreePager(pBt);
                    totalUsed += sqlite3PagerMemUsed(pPager);
                }
            }
            sqlite3BtreeLeaveAll(db);
            *pCurrent = totalUsed;
            *pHighwater = 0;
            break;
        }
            
            /*
             ** *pCurrent gets an accurate estimate of the amount of memory used
             ** to store the schema for all databases (main, temp, and any ATTACHed
             ** databases.  *pHighwater is set to zero.
             */
        case SQLITE_DBSTATUS_SCHEMA_USED: {
            int i;                      /* Used to iterate through schemas */
            int nByte = 0;              /* Used to accumulate return value */
            
            sqlite3BtreeEnterAll(db);
            db->pnBytesFreed = &nByte;
            for(i=0; i<db->nDb; i++){
                Schema *pSchema = db->aDb[i].pSchema;
                if( ALWAYS(pSchema!=0) ){
                    HashElem *p;
                    
                    nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
                                                                                 pSchema->tblHash.count
                                                                                 + pSchema->trigHash.count
                                                                                 + pSchema->idxHash.count
                                                                                 + pSchema->fkeyHash.count
                                                                                 );
                    nByte += sqlite3MallocSize(pSchema->tblHash.ht);
                    nByte += sqlite3MallocSize(pSchema->trigHash.ht);
                    nByte += sqlite3MallocSize(pSchema->idxHash.ht);
                    nByte += sqlite3MallocSize(pSchema->fkeyHash.ht);
                    
                    for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
                        sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
                    }
                    for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
                        sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
                    }
                }
            }
            db->pnBytesFreed = 0;
            sqlite3BtreeLeaveAll(db);
            
            *pHighwater = 0;
            *pCurrent = nByte;
            break;
        }
            
            /*
             ** *pCurrent gets an accurate estimate of the amount of memory used
             ** to store all prepared statements.
             ** *pHighwater is set to zero.
             */
        case SQLITE_DBSTATUS_STMT_USED: {
            struct Vdbe *pVdbe;         /* Used to iterate through VMs */
            int nByte = 0;              /* Used to accumulate return value */
            
            db->pnBytesFreed = &nByte;
            for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
                sqlite3VdbeClearObject(db, pVdbe);
                sqlite3DbFree(db, pVdbe);
            }
            db->pnBytesFreed = 0;
            
            *pHighwater = 0;
            *pCurrent = nByte;
            
            break;
        }
            
            /*
             ** Set *pCurrent to the total cache hits or misses encountered by all
             ** pagers the database handle is connected to. *pHighwater is always set 
             ** to zero.
             */
        case SQLITE_DBSTATUS_CACHE_HIT:
        case SQLITE_DBSTATUS_CACHE_MISS:
        case SQLITE_DBSTATUS_CACHE_WRITE:{
            int i;
            int nRet = 0;
            assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 );
            assert( SQLITE_DBSTATUS_CACHE_WRITE==SQLITE_DBSTATUS_CACHE_HIT+2 );
            
            for(i=0; i<db->nDb; i++){
                if( db->aDb[i].pBt ){
                    Pager *pPager = sqlite3BtreePager(db->aDb[i].pBt);
                    sqlite3PagerCacheStat(pPager, op, resetFlag, &nRet);
                }
            }
            *pHighwater = 0;
            *pCurrent = nRet;
            break;
        }
            
            /* Set *pCurrent to non-zero if there are unresolved deferred foreign
             ** key constraints.  Set *pCurrent to zero if all foreign key constraints
             ** have been satisfied.  The *pHighwater is always set to zero.
             */
        case SQLITE_DBSTATUS_DEFERRED_FKS: {
            *pHighwater = 0;
            *pCurrent = db->nDeferredImmCons>0 || db->nDeferredCons>0;
            break;
        }
            
        default: {
            rc = SQLITE_ERROR;
        }
    }
    sqlite3_mutex_leave(db->mutex);
    return rc;
}
コード例 #9
0
SWITCH_DECLARE(switch_hash_index_t *) switch_hash_first(char *deprecate_me, switch_hash_t *hash)
{
	return (switch_hash_index_t *) sqliteHashFirst(&hash->table);
}
コード例 #10
0
ファイル: pragma.c プロジェクト: AllardJ/Tomato
/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA id = value
**
** The identifier might also be a string.  The value is a string, and
** identifier, or a number.  If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
*/
void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
  char *zLeft = 0;
  char *zRight = 0;
  sqlite *db = pParse->db;
  Vdbe *v = sqliteGetVdbe(pParse);
  if( v==0 ) return;

  zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
  sqliteDequote(zLeft);
  if( minusFlag ){
    zRight = 0;
    sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
  }else{
    zRight = sqliteStrNDup(pRight->z, pRight->n);
    sqliteDequote(zRight);
  }
  if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){
    sqliteFree(zLeft);
    sqliteFree(zRight);
    return;
  }
 
  /*
  **  PRAGMA default_cache_size
  **  PRAGMA default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
  ** The default cache size is stored in meta-value 2 of page 1 of the
  ** database file.  The cache size is actually the absolute value of
  ** this memory location.  The sign of meta-value 2 determines the
  ** synchronous setting.  A negative value means synchronous is off
  ** and a positive value means synchronous is on.
  */
  if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
    static VdbeOpList getCacheSize[] = {
      { OP_ReadCookie,  0, 2,        0},
      { OP_AbsValue,    0, 0,        0},
      { OP_Dup,         0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 6,        0},
      { OP_Integer,     0, 0,        0},  /* 5 */
      { OP_ColumnName,  0, 1,        "cache_size"},
      { OP_Callback,    1, 0,        0},
    };
    int addr;
    if( pRight->z==pLeft->z ){
      addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqliteVdbeChangeP1(v, addr+5, MAX_PAGES);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqliteBeginWriteOperation(pParse, 0, 0);
      sqliteVdbeAddOp(v, OP_Integer, size, 0);
      sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
      addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
      sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
      sqliteVdbeAddOp(v, OP_Negative, 0, 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
      sqliteEndWriteOperation(pParse);
      db->cache_size = db->cache_size<0 ? -size : size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
    }
  }else

  /*
  **  PRAGMA cache_size
  **  PRAGMA cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size.  The local setting can be different from
  ** the persistent cache size value that is stored in the database
  ** file itself.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets the local
  ** page cache size value.  It does not change the persistent
  ** cache size stored on the disk so the cache size will revert
  ** to its default value when the database is closed and reopened.
  ** N should be a positive integer.
  */
  if( sqliteStrICmp(zLeft,"cache_size")==0 ){
    static VdbeOpList getCacheSize[] = {
      { OP_ColumnName,  0, 1,        "cache_size"},
      { OP_Callback,    1, 0,        0},
    };
    if( pRight->z==pLeft->z ){
      int size = db->cache_size;;
      if( size<0 ) size = -size;
      sqliteVdbeAddOp(v, OP_Integer, size, 0);
      sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      if( db->cache_size<0 ) size = -size;
      db->cache_size = size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
    }
  }else

  /*
  **  PRAGMA default_synchronous
  **  PRAGMA default_synchronous=ON|OFF|NORMAL|FULL
  **
  ** The first form returns the persistent value of the "synchronous" setting
  ** that is stored in the database.  This is the synchronous setting that
  ** is used whenever the database is opened unless overridden by a separate
  ** "synchronous" pragma.  The second form changes the persistent and the
  ** local synchronous setting to the value given.
  **
  ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls
  ** to make sure data is committed to disk.  Write operations are very fast,
  ** but a power failure can leave the database in an inconsistent state.
  ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to
  ** make sure data is being written to disk.  The risk of corruption due to
  ** a power loss in this mode is negligible but non-zero.  If synchronous
  ** is FULL, extra fsync()s occur to reduce the risk of corruption to near
  ** zero, but with a write performance penalty.  The default mode is NORMAL.
  */
  if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
    static VdbeOpList getSync[] = {
      { OP_ColumnName,  0, 1,        "synchronous"},
      { OP_ReadCookie,  0, 3,        0},
      { OP_Dup,         0, 0,        0},
      { OP_If,          0, 0,        0},  /* 3 */
      { OP_ReadCookie,  0, 2,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Lt,          0, 5,        0},
      { OP_AddImm,      1, 0,        0},
      { OP_Callback,    1, 0,        0},
      { OP_Halt,        0, 0,        0},
      { OP_AddImm,     -1, 0,        0},  /* 10 */
      { OP_Callback,    1, 0,        0}
    };
    if( pRight->z==pLeft->z ){
      int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
      sqliteVdbeChangeP2(v, addr+3, addr+10);
    }else{
      int addr;
      int size = db->cache_size;
      if( size<0 ) size = -size;
      sqliteBeginWriteOperation(pParse, 0, 0);
      sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
      sqliteVdbeAddOp(v, OP_Dup, 0, 0);
      addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
      sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
      sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
      sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
      db->safety_level = getSafetyLevel(zRight)+1;
      if( db->safety_level==1 ){
        sqliteVdbeAddOp(v, OP_Negative, 0, 0);
        size = -size;
      }
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
      sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 3);
      sqliteEndWriteOperation(pParse);
      db->cache_size = size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
      sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
    }
  }else

  /*
  **   PRAGMA synchronous
  **   PRAGMA synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  if( sqliteStrICmp(zLeft,"synchronous")==0 ){
    static VdbeOpList getSync[] = {
      { OP_ColumnName,  0, 1,        "synchronous"},
      { OP_Callback,    1, 0,        0},
    };
    if( pRight->z==pLeft->z ){
      sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0);
      sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
    }else{
      int size = db->cache_size;
      if( size<0 ) size = -size;
      db->safety_level = getSafetyLevel(zRight)+1;
      if( db->safety_level==1 ) size = -size;
      db->cache_size = size;
      sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
      sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
    }
  }else

#ifndef NDEBUG
  if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
    if( getBoolean(zRight) ){
      always_code_trigger_setup = 1;
    }else{
      always_code_trigger_setup = 0;
    }
  }else
#endif

  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() call also generates any necessary code */
  }else

  if( sqliteStrICmp(zLeft, "table_info")==0 ){
    Table *pTab;
    pTab = sqliteFindTable(db, zRight, 0);
    if( pTab ){
      static VdbeOpList tableInfoPreface[] = {
        { OP_ColumnName,  0, 0,       "cid"},
        { OP_ColumnName,  1, 0,       "name"},
        { OP_ColumnName,  2, 0,       "type"},
        { OP_ColumnName,  3, 0,       "notnull"},
        { OP_ColumnName,  4, 0,       "dflt_value"},
        { OP_ColumnName,  5, 1,       "pk"},
      };
      int i;
      sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
      sqliteViewGetColumnNames(pParse, pTab);
      for(i=0; i<pTab->nCol; i++){
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0,
           pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0);
        sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0,
           pTab->aCol[i].zDflt, P3_STATIC);
        sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0);
        sqliteVdbeAddOp(v, OP_Callback, 6, 0);
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "index_info")==0 ){
    Index *pIdx;
    Table *pTab;
    pIdx = sqliteFindIndex(db, zRight, 0);
    if( pIdx ){
      static VdbeOpList tableInfoPreface[] = {
        { OP_ColumnName,  0, 0,       "seqno"},
        { OP_ColumnName,  1, 0,       "cid"},
        { OP_ColumnName,  2, 1,       "name"},
      };
      int i;
      pTab = pIdx->pTable;
      sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
        assert( pTab->nCol>cnum );
        sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0);
        sqliteVdbeAddOp(v, OP_Callback, 3, 0);
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "index_list")==0 ){
    Index *pIdx;
    Table *pTab;
    pTab = sqliteFindTable(db, zRight, 0);
    if( pTab ){
      v = sqliteGetVdbe(pParse);
      pIdx = pTab->pIndex;
    }
    if( pTab && pIdx ){
      int i = 0; 
      static VdbeOpList indexListPreface[] = {
        { OP_ColumnName,  0, 0,       "seq"},
        { OP_ColumnName,  1, 0,       "name"},
        { OP_ColumnName,  2, 1,       "unique"},
      };

      sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
      while(pIdx){
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0);
        sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
        sqliteVdbeAddOp(v, OP_Callback, 3, 0);
        ++i;
        pIdx = pIdx->pNext;
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){
    FKey *pFK;
    Table *pTab;
    pTab = sqliteFindTable(db, zRight, 0);
    if( pTab ){
      v = sqliteGetVdbe(pParse);
      pFK = pTab->pFKey;
    }
    if( pTab && pFK ){
      int i = 0; 
      static VdbeOpList indexListPreface[] = {
        { OP_ColumnName,  0, 0,       "id"},
        { OP_ColumnName,  1, 0,       "seq"},
        { OP_ColumnName,  2, 0,       "table"},
        { OP_ColumnName,  3, 0,       "from"},
        { OP_ColumnName,  4, 1,       "to"},
      };

      sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
      while(pFK){
        int j;
        for(j=0; j<pFK->nCol; j++){
          sqliteVdbeAddOp(v, OP_Integer, i, 0);
          sqliteVdbeAddOp(v, OP_Integer, j, 0);
          sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0);
          sqliteVdbeOp3(v, OP_String, 0, 0,
                           pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
          sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0);
          sqliteVdbeAddOp(v, OP_Callback, 5, 0);
        }
        ++i;
        pFK = pFK->pNextFrom;
      }
    }
  }else

  if( sqliteStrICmp(zLeft, "database_list")==0 ){
    int i;
    static VdbeOpList indexListPreface[] = {
      { OP_ColumnName,  0, 0,       "seq"},
      { OP_ColumnName,  1, 0,       "name"},
      { OP_ColumnName,  2, 1,       "file"},
    };

    sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqliteVdbeAddOp(v, OP_Integer, i, 0);
      sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0);
      sqliteVdbeOp3(v, OP_String, 0, 0,
           sqliteBtreeGetFilename(db->aDb[i].pBt), 0);
      sqliteVdbeAddOp(v, OP_Callback, 3, 0);
    }
  }else


  /*
  **   PRAGMA temp_store
  **   PRAGMA temp_store = "default"|"memory"|"file"
  **
  ** Return or set the local value of the temp_store flag.  Changing
  ** the local value does not make changes to the disk file and the default
  ** value will be restored the next time the database is opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqliteStrICmp(zLeft, "temp_store")==0 ){
    static VdbeOpList getTmpDbLoc[] = {
      { OP_ColumnName,  0, 1,        "temp_store"},
      { OP_Callback,    1, 0,        0},
    };
    if( pRight->z==pLeft->z ){
      sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0);
      sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
    }else{
      changeTempStorage(pParse, zRight);
    }
  }else

  /*
  **   PRAGMA default_temp_store
  **   PRAGMA default_temp_store = "default"|"memory"|"file"
  **
  ** Return or set the value of the persistent temp_store flag.  Any
  ** change does not take effect until the next time the database is
  ** opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){
    static VdbeOpList getTmpDbLoc[] = {
      { OP_ColumnName,  0, 1,        "temp_store"},
      { OP_ReadCookie,  0, 5,        0},
      { OP_Callback,    1, 0,        0}};
    if( pRight->z==pLeft->z ){
      sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
    }else{
      sqliteBeginWriteOperation(pParse, 0, 0);
      sqliteVdbeAddOp(v, OP_Integer, getTempStore(zRight), 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 5);
      sqliteEndWriteOperation(pParse);
    }
  }else

#ifndef NDEBUG
  if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
    extern void sqliteParserTrace(FILE*, char *);
    if( getBoolean(zRight) ){
      sqliteParserTrace(stdout, "parser: ");
    }else{
      sqliteParserTrace(0, 0);
    }
  }else
#endif

  if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
    int i, j, addr;

    /* Code that initializes the integrity check program.  Set the
    ** error count 0
    */
    static VdbeOpList initCode[] = {
      { OP_Integer,     0, 0,        0},
      { OP_MemStore,    0, 1,        0},
      { OP_ColumnName,  0, 1,        "integrity_check"},
    };

    /* Code to do an BTree integrity check on a single database file.
    */
    static VdbeOpList checkDb[] = {
      { OP_SetInsert,   0, 0,        "2"},
      { OP_Integer,     0, 0,        0},    /* 1 */
      { OP_OpenRead,    0, 2,        0},
      { OP_Rewind,      0, 7,        0},    /* 3 */
      { OP_Column,      0, 3,        0},    /* 4 */
      { OP_SetInsert,   0, 0,        0},
      { OP_Next,        0, 4,        0},    /* 6 */
      { OP_IntegrityCk, 0, 0,        0},    /* 7 */
      { OP_Dup,         0, 1,        0},
      { OP_String,      0, 0,        "ok"},
      { OP_StrEq,       0, 12,       0},    /* 10 */
      { OP_MemIncr,     0, 0,        0},
      { OP_String,      0, 0,        "*** in database "},
      { OP_String,      0, 0,        0},    /* 13 */
      { OP_String,      0, 0,        " ***\n"},
      { OP_Pull,        3, 0,        0},
      { OP_Concat,      4, 1,        0},
      { OP_Callback,    1, 0,        0},
    };

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static VdbeOpList endCode[] = {
      { OP_MemLoad,     0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 0,        0},    /* 2 */
      { OP_String,      0, 0,        "ok"},
      { OP_Callback,    1, 0,        0},
    };

    /* Initialize the VDBE program */
    sqliteVdbeAddOpList(v, ArraySize(initCode), initCode);

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;

      /* Do an integrity check of the B-Tree
      */
      addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
      sqliteVdbeChangeP1(v, addr+1, i);
      sqliteVdbeChangeP2(v, addr+3, addr+7);
      sqliteVdbeChangeP2(v, addr+6, addr+4);
      sqliteVdbeChangeP2(v, addr+7, i);
      sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb));
      sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC);

      /* Make sure all the indices are constructed correctly.
      */
      sqliteCodeVerifySchema(pParse, i);
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqliteVdbeAddOp(v, OP_Integer, i, 0);
        sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          if( pIdx->tnum==0 ) continue;
          sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
          sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0);
        }
        sqliteVdbeAddOp(v, OP_Integer, 0, 0);
        sqliteVdbeAddOp(v, OP_MemStore, 1, 1);
        loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0);
        sqliteVdbeAddOp(v, OP_MemIncr, 1, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int k, jmp2;
          static VdbeOpList idxErr[] = {
            { OP_MemIncr,     0,  0,  0},
            { OP_String,      0,  0,  "rowid "},
            { OP_Recno,       1,  0,  0},
            { OP_String,      0,  0,  " missing from index "},
            { OP_String,      0,  0,  0},    /* 4 */
            { OP_Concat,      4,  0,  0},
            { OP_Callback,    1,  0,  0},
          };
          sqliteVdbeAddOp(v, OP_Recno, 1, 0);
          for(k=0; k<pIdx->nColumn; k++){
            int idx = pIdx->aiColumn[k];
            if( idx==pTab->iPKey ){
              sqliteVdbeAddOp(v, OP_Recno, 1, 0);
            }else{
              sqliteVdbeAddOp(v, OP_Column, 1, idx);
            }
          }
          sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
          if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
          jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0);
          addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
          sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v));
        }
        sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1);
        sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v));
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static VdbeOpList cntIdx[] = {
             { OP_Integer,      0,  0,  0},
             { OP_MemStore,     2,  1,  0},
             { OP_Rewind,       0,  0,  0},  /* 2 */
             { OP_MemIncr,      2,  0,  0},
             { OP_Next,         0,  0,  0},  /* 4 */
             { OP_MemLoad,      1,  0,  0},
             { OP_MemLoad,      2,  0,  0},
             { OP_Eq,           0,  0,  0},  /* 7 */
             { OP_MemIncr,      0,  0,  0},
             { OP_String,       0,  0,  "wrong # of entries in index "},
             { OP_String,       0,  0,  0},  /* 10 */
             { OP_Concat,       2,  0,  0},
             { OP_Callback,     1,  0,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqliteVdbeChangeP1(v, addr+2, j+2);
          sqliteVdbeChangeP2(v, addr+2, addr+5);
          sqliteVdbeChangeP1(v, addr+4, j+2);
          sqliteVdbeChangeP2(v, addr+4, addr+3);
          sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx));
          sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC);
        }
      } 
    }
    addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode);
    sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode));
  }else

  {}
  sqliteFree(zLeft);
  sqliteFree(zRight);
}
コード例 #11
0
SWITCH_DECLARE(switch_hash_index_t *) switch_core_hash_first(switch_hash_t *hash)
{
	return (switch_hash_index_t *) sqliteHashFirst(&hash->table);
}
コード例 #12
0
/*
** Close an existing SQLite database
*/
EXPORT_C int sqlite3_close(sqlite3 *db){
  HashElem *i;
  int j;

  if( !db ){
    return SQLITE_OK;
  }
  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }
  sqlite3_mutex_enter(db->mutex);

#ifdef SQLITE_SSE
  {
    extern void sqlite3SseCleanup(sqlite3*);
    sqlite3SseCleanup(db);
  }
#endif 

  sqlite3ResetInternalSchema(db, 0);

  /* If a transaction is open, the ResetInternalSchema() call above
  ** will not have called the xDisconnect() method on any virtual
  ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
  ** call will do so. We need to do this before the check for active
  ** SQL statements below, as the v-table implementation may be storing
  ** some prepared statements internally.
  */
  sqlite3VtabRollback(db);

  /* If there are any outstanding VMs, return SQLITE_BUSY. */
  if( db->pVdbe ){
    sqlite3Error(db, SQLITE_BUSY, 
        "Unable to close due to unfinalised statements");
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_BUSY;
  }
  assert( !sqlite3SafetyCheck(db) );

  /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database
  ** cannot be opened for some reason. So this routine needs to run in
  ** that case. But maybe there should be an extra magic value for the
  ** "failed to open" state.
  **
  ** TODO: Coverage tests do not test the case where this condition is
  ** true. It's hard to see how to cause it without messing with threads.
  */
  if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){
    /* printf("DID NOT CLOSE\n"); fflush(stdout); */
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_ERROR;
  }

  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];
    if( pDb->pBt ){
      sqlite3BtreeClose(pDb->pBt);
      pDb->pBt = 0;
      if( j!=1 ){
        pDb->pSchema = 0;
      }
    }
  }
  sqlite3ResetInternalSchema(db, 0);
  assert( db->nDb<=2 );
  assert( db->aDb==db->aDbStatic );
  for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
    FuncDef *pFunc, *pNext;
    for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
      pNext = pFunc->pNext;
      sqlite3_free(pFunc);
    }
  }

  for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
    CollSeq *pColl = (CollSeq *)sqliteHashData(i);
    /* Invoke any destructors registered for collation sequence user data. */
    for(j=0; j<3; j++){
      if( pColl[j].xDel ){
        pColl[j].xDel(pColl[j].pUser);
      }
    }
    sqlite3_free(pColl);
  }
  sqlite3HashClear(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
    Module *pMod = (Module *)sqliteHashData(i);
    if( pMod->xDestroy ){
      pMod->xDestroy(pMod->pAux);
    }
    sqlite3_free(pMod);
  }
  sqlite3HashClear(&db->aModule);
#endif

  sqlite3HashClear(&db->aFunc);
  sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
  if( db->pErr ){
    sqlite3ValueFree(db->pErr);
  }
  sqlite3CloseExtensions(db);

  db->magic = SQLITE_MAGIC_ERROR;

  /* The temp-database schema is allocated differently from the other schema
  ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
  ** So it needs to be freed here. Todo: Why not roll the temp schema into
  ** the same sqliteMalloc() as the one that allocates the database 
  ** structure?
  */
  sqlite3_free(db->aDb[1].pSchema);
  sqlite3_mutex_leave(db->mutex);
  sqlite3_mutex_free(db->mutex);
  sqlite3_free(db);
  return SQLITE_OK;
}
コード例 #13
0
ファイル: analyze.c プロジェクト: sunyangkobe/db_research
/*
** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat2 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined 
** during compilation and the sqlite_stat2 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT2 was defined during compilation and the 
** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = (Index *) sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
  }

  /* Check to make sure the sqlite_stat1 table exists */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
  if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
    return SQLITE_ERROR;
  }

  /* Load new statistics out of the sqlite_stat1 table */
  zSql = sqlite3MPrintf(db, 
      "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
  if( zSql==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat2 table. */
#ifdef SQLITE_ENABLE_STAT2
  if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
    rc = SQLITE_ERROR;
  }
  if( rc==SQLITE_OK ){
    sqlite3_stmt *pStmt = 0;

    zSql = sqlite3MPrintf(db, 
        "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
    if( !zSql ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
      sqlite3DbFree(db, zSql);
    }

    if( rc==SQLITE_OK ){
      while( sqlite3_step(pStmt)==SQLITE_ROW ){
        char *zIndex;   /* Index name */
        Index *pIdx;    /* Pointer to the index object */

        zIndex = (char *)sqlite3_column_text(pStmt, 0);
        pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0;
        if( pIdx ){
          int iSample = sqlite3_column_int(pStmt, 1);
          if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
            int eType = sqlite3_column_type(pStmt, 2);

            if( pIdx->aSample==0 ){
              static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
              pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz);
              if( pIdx->aSample==0 ){
                db->mallocFailed = 1;
                break;
              }
	      memset(pIdx->aSample, 0, sz);
            }

            assert( pIdx->aSample );
            {
              IndexSample *pSample = &pIdx->aSample[iSample];
              pSample->eType = (u8)eType;
              if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
                pSample->u.r = sqlite3_column_double(pStmt, 2);
              }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
                const char *z = (const char *)(
                    (eType==SQLITE_BLOB) ?
                    sqlite3_column_blob(pStmt, 2):
                    sqlite3_column_text(pStmt, 2)
                );
                int n = sqlite3_column_bytes(pStmt, 2);
                if( n>24 ){
                  n = 24;
                }
                pSample->nByte = (u8)n;
                if( n < 1){
                  pSample->u.z = 0;
                }else{
                  pSample->u.z = sqlite3DbStrNDup(0, z, n);
                  if( pSample->u.z==0 ){
                    db->mallocFailed = 1;
                    break;
                  }
                }
              }
            }
          }
        }
      }
      rc = sqlite3_finalize(pStmt);
    }
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}
コード例 #14
0
/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [database.]id [= value]
**
** The identifier might also be a string.  The value is a string, and
** identifier, or a number.  If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
**
** If the left side is "database.id" then pId1 is the database name
** and pId2 is the id.  If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
void sqlite3Pragma(
  Parse *pParse, 
  Token *pId1,        /* First part of [database.]id field */
  Token *pId2,        /* Second part of [database.]id field, or NULL */
  Token *pValue,      /* Token for <value>, or NULL */
  int minusFlag       /* True if a '-' sign preceded <value> */
){
  char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
  char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
  const char *zDb = 0;   /* The database name */
  Token *pId;            /* Pointer to <id> token */
  int iDb;               /* Database index for <database> */
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;

  /* Interpret the [database.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */
  iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
  if( iDb<0 ) return;
  pDb = &db->aDb[iDb];

  zLeft = sqlite3NameFromToken(pId);
  if( !zLeft ) return;
  if( minusFlag ){
    zRight = sqlite3MPrintf("-%T", pValue);
  }else{
    zRight = sqlite3NameFromToken(pValue);
  }

  zDb = ((iDb>0)?pDb->zName:0);
  if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }
 
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
  ** The default cache size is stored in meta-value 2 of page 1 of the
  ** database file.  The cache size is actually the absolute value of
  ** this memory location.  The sign of meta-value 2 determines the
  ** synchronous setting.  A negative value means synchronous is off
  ** and a positive value means synchronous is on.
  */
  if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
    static const VdbeOpList getCacheSize[] = {
      { OP_ReadCookie,  0, 2,        0},  /* 0 */
      { OP_AbsValue,    0, 0,        0},
      { OP_Dup,         0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 6,        0},
      { OP_Integer,     0, 0,        0},  /* 5 */
      { OP_Callback,    1, 0,        0},
    };
    int addr;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, "cache_size", P3_STATIC);
      addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3VdbeAddOp(v, OP_Integer, size, 0);
      sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2);
      addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
      sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3);
      sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
      sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2);
      pDb->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->cache_size);
    }
  }else

  /*
  **  PRAGMA [database.]page_size
  **  PRAGMA [database.]page_size=N
  **
  ** The first form reports the current setting for the
  ** database page size in bytes.  The second form sets the
  ** database page size value.  The value can only be set if
  ** the database has not yet been created.
  */
  if( sqlite3StrICmp(zLeft,"page_size")==0 ){
    Btree *pBt = pDb->pBt;
    if( !zRight ){
      int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
      returnSingleInt(pParse, "page_size", size);
    }else{
      sqlite3BtreeSetPageSize(pBt, atoi(zRight), sqlite3BtreeGetReserve(pBt));
    }
  }else

  /*
  **  PRAGMA [database.]cache_size
  **  PRAGMA [database.]cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size.  The local setting can be different from
  ** the persistent cache size value that is stored in the database
  ** file itself.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets the local
  ** page cache size value.  It does not change the persistent
  ** cache size stored on the disk so the cache size will revert
  ** to its default value when the database is closed and reopened.
  ** N should be a positive integer.
  */
  if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "cache_size", pDb->cache_size);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      pDb->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->cache_size);
    }
  }else

  /*
  **   PRAGMA temp_store
  **   PRAGMA temp_store = "default"|"memory"|"file"
  **
  ** Return or set the local value of the temp_store flag.  Changing
  ** the local value does not make changes to the disk file and the default
  ** value will be restored the next time the database is opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
    if( !zRight ){
      returnSingleInt(pParse, "temp_store", db->temp_store);
    }else{
      changeTempStorage(pParse, zRight);
    }
  }else

  /*
  **   PRAGMA [database.]synchronous
  **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
    }else{
      if( !db->autoCommit ){
        sqlite3ErrorMsg(pParse, 
            "Safety level may not be changed inside a transaction");
      }else{
        pDb->safety_level = getSafetyLevel(zRight)+1;
        sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level);
      }
    }
  }else

#if 0  /* Used once during development.  No longer needed */
  if( sqlite3StrICmp(zLeft, "trigger_overhead_test")==0 ){
    if( getBoolean(zRight) ){
      sqlite3_always_code_trigger_setup = 1;
    }else{
      sqlite3_always_code_trigger_setup = 0;
    }
  }else
#endif

  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() subroutine also generates any necessary code
    ** there is nothing more to do here */
  }else

  /*
  **   PRAGMA table_info(<table>)
  **
  ** Return a single row for each column of the named table. The columns of
  ** the returned data set are:
  **
  ** cid:        Column id (numbered from left to right, starting at 0)
  ** name:       Column name
  ** type:       Column declaration type.
  ** notnull:    True if 'NOT NULL' is part of column declaration
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      sqlite3VdbeSetNumCols(v, 6);
      sqlite3VdbeSetColName(v, 0, "cid", P3_STATIC);
      sqlite3VdbeSetColName(v, 1, "name", P3_STATIC);
      sqlite3VdbeSetColName(v, 2, "type", P3_STATIC);
      sqlite3VdbeSetColName(v, 3, "notnull", P3_STATIC);
      sqlite3VdbeSetColName(v, 4, "dflt_value", P3_STATIC);
      sqlite3VdbeSetColName(v, 5, "pk", P3_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0; i<pTab->nCol; i++){
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[i].zName, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0,
           pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0);
        sqlite3VdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0,
           pTab->aCol[i].zDflt, P3_STATIC);
        sqlite3VdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 6, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      sqlite3VdbeSetColName(v, 0, "seqno", P3_STATIC);
      sqlite3VdbeSetColName(v, 1, "cid", P3_STATIC);
      sqlite3VdbeSetColName(v, 2, "name", P3_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeAddOp(v, OP_Integer, cnum, 0);
        assert( pTab->nCol>cnum );
        sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        sqlite3VdbeSetColName(v, 0, "seq", P3_STATIC);
        sqlite3VdbeSetColName(v, 1, "name", P3_STATIC);
        sqlite3VdbeSetColName(v, 2, "unique", P3_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp(v, OP_Integer, i, 0);
          sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
          sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
          ++i;
          pIdx = pIdx->pNext;
        }
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
    FKey *pFK;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 5);
        sqlite3VdbeSetColName(v, 0, "id", P3_STATIC);
        sqlite3VdbeSetColName(v, 1, "seq", P3_STATIC);
        sqlite3VdbeSetColName(v, 2, "table", P3_STATIC);
        sqlite3VdbeSetColName(v, 3, "from", P3_STATIC);
        sqlite3VdbeSetColName(v, 4, "to", P3_STATIC);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            sqlite3VdbeAddOp(v, OP_Integer, i, 0);
            sqlite3VdbeAddOp(v, OP_Integer, j, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0,
                             pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->aCol[j].zCol, 0);
            sqlite3VdbeAddOp(v, OP_Callback, 5, 0);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "database_list")==0 ){
    int i;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 3);
    sqlite3VdbeSetColName(v, 0, "seq", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, "name", P3_STATIC);
    sqlite3VdbeSetColName(v, 2, "file", P3_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite3VdbeAddOp(v, OP_Integer, i, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0,
           sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
      sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
    }
  }else

#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    extern void sqlite3ParserTrace(FILE*, char *);
    if( getBoolean(zRight) ){
      sqlite3ParserTrace(stdout, "parser: ");
    }else{
      sqlite3ParserTrace(0, 0);
    }
  }else
#endif

  if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){
    int i, j, addr;

    /* Code that initializes the integrity check program.  Set the
    ** error count 0
    */
    static const VdbeOpList initCode[] = {
      { OP_Integer,     0, 0,        0},
      { OP_MemStore,    0, 1,        0},
    };

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const VdbeOpList endCode[] = {
      { OP_MemLoad,     0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 0,        0},    /* 2 */
      { OP_String8,     0, 0,        "ok"},
      { OP_Callback,    1, 0,        0},
    };

    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC);
    sqlite3VdbeAddOpList(v, ArraySize(initCode), initCode);

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      int cnt = 0;

      sqlite3CodeVerifySchema(pParse, i);

      /* Do an integrity check of the B-Tree
      */
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto pragma_out;
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);
          cnt++;
        }
      }
      assert( cnt>0 );
      sqlite3VdbeAddOp(v, OP_IntegrityCk, cnt, i);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 1);
      addr = sqlite3VdbeOp3(v, OP_String8, 0, 0, "ok", P3_STATIC);
      sqlite3VdbeAddOp(v, OP_Eq, 0, addr+6);
      sqlite3VdbeOp3(v, OP_String8, 0, 0,
         sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName),
         P3_DYNAMIC);
      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp(v, OP_Concat, 0, 1);
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);

      /* Make sure all the indices are constructed correctly.
      */
      sqlite3CodeVerifySchema(pParse, i);
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
        sqlite3VdbeAddOp(v, OP_MemStore, 1, 1);
        loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          static const VdbeOpList idxErr[] = {
            { OP_MemIncr,     0,  0,  0},
            { OP_String8,     0,  0,  "rowid "},
            { OP_Recno,       1,  0,  0},
            { OP_String8,     0,  0,  " missing from index "},
            { OP_String8,     0,  0,  0},    /* 4 */
            { OP_Concat,      2,  0,  0},
            { OP_Callback,    1,  0,  0},
          };
          sqlite3GenerateIndexKey(v, pIdx, 1);
          jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
          sqlite3VdbeChangeP2(v, jmp2, sqlite3VdbeCurrentAddr(v));
        }
        sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1);
        sqlite3VdbeChangeP2(v, loopTop, sqlite3VdbeCurrentAddr(v));
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_Integer,      0,  0,  0},
             { OP_MemStore,     2,  1,  0},
             { OP_Rewind,       0,  0,  0},  /* 2 */
             { OP_MemIncr,      2,  0,  0},
             { OP_Next,         0,  0,  0},  /* 4 */
             { OP_MemLoad,      1,  0,  0},
             { OP_MemLoad,      2,  0,  0},
             { OP_Eq,           0,  0,  0},  /* 7 */
             { OP_MemIncr,      0,  0,  0},
             { OP_String8,      0,  0,  "wrong # of entries in index "},
             { OP_String8,      0,  0,  0},  /* 10 */
             { OP_Concat,       0,  0,  0},
             { OP_Callback,     1,  0,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite3VdbeChangeP1(v, addr+2, j+2);
          sqlite3VdbeChangeP2(v, addr+2, addr+5);
          sqlite3VdbeChangeP1(v, addr+4, j+2);
          sqlite3VdbeChangeP2(v, addr+4, addr+3);
          sqlite3VdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx));
          sqlite3VdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC);
        }
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeChangeP2(v, addr+2, addr+ArraySize(endCode));
  }else
  /*
  **   PRAGMA encoding
  **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
  **
  ** In it's first form, this pragma returns the encoding of the main
  ** database. If the database is not initialized, it is initialized now.
  **
  ** The second form of this pragma is a no-op if the main database file
  ** has not already been initialized. In this case it sets the default
  ** encoding that will be used for the main database file if a new file
  ** is created. If an existing main database file is opened, then the
  ** default text encoding for the existing database is used.
  ** 
  ** In all cases new databases created using the ATTACH command are
  ** created to use the same default text encoding as the main database. If
  ** the main database has not been initialized and/or created when ATTACH
  ** is executed, this is done before the ATTACH operation.
  **
  ** In the second form this pragma sets the text encoding to be used in
  ** new database files created using this database handle. It is only
  ** useful if invoked immediately after the main database i
  */
  if( sqlite3StrICmp(zLeft, "encoding")==0 ){
    static struct EncName {
      char *zName;
      u8 enc;
    } encnames[] = {
      { "UTF-8",    SQLITE_UTF8        },
      { "UTF8",     SQLITE_UTF8        },
      { "UTF-16le", SQLITE_UTF16LE     },
      { "UTF16le",  SQLITE_UTF16LE     },
      { "UTF-16be", SQLITE_UTF16BE     },
      { "UTF16be",  SQLITE_UTF16BE     },
      { "UTF-16",   0 /* Filled in at run-time */ },
      { "UTF16",    0 /* Filled in at run-time */ },
      { 0, 0 }
    };
    struct EncName *pEnc;
    encnames[6].enc = encnames[7].enc = SQLITE_UTF16NATIVE;
    if( !zRight ){    /* "PRAGMA encoding" */
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, "encoding", P3_STATIC);
      sqlite3VdbeAddOp(v, OP_String8, 0, 0);
      for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
        if( pEnc->enc==pParse->db->enc ){
          sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC);
          break;
        }
      }
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
    }else{                        /* "PRAGMA encoding = XXX" */
      /* Only change the value of sqlite.enc if the database handle is not
      ** initialized. If the main database exists, the new sqlite.enc value
      ** will be overwritten when the schema is next loaded. If it does not
      ** already exists, it will be created to use the new encoding value.
      */
      if( !(pParse->db->flags&SQLITE_Initialized) ){
        for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
          if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
            pParse->db->enc = pEnc->enc;
            break;
          }
        }
        if( !pEnc->zName ){
          sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
    }
  }else

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Report the current state of file logs for all databases
  */
  if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
    static const char *const azLockName[] = {
      "unlocked", "shared", "reserved", "pending", "exclusive"
    };
    int i;
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, "database", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, "status", P3_STATIC);
    for(i=0; i<db->nDb; i++){
      Btree *pBt;
      Pager *pPager;
      if( db->aDb[i].zName==0 ) continue;
      sqlite3VdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, P3_STATIC);
      pBt = db->aDb[i].pBt;
      if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
        sqlite3VdbeOp3(v, OP_String, 0, 0, "closed", P3_STATIC);
      }else{
        int j = sqlite3pager_lockstate(pPager);
        sqlite3VdbeOp3(v, OP_String, 0, 0, 
            (j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC);
      }
      sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
    }
  }else
#endif

  {}
pragma_out:
  sqliteFree(zLeft);
  sqliteFree(zRight);
}
コード例 #15
0
/*
** Close an existing SQLite database
*/
int sqlite3_close(sqlite3 *db){
  HashElem *i;
  int j;

  if( !db ){
    return SQLITE_OK;
  }
  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }

#ifdef SQLITE_SSE
  sqlite3_finalize(db->pFetch);
#endif

  /* If there are any outstanding VMs, return SQLITE_BUSY. */
  if( db->pVdbe ){
    sqlite3Error(db, SQLITE_BUSY,
        "Unable to close due to unfinalised statements");
    return SQLITE_BUSY;
  }
  assert( !sqlite3SafetyCheck(db) );

  /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database
  ** cannot be opened for some reason. So this routine needs to run in
  ** that case. But maybe there should be an extra magic value for the
  ** "failed to open" state.
  */
  if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){
    /* printf("DID NOT CLOSE\n"); fflush(stdout); */
    return SQLITE_ERROR;
  }

  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];
    if( pDb->pBt ){
      sqlite3BtreeClose(pDb->pBt);
      pDb->pBt = 0;
    }
  }
  sqlite3ResetInternalSchema(db, 0);
  assert( db->nDb<=2 );
  assert( db->aDb==db->aDbStatic );
  for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
    FuncDef *pFunc, *pNext;
    for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
      pNext = pFunc->pNext;
      sqliteFree(pFunc);
    }
  }

  for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
    CollSeq *pColl = (CollSeq *)sqliteHashData(i);
    sqliteFree(pColl);
  }
  sqlite3HashClear(&db->aCollSeq);

  sqlite3HashClear(&db->aFunc);
  sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
  if( db->pValue ){
    sqlite3ValueFree(db->pValue);
  }
  if( db->pErr ){
    sqlite3ValueFree(db->pErr);
  }

#ifndef SQLITE_OMIT_GLOBALRECOVER
  {
    sqlite3 *pPrev;
    sqlite3OsEnterMutex();
    pPrev = pDbList;
    while( pPrev && pPrev->pNext!=db ){
      pPrev = pPrev->pNext;
    }
    if( pPrev ){
      pPrev->pNext = db->pNext;
    }else{
      assert( pDbList==db );
      pDbList = db->pNext;
    }
    sqlite3OsLeaveMutex();
  }
#endif

  db->magic = SQLITE_MAGIC_ERROR;
  sqliteFree(db);
  return SQLITE_OK;
}
コード例 #16
0
ファイル: main.c プロジェクト: BackupTheBerlios/sqlitepp-svn
/*
** Close an existing SQLite database
*/
int sqlite3_close(sqlite3 *db){
  HashElem *i;
  int j;

  if( !db ){
    return SQLITE_OK;
  }
  if( sqlite3SafetyCheck(db) ){
    return SQLITE_MISUSE;
  }

#ifdef SQLITE_SSE
  sqlite3_finalize(db->pFetch);
#endif 

  /* If there are any outstanding VMs, return SQLITE_BUSY. */
  if( db->pVdbe ){
    sqlite3Error(db, SQLITE_BUSY, 
        "Unable to close due to unfinalised statements");
    return SQLITE_BUSY;
  }
  assert( !sqlite3SafetyCheck(db) );

  /* FIX ME: db->magic may be set to SQLITE_MAGIC_CLOSED if the database
  ** cannot be opened for some reason. So this routine needs to run in
  ** that case. But maybe there should be an extra magic value for the
  ** "failed to open" state.
  */
  if( db->magic!=SQLITE_MAGIC_CLOSED && sqlite3SafetyOn(db) ){
    /* printf("DID NOT CLOSE\n"); fflush(stdout); */
    return SQLITE_ERROR;
  }

  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];
    if( pDb->pBt ){
      sqlite3BtreeClose(pDb->pBt);
      pDb->pBt = 0;
      if( j!=1 ){
        pDb->pSchema = 0;
      }
    }
  }
  sqlite3ResetInternalSchema(db, 0);
  assert( db->nDb<=2 );
  assert( db->aDb==db->aDbStatic );
  for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
    FuncDef *pFunc, *pNext;
    for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
      pNext = pFunc->pNext;
      sqliteFree(pFunc);
    }
  }

  for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
    CollSeq *pColl = (CollSeq *)sqliteHashData(i);
    sqliteFree(pColl);
  }
  sqlite3HashClear(&db->aCollSeq);

  sqlite3HashClear(&db->aFunc);
  sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
  if( db->pErr ){
    sqlite3ValueFree(db->pErr);
  }

  db->magic = SQLITE_MAGIC_ERROR;

  /* The temp-database schema is allocated differently from the other schema
  ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
  ** So it needs to be freed here. Todo: Why not roll the temp schema into
  ** the same sqliteMalloc() as the one that allocates the database 
  ** structure?
  */
  sqliteFree(db->aDb[1].pSchema);
  sqliteFree(db);
  sqlite3ReleaseThreadData();
  return SQLITE_OK;
}
コード例 #17
0
ファイル: pragma.c プロジェクト: tmarques/waheela
/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [database.]id [= value]
**
** The identifier might also be a string.  The value is a string, and
** identifier, or a number.  If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
**
** If the left side is "database.id" then pId1 is the database name
** and pId2 is the id.  If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
void sqlite3Pragma(
  Parse *pParse, 
  Token *pId1,        /* First part of [database.]id field */
  Token *pId2,        /* Second part of [database.]id field, or NULL */
  Token *pValue,      /* Token for <value>, or NULL */
  int minusFlag       /* True if a '-' sign preceded <value> */
){
  char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
  char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
  const char *zDb = 0;   /* The database name */
  Token *pId;            /* Pointer to <id> token */
  int iDb;               /* Database index for <database> */
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;

  /* Interpret the [database.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */
  iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
  if( iDb<0 ) return;
  pDb = &db->aDb[iDb];

  zLeft = sqlite3NameFromToken(pId);
  if( !zLeft ) return;
  if( minusFlag ){
    zRight = sqlite3MPrintf("-%T", pValue);
  }else{
    zRight = sqlite3NameFromToken(pValue);
  }

  zDb = ((iDb>0)?pDb->zName:0);
  if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }
 
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
  ** The default cache size is stored in meta-value 2 of page 1 of the
  ** database file.  The cache size is actually the absolute value of
  ** this memory location.  The sign of meta-value 2 determines the
  ** synchronous setting.  A negative value means synchronous is off
  ** and a positive value means synchronous is on.
  */
  if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
    static const VdbeOpList getCacheSize[] = {
      { OP_ReadCookie,  0, 2,        0},  /* 0 */
      { OP_AbsValue,    0, 0,        0},
      { OP_Dup,         0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 6,        0},
      { OP_Integer,     0, 0,        0},  /* 5 */
      { OP_Callback,    1, 0,        0},
    };
    int addr;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P3_STATIC);
      addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3VdbeAddOp(v, OP_Integer, size, 0);
      sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2);
      addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
      sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3);
      sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
      sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **  PRAGMA [database.]page_size
  **  PRAGMA [database.]page_size=N
  **
  ** The first form reports the current setting for the
  ** database page size in bytes.  The second form sets the
  ** database page size value.  The value can only be set if
  ** the database has not yet been created.
  */
  if( sqlite3StrICmp(zLeft,"page_size")==0 ){
    Btree *pBt = pDb->pBt;
    if( !zRight ){
      int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
      returnSingleInt(pParse, "page_size", size);
    }else{
      sqlite3BtreeSetPageSize(pBt, atoi(zRight), -1);
    }
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

  /*
  **  PRAGMA [database.]auto_vacuum
  **  PRAGMA [database.]auto_vacuum=N
  **
  ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
    Btree *pBt = pDb->pBt;
    if( !zRight ){
      int auto_vacuum = 
          pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
      returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
    }else{
      sqlite3BtreeSetAutoVacuum(pBt, getBoolean(zRight));
    }
  }else
#endif

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]cache_size
  **  PRAGMA [database.]cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size.  The local setting can be different from
  ** the persistent cache size value that is stored in the database
  ** file itself.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets the local
  ** page cache size value.  It does not change the persistent
  ** cache size stored on the disk so the cache size will revert
  ** to its default value when the database is closed and reopened.
  ** N should be a positive integer.
  */
  if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **   PRAGMA temp_store
  **   PRAGMA temp_store = "default"|"memory"|"file"
  **
  ** Return or set the local value of the temp_store flag.  Changing
  ** the local value does not make changes to the disk file and the default
  ** value will be restored the next time the database is opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
    if( !zRight ){
      returnSingleInt(pParse, "temp_store", db->temp_store);
    }else{
      changeTempStorage(pParse, zRight);
    }
  }else

  /*
  **   PRAGMA temp_store_directory
  **   PRAGMA temp_store_directory = ""|"directory_name"
  **
  ** Return or set the local value of the temp_store_directory flag.  Changing
  ** the value sets a specific directory to be used for temporary files.
  ** Setting to a null string reverts to the default temporary directory search.
  ** If temporary directory is changed, then invalidateTempStorage.
  **
  */
  if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
    if( !zRight ){
      if( sqlite3_temp_directory ){
        sqlite3VdbeSetNumCols(v, 1);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, 
            "temp_store_directory", P3_STATIC);
        sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3_temp_directory, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
      }
    }else{
      if( zRight[0] && !sqlite3OsIsDirWritable(zRight) ){
        sqlite3ErrorMsg(pParse, "not a writable directory");
        goto pragma_out;
      }
      if( TEMP_STORE==0
       || (TEMP_STORE==1 && db->temp_store<=1)
       || (TEMP_STORE==2 && db->temp_store==1)
      ){
        invalidateTempStorage(pParse);
      }
      sqliteFree(sqlite3_temp_directory);
      if( zRight[0] ){
        sqlite3_temp_directory = zRight;
        zRight = 0;
      }else{
        sqlite3_temp_directory = 0;
      }
    }
  }else

  /*
  **   PRAGMA [database.]synchronous
  **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
    }else{
      if( !db->autoCommit ){
        sqlite3ErrorMsg(pParse, 
            "Safety level may not be changed inside a transaction");
      }else{
        pDb->safety_level = getSafetyLevel(zRight)+1;
      }
    }
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() subroutine also generates any necessary code
    ** there is nothing more to do here */
  }else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */

#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
  /*
  **   PRAGMA table_info(<table>)
  **
  ** Return a single row for each column of the named table. The columns of
  ** the returned data set are:
  **
  ** cid:        Column id (numbered from left to right, starting at 0)
  ** name:       Column name
  ** type:       Column declaration type.
  ** notnull:    True if 'NOT NULL' is part of column declaration
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      Column *pCol;
      sqlite3VdbeSetNumCols(v, 6);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P3_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P3_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P3_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P3_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P3_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0, pCol->zName, 0);
        sqlite3VdbeOp3(v, OP_String8, 0, 0,
           pCol->zType ? pCol->zType : "numeric", 0);
        sqlite3VdbeAddOp(v, OP_Integer, pCol->notNull, 0);
        sqlite3ExprCode(pParse, pCol->pDflt);
        sqlite3VdbeAddOp(v, OP_Integer, pCol->isPrimKey, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 6, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P3_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P3_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P3_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp(v, OP_Integer, i, 0);
        sqlite3VdbeAddOp(v, OP_Integer, cnum, 0);
        assert( pTab->nCol>cnum );
        sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0);
        sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P3_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp(v, OP_Integer, i, 0);
          sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
          sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
          ++i;
          pIdx = pIdx->pNext;
        }
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "database_list")==0 ){
    int i;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 3);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P3_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite3VdbeAddOp(v, OP_Integer, i, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0,
           sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
      sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
    }
  }else

  if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
    int i = 0;
    HashElem *p;
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
    for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
      CollSeq *pColl = (CollSeq *)sqliteHashData(p);
      sqlite3VdbeAddOp(v, OP_Integer, i++, 0);
      sqlite3VdbeOp3(v, OP_String8, 0, 0, pColl->zName, 0);
      sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */

#ifndef SQLITE_OMIT_FOREIGN_KEY
  if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
    FKey *pFK;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 5);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P3_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P3_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P3_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P3_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P3_STATIC);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            char *zCol = pFK->aCol[j].zCol;
            sqlite3VdbeAddOp(v, OP_Integer, i, 0);
            sqlite3VdbeAddOp(v, OP_Integer, j, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0);
            sqlite3VdbeOp3(v, OP_String8, 0, 0,
                             pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
            sqlite3VdbeOp3(v, zCol ? OP_String8 : OP_Null, 0, 0, zCol, 0);
            sqlite3VdbeAddOp(v, OP_Callback, 5, 0);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    extern void sqlite3ParserTrace(FILE*, char *);
    if( zRight ){
      if( getBoolean(zRight) ){
        sqlite3ParserTrace(stderr, "parser: ");
      }else{
        sqlite3ParserTrace(0, 0);
      }
    }
  }else
#endif

  /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
  ** used will be case sensitive or not depending on the RHS.
  */
  if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
    if( zRight ){
      sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
    }
  }else

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){
    int i, j, addr;

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const VdbeOpList endCode[] = {
      { OP_MemLoad,     0, 0,        0},
      { OP_Integer,     0, 0,        0},
      { OP_Ne,          0, 0,        0},    /* 2 */
      { OP_String8,     0, 0,        "ok"},
      { OP_Callback,    1, 0,        0},
    };

    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P3_STATIC);
    sqlite3VdbeAddOp(v, OP_MemInt, 0, 0);  /* Initialize error count to 0 */

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite3CodeVerifySchema(pParse, i);

      /* Do an integrity check of the B-Tree
      */
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);
          cnt++;
        }
      }
      assert( cnt>0 );
      sqlite3VdbeAddOp(v, OP_IntegrityCk, cnt, i);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 1);
      addr = sqlite3VdbeOp3(v, OP_String8, 0, 0, "ok", P3_STATIC);
      sqlite3VdbeAddOp(v, OP_Eq, 0, addr+7);
      sqlite3VdbeOp3(v, OP_String8, 0, 0,
         sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName),
         P3_DYNAMIC);
      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
      sqlite3VdbeAddOp(v, OP_Concat, 0, 1);
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
      sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0);

      /* Make sure all the indices are constructed correctly.
      */
      sqlite3CodeVerifySchema(pParse, i);
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp(v, OP_MemInt, 0, 1);
        loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp(v, OP_MemIncr, 1, 1);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          static const VdbeOpList idxErr[] = {
            { OP_MemIncr,     1,  0,  0},
            { OP_String8,     0,  0,  "rowid "},
            { OP_Rowid,       1,  0,  0},
            { OP_String8,     0,  0,  " missing from index "},
            { OP_String8,     0,  0,  0},    /* 4 */
            { OP_Concat,      2,  0,  0},
            { OP_Callback,    1,  0,  0},
          };
          sqlite3GenerateIndexKey(v, pIdx, 1);
          jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
          sqlite3VdbeJumpHere(v, jmp2);
        }
        sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1);
        sqlite3VdbeJumpHere(v, loopTop);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_MemInt,       0,  2,  0},
             { OP_Rewind,       0,  0,  0},  /* 1 */
             { OP_MemIncr,      1,  2,  0},
             { OP_Next,         0,  0,  0},  /* 3 */
             { OP_MemLoad,      1,  0,  0},
             { OP_MemLoad,      2,  0,  0},
             { OP_Eq,           0,  0,  0},  /* 6 */
             { OP_MemIncr,      1,  0,  0},
             { OP_String8,      0,  0,  "wrong # of entries in index "},
             { OP_String8,      0,  0,  0},  /* 9 */
             { OP_Concat,       0,  0,  0},
             { OP_Callback,     1,  0,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite3VdbeChangeP1(v, addr+1, j+2);
          sqlite3VdbeChangeP2(v, addr+1, addr+4);
          sqlite3VdbeChangeP1(v, addr+3, j+2);
          sqlite3VdbeChangeP2(v, addr+3, addr+2);
          sqlite3VdbeJumpHere(v, addr+6);
          sqlite3VdbeChangeP3(v, addr+9, pIdx->zName, P3_STATIC);
        }
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeJumpHere(v, addr+2);
  }else
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding
  **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
  **
  ** In it's first form, this pragma returns the encoding of the main
  ** database. If the database is not initialized, it is initialized now.
  **
  ** The second form of this pragma is a no-op if the main database file
  ** has not already been initialized. In this case it sets the default
  ** encoding that will be used for the main database file if a new file
  ** is created. If an existing main database file is opened, then the
  ** default text encoding for the existing database is used.
  ** 
  ** In all cases new databases created using the ATTACH command are
  ** created to use the same default text encoding as the main database. If
  ** the main database has not been initialized and/or created when ATTACH
  ** is executed, this is done before the ATTACH operation.
  **
  ** In the second form this pragma sets the text encoding to be used in
  ** new database files created using this database handle. It is only
  ** useful if invoked immediately after the main database i
  */
  if( sqlite3StrICmp(zLeft, "encoding")==0 ){
    static struct EncName {
      char *zName;
      u8 enc;
    } encnames[] = {
      { "UTF-8",    SQLITE_UTF8        },
      { "UTF8",     SQLITE_UTF8        },
      { "UTF-16le", SQLITE_UTF16LE     },
      { "UTF16le",  SQLITE_UTF16LE     },
      { "UTF-16be", SQLITE_UTF16BE     },
      { "UTF16be",  SQLITE_UTF16BE     },
      { "UTF-16",   0 /* Filled in at run-time */ },
      { "UTF16",    0 /* Filled in at run-time */ },
      { 0, 0 }
    };
    struct EncName *pEnc;
    encnames[6].enc = encnames[7].enc = SQLITE_UTF16NATIVE;
    if( !zRight ){    /* "PRAGMA encoding" */
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P3_STATIC);
      sqlite3VdbeAddOp(v, OP_String8, 0, 0);
      for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
        if( pEnc->enc==ENC(pParse->db) ){
          sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC);
          break;
        }
      }
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
    }else{                        /* "PRAGMA encoding = XXX" */
      /* Only change the value of sqlite.enc if the database handle is not
      ** initialized. If the main database exists, the new sqlite.enc value
      ** will be overwritten when the schema is next loaded. If it does not
      ** already exists, it will be created to use the new encoding value.
      */
      if( 
        !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 
        DbHasProperty(db, 0, DB_Empty) 
      ){
        for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
          if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
            ENC(pParse->db) = pEnc->enc;
            break;
          }
        }
        if( !pEnc->zName ){
          sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
    }
  }else
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  /*
  **   PRAGMA [database.]schema_version
  **   PRAGMA [database.]schema_version = <integer>
  **
  **   PRAGMA [database.]user_version
  **   PRAGMA [database.]user_version = <integer>
  **
  ** The pragma's schema_version and user_version are used to set or get
  ** the value of the schema-version and user-version, respectively. Both
  ** the schema-version and the user-version are 32-bit signed integers
  ** stored in the database header.
  **
  ** The schema-cookie is usually only manipulated internally by SQLite. It
  ** is incremented by SQLite whenever the database schema is modified (by
  ** creating or dropping a table or index). The schema version is used by
  ** SQLite each time a query is executed to ensure that the internal cache
  ** of the schema used when compiling the SQL query matches the schema of
  ** the database against which the compiled query is actually executed.
  ** Subverting this mechanism by using "PRAGMA schema_version" to modify
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  if( sqlite3StrICmp(zLeft, "schema_version")==0 ||
      sqlite3StrICmp(zLeft, "user_version")==0 ){

    int iCookie;   /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
    if( zLeft[0]=='s' || zLeft[0]=='S' ){
      iCookie = 0;
    }else{
      iCookie = 5;
    }

    if( zRight ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  0,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  0},    /* 2 */
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
      sqlite3VdbeChangeP1(v, addr+2, iDb);
      sqlite3VdbeChangeP2(v, addr+2, iCookie);
    }else{
      /* Read the specified cookie value */
      static const VdbeOpList readCookie[] = {
        { OP_ReadCookie,      0,  0,  0},    /* 0 */
        { OP_Callback,        1,  0,  0}
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP2(v, addr, iCookie);
      sqlite3VdbeSetNumCols(v, 1);
    }
  }
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Report the current state of file logs for all databases
  */
  if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
    static const char *const azLockName[] = {
      "unlocked", "shared", "reserved", "pending", "exclusive"
    };
    int i;
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 2);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P3_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P3_STATIC);
    for(i=0; i<db->nDb; i++){
      Btree *pBt;
      Pager *pPager;
      if( db->aDb[i].zName==0 ) continue;
      sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, P3_STATIC);
      pBt = db->aDb[i].pBt;
      if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
        sqlite3VdbeOp3(v, OP_String8, 0, 0, "closed", P3_STATIC);
      }else{
        int j = sqlite3pager_lockstate(pPager);
        sqlite3VdbeOp3(v, OP_String8, 0, 0, 
            (j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC);
      }
      sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
    }
  }else
#endif

#ifdef SQLITE_SSE
  /*
  ** Check to see if the sqlite_statements table exists.  Create it
  ** if it does not.
  */
  if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
    extern int sqlite3CreateStatementsTable(Parse*);
    sqlite3CreateStatementsTable(pParse);
  }else
#endif

#if SQLITE_HAS_CODEC
  if( sqlite3StrICmp(zLeft, "key")==0 ){
    sqlite3_key(db, zRight, strlen(zRight));
  }else
#endif

  {}

  if( v ){
    /* Code an OP_Expire at the end of each PRAGMA program to cause
    ** the VDBE implementing the pragma to expire. Most (all?) pragmas
    ** are only valid for a single execution.
    */
    sqlite3VdbeAddOp(v, OP_Expire, 1, 0);

    /*
    ** Reset the safety level, in case the fullfsync flag or synchronous
    ** setting changed.
    */
    if( db->autoCommit ){
      sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
                 (db->flags&SQLITE_FullFSync)!=0);
    }
  }
pragma_out:
  sqliteFree(zLeft);
  sqliteFree(zRight);
}
コード例 #18
0
ファイル: pragma.c プロジェクト: cdaffara/symbiandump-os2
/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [database.]id [= value]
**
** The identifier might also be a string.  The value is a string, and
** identifier, or a number.  If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
**
** If the left side is "database.id" then pId1 is the database name
** and pId2 is the id.  If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
void sqlite3Pragma(
  Parse *pParse, 
  Token *pId1,        /* First part of [database.]id field */
  Token *pId2,        /* Second part of [database.]id field, or NULL */
  Token *pValue,      /* Token for <value>, or NULL */
  int minusFlag       /* True if a '-' sign preceded <value> */
){
  char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
  char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
  const char *zDb = 0;   /* The database name */
  Token *pId;            /* Pointer to <id> token */
  int iDb;               /* Database index for <database> */
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
  if( v==0 ) return;
  pParse->nMem = 2;

  /* Interpret the [database.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */
  iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
  if( iDb<0 ) return;
  pDb = &db->aDb[iDb];

  /* If the temp database has been explicitly named as part of the 
  ** pragma, make sure it is open. 
  */
  if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
    return;
  }

  zLeft = sqlite3NameFromToken(db, pId);
  if( !zLeft ) return;
  if( minusFlag ){
    zRight = sqlite3MPrintf(db, "-%T", pValue);
  }else{
    zRight = sqlite3NameFromToken(db, pValue);
  }

  zDb = ((pId2 && pId2->n>0)?pDb->zName:0);
  if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }
 
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
  ** The default cache size is stored in meta-value 2 of page 1 of the
  ** database file.  The cache size is actually the absolute value of
  ** this memory location.  The sign of meta-value 2 determines the
  ** synchronous setting.  A negative value means synchronous is off
  ** and a positive value means synchronous is on.
  */
  if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
    static const VdbeOpList getCacheSize[] = {
      { OP_ReadCookie,  0, 1,        2},  /* 0 */
      { OP_IfPos,       1, 6,        0},
      { OP_Integer,     0, 2,        0},
      { OP_Subtract,    1, 2,        1},
      { OP_IfPos,       1, 6,        0},
      { OP_Integer,     0, 1,        0},  /* 5 */
      { OP_ResultRow,   1, 1,        0},
    };
    int addr;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeUsesBtree(v, iDb);
    if( !zRight ){
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
      pParse->nMem += 2;
      addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
      sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2);
      addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
      sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
      sqlite3VdbeJumpHere(v, addr);
      sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **  PRAGMA [database.]page_size
  **  PRAGMA [database.]page_size=N
  **
  ** The first form reports the current setting for the
  ** database page size in bytes.  The second form sets the
  ** database page size value.  The value can only be set if
  ** the database has not yet been created.
  */
  if( sqlite3StrICmp(zLeft,"page_size")==0 ){
    Btree *pBt = pDb->pBt;
    if( !zRight ){
      int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
      returnSingleInt(pParse, "page_size", size);
    }else{
      /* Malloc may fail when setting the page-size, as there is an internal
      ** buffer that the pager module resizes using sqlite3_realloc().
      */
      db->nextPagesize = atoi(zRight);
      if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1) ){
        db->mallocFailed = 1;
      }
    }
  }else

  /*
  **  PRAGMA [database.]max_page_count
  **  PRAGMA [database.]max_page_count=N
  **
  ** The first form reports the current setting for the
  ** maximum number of pages in the database file.  The 
  ** second form attempts to change this setting.  Both
  ** forms return the current setting.
  */
  if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){
    Btree *pBt = pDb->pBt;
    int newMax = 0;
    if( zRight ){
      newMax = atoi(zRight);
    }
    if( pBt ){
      newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
    }
    returnSingleInt(pParse, "max_page_count", newMax);
  }else

  /*
  **  PRAGMA [database.]page_count
  **
  ** Return the number of pages in the specified database.
  */
  if( sqlite3StrICmp(zLeft,"page_count")==0 ){
    Vdbe *v;
    int iReg;
    v = sqlite3GetVdbe(pParse);
    if( !v || sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3CodeVerifySchema(pParse, iDb);
    iReg = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
    sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "page_count", P4_STATIC);
  }else

  /*
  **  PRAGMA [database.]locking_mode
  **  PRAGMA [database.]locking_mode = (normal|exclusive)
  */
  if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){
    const char *zRet = "normal";
    int eMode = getLockingMode(zRight);

    if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
      /* Simple "PRAGMA locking_mode;" statement. This is a query for
      ** the current default locking mode (which may be different to
      ** the locking-mode of the main database).
      */
      eMode = db->dfltLockMode;
    }else{
      Pager *pPager;
      if( pId2->n==0 ){
        /* This indicates that no database name was specified as part
        ** of the PRAGMA command. In this case the locking-mode must be
        ** set on all attached databases, as well as the main db file.
        **
        ** Also, the sqlite3.dfltLockMode variable is set so that
        ** any subsequently attached databases also use the specified
        ** locking mode.
        */
        int ii;
        assert(pDb==&db->aDb[0]);
        for(ii=2; ii<db->nDb; ii++){
          pPager = sqlite3BtreePager(db->aDb[ii].pBt);
          sqlite3PagerLockingMode(pPager, eMode);
        }
        db->dfltLockMode = eMode;
      }
      pPager = sqlite3BtreePager(pDb->pBt);
      eMode = sqlite3PagerLockingMode(pPager, eMode);
    }

    assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
    if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
      zRet = "exclusive";
    }
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
    sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
  }else

  /*
  **  PRAGMA [database.]journal_mode
  **  PRAGMA [database.]journal_mode = (delete|persist|off)
  */
  if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){
    int eMode;
    static char * const azModeName[] = {"delete", "persist", "off", "truncate"};

    if( zRight==0 ){
      eMode = PAGER_JOURNALMODE_QUERY;
    }else{
      int n = strlen(zRight);
      eMode = sizeof(azModeName)/sizeof(azModeName[0]) - 1;
      while( eMode>=0 && sqlite3StrNICmp(zRight, azModeName[eMode], n)!=0 ){
        eMode--;
      }
    }
    if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){
      /* Simple "PRAGMA journal_mode;" statement. This is a query for
      ** the current default journal mode (which may be different to
      ** the journal-mode of the main database).
      */
      eMode = db->dfltJournalMode;
    }else{
      Pager *pPager;
      if( pId2->n==0 ){
        /* This indicates that no database name was specified as part
        ** of the PRAGMA command. In this case the journal-mode must be
        ** set on all attached databases, as well as the main db file.
        **
        ** Also, the sqlite3.dfltJournalMode variable is set so that
        ** any subsequently attached databases also use the specified
        ** journal mode.
        */
        int ii;
        assert(pDb==&db->aDb[0]);
        for(ii=1; ii<db->nDb; ii++){
          if( db->aDb[ii].pBt ){
            pPager = sqlite3BtreePager(db->aDb[ii].pBt);
            sqlite3PagerJournalMode(pPager, eMode);
          }
        }
        db->dfltJournalMode = eMode;
      }
      pPager = sqlite3BtreePager(pDb->pBt);
      eMode = sqlite3PagerJournalMode(pPager, eMode);
    }
    assert( eMode==PAGER_JOURNALMODE_DELETE
              || eMode==PAGER_JOURNALMODE_TRUNCATE
              || eMode==PAGER_JOURNALMODE_PERSIST
              || eMode==PAGER_JOURNALMODE_OFF );
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", P4_STATIC);
    sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, 
           azModeName[eMode], P4_STATIC);
    sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
  }else

  /*
  **  PRAGMA [database.]journal_size_limit
  **  PRAGMA [database.]journal_size_limit=N
  **
  ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
  */
  if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      int iLimit32 = atoi(zRight);
      if( iLimit32<-1 ){
        iLimit32 = -1;
      }
      iLimit = iLimit32;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", (int)iLimit);
  }else

#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

  /*
  **  PRAGMA [database.]auto_vacuum
  **  PRAGMA [database.]auto_vacuum=N
  **
  ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
    Btree *pBt = pDb->pBt;
    if( sqlite3ReadSchema(pParse) ){
      goto pragma_out;
    }
    if( !zRight ){
      int auto_vacuum = 
          pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
      returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
    }else{
      int eAuto = getAutoVacuum(zRight);
      db->nextAutovac = eAuto;
      if( eAuto>=0 ){
        /* Call SetAutoVacuum() to set initialize the internal auto and
        ** incr-vacuum flags. This is required in case this connection
        ** creates the database file. It is important that it is created
        ** as an auto-vacuum capable db.
        */
        int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
        if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
          /* When setting the auto_vacuum mode to either "full" or 
          ** "incremental", write the value of meta[6] in the database
          ** file. Before writing to meta[6], check that meta[3] indicates
          ** that this really is an auto-vacuum capable database.
          */
          static const VdbeOpList setMeta6[] = {
            { OP_Transaction,    0,               1,        0},    /* 0 */
            { OP_ReadCookie,     0,               1,        3},    /* 1 */
            { OP_If,             1,               0,        0},    /* 2 */
            { OP_Halt,           SQLITE_OK,       OE_Abort, 0},    /* 3 */
            { OP_Integer,        0,               1,        0},    /* 4 */
            { OP_SetCookie,      0,               6,        1},    /* 5 */
          };
          int iAddr;
          iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
          sqlite3VdbeChangeP1(v, iAddr, iDb);
          sqlite3VdbeChangeP1(v, iAddr+1, iDb);
          sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
          sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
          sqlite3VdbeChangeP1(v, iAddr+5, iDb);
          sqlite3VdbeUsesBtree(v, iDb);
        }
      }
    }
  }else
#endif

  /*
  **  PRAGMA [database.]incremental_vacuum(N)
  **
  ** Do N steps of incremental vacuuming on a database.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
    int iLimit, addr;
    if( sqlite3ReadSchema(pParse) ){
      goto pragma_out;
    }
    if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
      iLimit = 0x7fffffff;
    }
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
    addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
    sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
    sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
    sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
    sqlite3VdbeJumpHere(v, addr);
  }else
#endif

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]cache_size
  **  PRAGMA [database.]cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size.  The local setting can be different from
  ** the persistent cache size value that is stored in the database
  ** file itself.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets the local
  ** page cache size value.  It does not change the persistent
  ** cache size stored on the disk so the cache size will revert
  ** to its default value when the database is closed and reopened.
  ** N should be a positive integer.
  */
  if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = atoi(zRight);
      if( size<0 ) size = -size;
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **   PRAGMA temp_store
  **   PRAGMA temp_store = "default"|"memory"|"file"
  **
  ** Return or set the local value of the temp_store flag.  Changing
  ** the local value does not make changes to the disk file and the default
  ** value will be restored the next time the database is opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
    if( !zRight ){
      returnSingleInt(pParse, "temp_store", db->temp_store);
    }else{
      changeTempStorage(pParse, zRight);
    }
  }else

  /*
  **   PRAGMA temp_store_directory
  **   PRAGMA temp_store_directory = ""|"directory_name"
  **
  ** Return or set the local value of the temp_store_directory flag.  Changing
  ** the value sets a specific directory to be used for temporary files.
  ** Setting to a null string reverts to the default temporary directory search.
  ** If temporary directory is changed, then invalidateTempStorage.
  **
  */
  if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
    if( !zRight ){
      if( sqlite3_temp_directory ){
        sqlite3VdbeSetNumCols(v, 1);
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, 
            "temp_store_directory", P4_STATIC);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
      }
    }else{
#ifndef SQLITE_OMIT_WSD
      if( zRight[0] ){
        int rc;
        int res;
        rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
        if( rc!=SQLITE_OK || res==0 ){
          sqlite3ErrorMsg(pParse, "not a writable directory");
          goto pragma_out;
        }
      }
      if( SQLITE_TEMP_STORE==0
       || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
       || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
      ){
        invalidateTempStorage(pParse);
      }
      sqlite3_free(sqlite3_temp_directory);
      if( zRight[0] ){
        sqlite3_temp_directory = sqlite3DbStrDup(0, zRight);
      }else{
        sqlite3_temp_directory = 0;
      }
#endif /* SQLITE_OMIT_WSD */
    }
  }else

  /*
  **   PRAGMA [database.]synchronous
  **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
    }else{
      if( !db->autoCommit ){
        sqlite3ErrorMsg(pParse, 
            "Safety level may not be changed inside a transaction");
      }else{
        pDb->safety_level = getSafetyLevel(zRight)+1;
      }
    }
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() subroutine also generates any necessary code
    ** there is nothing more to do here */
  }else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */

#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
  /*
  **   PRAGMA table_info(<table>)
  **
  ** Return a single row for each column of the named table. The columns of
  ** the returned data set are:
  **
  ** cid:        Column id (numbered from left to right, starting at 0)
  ** name:       Column name
  ** type:       Column declaration type.
  ** notnull:    True if 'NOT NULL' is part of column declaration
  ** dflt_value: The default value for the column, if any.
  */
  if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int i;
      int nHidden = 0;
      Column *pCol;
      sqlite3VdbeSetNumCols(v, 6);
      pParse->nMem = 6;
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
      sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
        const Token *pDflt;
        if( IsHiddenColumn(pCol) ){
          nHidden++;
          continue;
        }
        sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
           pCol->zType ? pCol->zType : "", 0);
        sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4);
        if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
          sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n);
        }else{
          sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
        }
        sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
      for(i=0; i<pIdx->nColumn; i++){
        int cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
        assert( pTab->nCol>cnum );
        sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
    Index *pIdx;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pIdx = pTab->pIndex;
      if( pIdx ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 3);
        pParse->nMem = 3;
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
        while(pIdx){
          sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
          sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
          ++i;
          pIdx = pIdx->pNext;
        }
      }
    }
  }else

  if( sqlite3StrICmp(zLeft, "database_list")==0 ){
    int i;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    sqlite3VdbeSetNumCols(v, 3);
    pParse->nMem = 3;
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
           sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
      sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
    }
  }else

  if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
    int i = 0;
    HashElem *p;
    sqlite3VdbeSetNumCols(v, 2);
    pParse->nMem = 2;
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
    for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
      CollSeq *pColl = (CollSeq *)sqliteHashData(p);
      sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
      sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */

#ifndef SQLITE_OMIT_FOREIGN_KEY
  if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
    FKey *pFK;
    Table *pTab;
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      pFK = pTab->pFKey;
      if( pFK ){
        int i = 0; 
        sqlite3VdbeSetNumCols(v, 5);
        pParse->nMem = 5;
        sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
        sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
        sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            char *zCol = pFK->aCol[j].zCol;
            sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
            sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
            sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
                              pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
            sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
            sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
          }
          ++i;
          pFK = pFK->pNextFrom;
        }
      }
    }
  }else
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
    if( zRight ){
      if( getBoolean(zRight) ){
        sqlite3ParserTrace(stderr, "parser: ");
      }else{
        sqlite3ParserTrace(0, 0);
      }
    }
  }else
#endif

  /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
  ** used will be case sensitive or not depending on the RHS.
  */
  if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
    if( zRight ){
      sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
    }
  }else

#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
#endif

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  /* Pragma "quick_check" is an experimental reduced version of 
  ** integrity_check designed to detect most database corruption
  ** without most of the overhead of a full integrity-check.
  */
  if( sqlite3StrICmp(zLeft, "integrity_check")==0
   || sqlite3StrICmp(zLeft, "quick_check")==0 
  ){
    int i, j, addr, mxErr;

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const VdbeOpList endCode[] = {
      { OP_AddImm,      1, 0,        0},    /* 0 */
      { OP_IfNeg,       1, 0,        0},    /* 1 */
      { OP_String8,     0, 3,        0},    /* 2 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (zLeft[0]=='q');

    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pParse->nMem = 6;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);

    /* Set the maximum error count */
    mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
    if( zRight ){
      mxErr = atoi(zRight);
      if( mxErr<=0 ){
        mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
      }
    }
    sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1);  /* reg[1] holds errors left */

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite3CodeVerifySchema(pParse, i);
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
      sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Do an integrity check of the B-Tree
      **
      ** Begin by filling registers 2, 3, ... with the root pages numbers
      ** for all tables and indices in the database.
      */
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
          cnt++;
        }
      }
      if( cnt==0 ) continue;

      /* Make sure sufficient number of registers have been allocated */
      if( pParse->nMem < cnt+4 ){
        pParse->nMem = cnt+4;
      }

      /* Do the b-tree integrity checks */
      sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
      sqlite3VdbeChangeP5(v, i);
      addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
      sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
         sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
      sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
      sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
      sqlite3VdbeJumpHere(v, addr);

      /* Make sure all the indices are constructed correctly.
      */
      for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
        sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp2(v, OP_Integer, 0, 2);  /* reg(2) will count entries */
        loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
        sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1);   /* increment entry count */
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          static const VdbeOpList idxErr[] = {
            { OP_AddImm,      1, -1,  0},
            { OP_String8,     0,  3,  0},    /* 1 */
            { OP_Rowid,       1,  4,  0},
            { OP_String8,     0,  5,  0},    /* 3 */
            { OP_String8,     0,  6,  0},    /* 4 */
            { OP_Concat,      4,  3,  3},
            { OP_Concat,      5,  3,  3},
            { OP_Concat,      6,  3,  3},
            { OP_ResultRow,   3,  1,  0},
            { OP_IfPos,       1,  0,  0},    /* 9 */
            { OP_Halt,        0,  0,  0},
          };
          sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1);
          jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3);
          addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
          sqlite3VdbeJumpHere(v, addr+9);
          sqlite3VdbeJumpHere(v, jmp2);
        }
        sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
        sqlite3VdbeJumpHere(v, loopTop);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_Integer,      0,  3,  0},
             { OP_Rewind,       0,  0,  0},  /* 1 */
             { OP_AddImm,       3,  1,  0},
             { OP_Next,         0,  0,  0},  /* 3 */
             { OP_Eq,           2,  0,  3},  /* 4 */
             { OP_AddImm,       1, -1,  0},
             { OP_String8,      0,  2,  0},  /* 6 */
             { OP_String8,      0,  3,  0},  /* 7 */
             { OP_Concat,       3,  2,  2},
             { OP_ResultRow,    2,  1,  0},
          };
          if( pIdx->tnum==0 ) continue;
          addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
          sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
          sqlite3VdbeJumpHere(v, addr);
          addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite3VdbeChangeP1(v, addr+1, j+2);
          sqlite3VdbeChangeP2(v, addr+1, addr+4);
          sqlite3VdbeChangeP1(v, addr+3, j+2);
          sqlite3VdbeChangeP2(v, addr+3, addr+2);
          sqlite3VdbeJumpHere(v, addr+4);
          sqlite3VdbeChangeP4(v, addr+6, 
                     "wrong # of entries in index ", P4_STATIC);
          sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC);
        }
      } 
    }
    addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite3VdbeChangeP2(v, addr, -mxErr);
    sqlite3VdbeJumpHere(v, addr+1);
    sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
  }else
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding
  **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
  **
  ** In its first form, this pragma returns the encoding of the main
  ** database. If the database is not initialized, it is initialized now.
  **
  ** The second form of this pragma is a no-op if the main database file
  ** has not already been initialized. In this case it sets the default
  ** encoding that will be used for the main database file if a new file
  ** is created. If an existing main database file is opened, then the
  ** default text encoding for the existing database is used.
  ** 
  ** In all cases new databases created using the ATTACH command are
  ** created to use the same default text encoding as the main database. If
  ** the main database has not been initialized and/or created when ATTACH
  ** is executed, this is done before the ATTACH operation.
  **
  ** In the second form this pragma sets the text encoding to be used in
  ** new database files created using this database handle. It is only
  ** useful if invoked immediately after the main database i
  */
  if( sqlite3StrICmp(zLeft, "encoding")==0 ){
    static const struct EncName {
      char *zName;
      u8 enc;
    } encnames[] = {
      { "UTF-8",    SQLITE_UTF8        },
      { "UTF8",     SQLITE_UTF8        },
      { "UTF-16le", SQLITE_UTF16LE     },
      { "UTF16le",  SQLITE_UTF16LE     },
      { "UTF-16be", SQLITE_UTF16BE     },
      { "UTF16be",  SQLITE_UTF16BE     },
      { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
      { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
      { 0, 0 }
    };
    const struct EncName *pEnc;
    if( !zRight ){    /* "PRAGMA encoding" */
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
      sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
      for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
        if( pEnc->enc==ENC(pParse->db) ){
          sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
          break;
        }
      }
      sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
    }else{                        /* "PRAGMA encoding = XXX" */
      /* Only change the value of sqlite.enc if the database handle is not
      ** initialized. If the main database exists, the new sqlite.enc value
      ** will be overwritten when the schema is next loaded. If it does not
      ** already exists, it will be created to use the new encoding value.
      */
      if( 
        !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 
        DbHasProperty(db, 0, DB_Empty) 
      ){
        for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
          if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
            ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
            break;
          }
        }
        if( !pEnc->zName ){
          sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
    }
  }else
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  /*
  **   PRAGMA [database.]schema_version
  **   PRAGMA [database.]schema_version = <integer>
  **
  **   PRAGMA [database.]user_version
  **   PRAGMA [database.]user_version = <integer>
  **
  ** The pragma's schema_version and user_version are used to set or get
  ** the value of the schema-version and user-version, respectively. Both
  ** the schema-version and the user-version are 32-bit signed integers
  ** stored in the database header.
  **
  ** The schema-cookie is usually only manipulated internally by SQLite. It
  ** is incremented by SQLite whenever the database schema is modified (by
  ** creating or dropping a table or index). The schema version is used by
  ** SQLite each time a query is executed to ensure that the internal cache
  ** of the schema used when compiling the SQL query matches the schema of
  ** the database against which the compiled query is actually executed.
  ** Subverting this mechanism by using "PRAGMA schema_version" to modify
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  if( sqlite3StrICmp(zLeft, "schema_version")==0 
   || sqlite3StrICmp(zLeft, "user_version")==0 
   || sqlite3StrICmp(zLeft, "freelist_count")==0 
  ){
    int iCookie;   /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
    sqlite3VdbeUsesBtree(v, iDb);
    switch( zLeft[0] ){
      case 's': case 'S':
        iCookie = 0;
        break;
      case 'f': case 'F':
        iCookie = 1;
        iDb = (-1*(iDb+1));
        assert(iDb<=0);
        break;
      default:
        iCookie = 5;
        break;
    }

    if( zRight && iDb>=0 ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
      sqlite3VdbeChangeP1(v, addr+2, iDb);
      sqlite3VdbeChangeP2(v, addr+2, iCookie);
    }else{
      /* Read the specified cookie value */
      static const VdbeOpList readCookie[] = {
        { OP_ReadCookie,      0,  1,  0},    /* 0 */
        { OP_ResultRow,       1,  1,  0}
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
      sqlite3VdbeChangeP1(v, addr, iDb);
      sqlite3VdbeChangeP3(v, addr, iCookie);
      sqlite3VdbeSetNumCols(v, 1);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Report the current state of file logs for all databases
  */
  if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
    static const char *const azLockName[] = {
      "unlocked", "shared", "reserved", "pending", "exclusive"
    };
    int i;
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3VdbeSetNumCols(v, 2);
    pParse->nMem = 2;
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
    for(i=0; i<db->nDb; i++){
      Btree *pBt;
      Pager *pPager;
      const char *zState = "unknown";
      int j;
      if( db->aDb[i].zName==0 ) continue;
      sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
      pBt = db->aDb[i].pBt;
      if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
        zState = "closed";
      }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0, 
                                     SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
         zState = azLockName[j];
      }
      sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
      sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
    }

  }else
#endif

#ifdef SQLITE_SSE
  /*
  ** Check to see if the sqlite_statements table exists.  Create it
  ** if it does not.
  */
  if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
    extern int sqlite3CreateStatementsTable(Parse*);
    sqlite3CreateStatementsTable(pParse);
  }else
#endif

#if SQLITE_HAS_CODEC
  if( sqlite3StrICmp(zLeft, "key")==0 ){
    sqlite3_key(db, zRight, strlen(zRight));
  }else
#endif
#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
  if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
#if SQLITE_HAS_CODEC
    if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
      extern void sqlite3_activate_see(const char*);
      sqlite3_activate_see(&zRight[4]);
    }
#endif
#ifdef SQLITE_ENABLE_CEROD
    if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
      extern void sqlite3_activate_cerod(const char*);
      sqlite3_activate_cerod(&zRight[6]);
    }
#endif
  }
#endif

  {}

  if( v ){
    /* Code an OP_Expire at the end of each PRAGMA program to cause
    ** the VDBE implementing the pragma to expire. Most (all?) pragmas
    ** are only valid for a single execution.
    */
    sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);

    /*
    ** Reset the safety level, in case the fullfsync flag or synchronous
    ** setting changed.
    */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    if( db->autoCommit ){
      sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
                 (db->flags&SQLITE_FullFSync)!=0);
    }
#endif
  }
pragma_out:
  sqlite3DbFree(db, zLeft);
  sqlite3DbFree(db, zRight);
}