コード例 #1
0
ファイル: bgl_dual_adapter.cpp プロジェクト: eLRuLL/CGAL
int main()
{
  // Construct an arrangement of seven intersecting line segments.
  Point_2 p1(1, 1), p2(1, 4), p3(2, 2), p4(3, 7), p5(4, 4), p6(7, 1), p7(9, 3);
  Ex_arrangement  arr;
  insert(arr, Segment_2(p1, p6));
  insert(arr, Segment_2(p1, p4));  insert(arr, Segment_2(p2, p6));
  insert(arr, Segment_2(p3, p7));  insert(arr, Segment_2(p3, p5));
  insert(arr, Segment_2(p6, p7));  insert(arr, Segment_2(p4, p7));

  // Create a mapping of the arrangement faces to indices.
  Face_index_map  index_map(arr);

  // Perform breadth-first search from the unbounded face, using the event
  // visitor to associate each arrangement face with its discover time.
  unsigned int    time = 0;
  boost::breadth_first_search(Dual_arrangement(arr), arr.unbounded_face(),
                              boost::vertex_index_map(index_map).visitor
                              (boost::make_bfs_visitor
                               (stamp_times(Face_property_map(), time,
                                            boost::on_discover_vertex()))));

  // Print the discover time of each arrangement face.
  Ex_arrangement::Face_iterator  fit;
  for (fit = arr.faces_begin(); fit != arr.faces_end(); ++fit) {
    std::cout << "Discover time " << fit->data() << " for ";
    if (fit != arr.unbounded_face()) {
      std::cout << "face ";
      print_ccb<Ex_arrangement>(fit->outer_ccb());
    }
    else std::cout << "the unbounded face." << std::endl;
  }
  return 0;
}
コード例 #2
0
ファイル: strong_components.hpp プロジェクト: Aantonb/gotham
  typename property_traits<ComponentsMap>::value_type
  kosaraju_strong_components(Graph& G, ComponentsMap c,
                             FinishTime finish_time, ColorMap color)
  {
    function_requires< MutableGraphConcept<Graph> >();
    // ...
    
    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
    typedef typename property_traits<ColorMap>::value_type ColorValue;
    typedef color_traits<ColorValue> Color;
    typename property_traits<FinishTime>::value_type time = 0;
    depth_first_search
     (G, make_dfs_visitor(stamp_times(finish_time, time, on_finish_vertex())),
      color);

    Graph G_T(num_vertices(G));
    transpose_graph(G, G_T);

    typedef typename property_traits<ComponentsMap>::value_type count_type;

    count_type c_count(0);
    detail::components_recorder<ComponentsMap>
      vis(c, c_count);

    // initialize G_T
    typename graph_traits<Graph>::vertex_iterator ui, ui_end;
    for (tie(ui, ui_end) = vertices(G_T); ui != ui_end; ++ui)
      put(color, *ui, Color::white());

    typedef typename property_traits<FinishTime>::value_type D;
    typedef indirect_cmp< FinishTime, std::less<D> > Compare;

    Compare fl(finish_time);
    std::priority_queue<Vertex, std::vector<Vertex>, Compare > Q(fl);

    typename graph_traits<Graph>::vertex_iterator i, j, iend, jend;
    tie(i, iend) = vertices(G_T);
    tie(j, jend) = vertices(G);
    for ( ; i != iend; ++i, ++j) {
      put(finish_time, *i, get(finish_time, *j));
       Q.push(*i);
    }

    while ( !Q.empty() ) {
      Vertex u = Q.top();
      Q.pop();
      if  (get(color, u) == Color::white()) {
        depth_first_visit(G_T, u, vis, color);
        ++c_count; 
      }
    }
    return c_count;
  }