コード例 #1
0
ファイル: lapic_cpu_init.c プロジェクト: lkundrak/coreboot
void initialize_cpus(struct bus *cpu_bus)
{
	struct device_path cpu_path;
	struct cpu_info *info;

	/* Find the info struct for this CPU */
	info = cpu_info();

	if (need_lapic_init()) {
		/* Ensure the local APIC is enabled */
		enable_lapic();

		/* Get the device path of the boot CPU */
		cpu_path.type           = DEVICE_PATH_APIC;
		cpu_path.apic.apic_id = lapicid();
	} else {
		/* Get the device path of the boot CPU */
		cpu_path.type = DEVICE_PATH_CPU;
		cpu_path.cpu.id       = 0;
	}

	/* Find the device structure for the boot CPU */
	info->cpu = alloc_find_dev(cpu_bus, &cpu_path);

	// why here? In case some day we can start core1 in amd_sibling_init
	if (is_smp_boot())
		copy_secondary_start_to_lowest_1M();

	if (!IS_ENABLED(CONFIG_SERIALIZED_SMM_INITIALIZATION))
		smm_init();

	/* start all aps at first, so we can init ECC all together */
	if (is_smp_boot() && IS_ENABLED(CONFIG_PARALLEL_CPU_INIT))
		start_other_cpus(cpu_bus, info->cpu);

	/* Initialize the bootstrap processor */
	cpu_initialize(0);

	if (is_smp_boot() && !IS_ENABLED(CONFIG_PARALLEL_CPU_INIT)) {
		start_other_cpus(cpu_bus, info->cpu);

		/* Now wait the rest of the cpus stop*/
		wait_other_cpus_stop(cpu_bus);
	}

	if (IS_ENABLED(CONFIG_SERIALIZED_SMM_INITIALIZATION)) {
		/* At this point, all APs are sleeping:
		 * smm_init() will queue a pending SMI on all cpus
		 * and smm_other_cpus() will start them one by one */
		smm_init();

		if (is_smp_boot()) {
			last_cpu_index = 0;
			smm_other_cpus(cpu_bus, info->cpu);
		}
	}

	smm_init_completion();

	if (is_smp_boot())
		recover_lowest_1M();
}
コード例 #2
0
ファイル: startup.c プロジェクト: rohsaini/mkunity
/*
 * Now running in a thread.  Create the rest of the kernel threads
 * and the bootstrap task.
 */
void
start_kernel_threads(void)
{
	register int	i;

	/*
	 *	Create the idle threads and the other
	 *	service threads.
	 */
	for (i = 0; i < NCPUS; i++) {
	    if (machine_slot[i].is_cpu) {
		thread_t	th;
		spl_t	s;
		processor_t processor = cpu_to_processor(i);

		(void) thread_create_at(kernel_task, &th, idle_thread);
		s=splsched();
		thread_lock(th);
		thread_bind_locked(th, processor);
		processor->idle_thread = th;
		/*(void) thread_resume(th->top_act);*/
		th->state |= TH_RUN;
		thread_setrun( th, TRUE, TAIL_Q);
		thread_unlock( th );
		splx(s);
	    }
	}

	(void) kernel_thread(kernel_task, reaper_thread, (char *) 0);
#if	THREAD_SWAPPER
	(void) kernel_thread(kernel_task, swapin_thread, (char *) 0);
	(void) kernel_thread(kernel_task, swapout_thread, (char *) 0);
#endif	/* THREAD_SWAPPER */
#if	TASK_SWAPPER
	if (task_swap_on) {
		(void) kernel_thread(kernel_task, task_swapper, (char *) 0);
		(void) kernel_thread(kernel_task, task_swap_swapout_thread,
				     (char *) 0);
	}
#endif	/* TASK_SWAPPER */
	(void) kernel_thread(kernel_task, sched_thread, (char *) 0);
	(void) kernel_thread(kernel_task, timeout_thread, (char *) 0);
#if	NORMA_VM
	(void) kernel_thread(kernel_task, vm_object_thread, (char *) 0);
#endif	/* NORMA_VM */

	/*
	 *	Create the clock service.
	 */
	clock_service_create();

	/*
	 *	Create the device service.
	 */
	device_service_create();

	/*
	 *	Initialize distributed services, starting
	 *	with distributed IPC and progressing to any
	 *	services layered on top of that.
	 *
	 *	This stub exists even in non-NORMA systems.
	 */
	norma_bootstrap();

	/*
	 *	Initialize any testing services blocking the main kernel
	 *	thread so that the in-kernel tests run without interference
	 *	from other boot time activities. We will resume this thread
	 *	in kernel_test_thread(). 
	 */

#if	KERNEL_TEST

	/*
	 *	Initialize the lock that will be used to guard
	 *	variables that will be used in the test synchronization
	 *	scheme.
	 */ 
		simple_lock_init(&kernel_test_lock, ETAP_MISC_KERNEL_TEST);

#if	PARAGON860
	{
		char		*s;
		unsigned int	firstnode;

		/*
		 *	Only start up loopback tests on boot node.
		 */
		if ((s = (char *) getbootenv("BOOT_FIRST_NODE")) == 0)
			panic("startup");
		firstnode = atoi(s);
		(void) kernel_thread(kernel_task, kernel_test_thread,
				     (char * )(dipc_node_self() == 
						       (node_name) firstnode));
	}
#else	/* PARAGON860 */
	(void) kernel_thread(kernel_task, kernel_test_thread, (char *) 0);
#endif	/* PARAGON860 */
	{

		/*
		 *	The synchronization scheme uses a simple lock, two
		 *	booleans and the wakeup event. The wakeup event will
		 *	be posted by kernel_test_thread().
		 */
		spl_t s;
		s = splsched();
		simple_lock(&kernel_test_lock);
		while(!kernel_test_thread_sync_done){
			assert_wait((event_t) &start_kernel_threads, FALSE);
			start_kernel_threads_blocked = TRUE;
			simple_unlock(&kernel_test_lock);
			splx(s);
			thread_block((void (*)(void)) 0);
			s = splsched();
			simple_lock(&kernel_test_lock);
			start_kernel_threads_blocked = FALSE;
		}
		kernel_test_thread_sync_done = FALSE; /* Reset for next use */
		simple_unlock(&kernel_test_lock);
		splx(s);
	}


#endif	/* KERNEL_TEST */
	/*
	 *	Start the user bootstrap.
	 */
	bootstrap_create();

#if	XPR_DEBUG
	xprinit();		/* XXX */
#endif	/* XPR_DEBUG */

#if	NCPUS > 1
	/*
	 *	Create the shutdown thread.
	 */
	(void) kernel_thread(kernel_task, action_thread, (char *) 0);

	/*
	 *	Allow other CPUs to run.
	 *
	 * (this must be last, to allow bootstrap_create to fiddle with
	 *  its child thread before some cpu tries to run it)
	 */
	start_other_cpus();
#endif	/* NCPUS > 1 */

	/*
	 *	Become the pageout daemon.
	 */
	(void) spllo();
	vm_pageout();
	/*NOTREACHED*/
}
コード例 #3
0
ファイル: main.c プロジェクト: apprisi/illumos-gate
void
main(void)
{
	proc_t		*p = ttoproc(curthread);	/* &p0 */
	int		(**initptr)();
	extern void	sched();
	extern void	fsflush();
	extern int	(*init_tbl[])();
	extern int	(*mp_init_tbl[])();
	extern id_t	syscid, defaultcid;
	extern int	swaploaded;
	extern int	netboot;
	extern ib_boot_prop_t *iscsiboot_prop;
	extern void	vm_init(void);
	extern void	cbe_init_pre(void);
	extern void	cbe_init(void);
	extern void	clock_tick_init_pre(void);
	extern void	clock_tick_init_post(void);
	extern void	clock_init(void);
	extern void	physio_bufs_init(void);
	extern void	pm_cfb_setup_intr(void);
	extern int	pm_adjust_timestamps(dev_info_t *, void *);
	extern void	start_other_cpus(int);
	extern void	sysevent_evc_thrinit();
	extern kmutex_t	ualock;
#if defined(__x86)
	extern void	fastboot_post_startup(void);
	extern void	progressbar_start(void);
#endif
	/*
	 * In the horrible world of x86 in-lines, you can't get symbolic
	 * structure offsets a la genassym.  This assertion is here so
	 * that the next poor slob who innocently changes the offset of
	 * cpu_thread doesn't waste as much time as I just did finding
	 * out that it's hard-coded in i86/ml/i86.il.  Similarly for
	 * curcpup.  You're welcome.
	 */
	ASSERT(CPU == CPU->cpu_self);
	ASSERT(curthread == CPU->cpu_thread);
	ASSERT_STACK_ALIGNED();

	/*
	 * We take the ualock until we have completed the startup
	 * to prevent kadmin() from disrupting this work. In particular,
	 * we don't want kadmin() to bring the system down while we are
	 * trying to start it up.
	 */
	mutex_enter(&ualock);

	/*
	 * Setup root lgroup and leaf lgroup for CPU 0
	 */
	lgrp_init(LGRP_INIT_STAGE2);

	/*
	 * Once 'startup()' completes, the thread_reaper() daemon would be
	 * created(in thread_init()). After that, it is safe to create threads
	 * that could exit. These exited threads will get reaped.
	 */
	startup();
	segkmem_gc();
	callb_init();
	cbe_init_pre();	/* x86 must initialize gethrtimef before timer_init */
	ddi_periodic_init();
	cbe_init();
	callout_init();	/* callout table MUST be init'd after cyclics */
	clock_tick_init_pre();
	clock_init();

#if defined(__x86)
	/*
	 * The progressbar thread uses cv_reltimedwait() and hence needs to be
	 * started after the callout mechanism has been initialized.
	 */
	progressbar_start();
#endif
	/*
	 * On some platforms, clkinitf() changes the timing source that
	 * gethrtime_unscaled() uses to generate timestamps.  cbe_init() calls
	 * clkinitf(), so re-initialize the microstate counters after the
	 * timesource has been chosen.
	 */
	init_mstate(&t0, LMS_SYSTEM);
	init_cpu_mstate(CPU, CMS_SYSTEM);

	/*
	 * May need to probe to determine latencies from CPU 0 after
	 * gethrtime() comes alive in cbe_init() and before enabling interrupts
	 * and copy and release any temporary memory allocated with BOP_ALLOC()
	 * before release_bootstrap() frees boot memory
	 */
	lgrp_init(LGRP_INIT_STAGE3);

	/*
	 * Call all system initialization functions.
	 */
	for (initptr = &init_tbl[0]; *initptr; initptr++)
		(**initptr)();
	/*
	 * Load iSCSI boot properties
	 */
	ld_ib_prop();
	/*
	 * initialize vm related stuff.
	 */
	vm_init();

	/*
	 * initialize buffer pool for raw I/O requests
	 */
	physio_bufs_init();

	ttolwp(curthread)->lwp_error = 0; /* XXX kludge for SCSI driver */

	/*
	 * Drop the interrupt level and allow interrupts.  At this point
	 * the DDI guarantees that interrupts are enabled.
	 */
	(void) spl0();
	interrupts_unleashed = 1;

	/*
	 * Create kmem cache for proc structures
	 */
	process_cache = kmem_cache_create("process_cache", sizeof (proc_t),
	    0, NULL, NULL, NULL, NULL, NULL, 0);

	vfs_mountroot();	/* Mount the root file system */
	errorq_init();		/* after vfs_mountroot() so DDI root is ready */
	cpu_kstat_init(CPU);	/* after vfs_mountroot() so TOD is valid */
	ddi_walk_devs(ddi_root_node(), pm_adjust_timestamps, NULL);
				/* after vfs_mountroot() so hrestime is valid */

	post_startup();
	swaploaded = 1;

	/*
	 * Initialize Solaris Audit Subsystem
	 */
	audit_init();

	/*
	 * Plumb the protocol modules and drivers only if we are not
	 * networked booted, in this case we already did it in rootconf().
	 */
	if (netboot == 0 && iscsiboot_prop == NULL)
		(void) strplumb();

	gethrestime(&PTOU(curproc)->u_start);
	curthread->t_start = PTOU(curproc)->u_start.tv_sec;
	p->p_mstart = gethrtime();

	/*
	 * Perform setup functions that can only be done after root
	 * and swap have been set up.
	 */
	consconfig();
#ifndef	__sparc
	release_bootstrap();
#endif

	/*
	 * attach drivers with ddi-forceattach prop
	 * It must be done early enough to load hotplug drivers (e.g.
	 * pcmcia nexus) so that devices enumerated via hotplug is
	 * available before I/O subsystem is fully initialized.
	 */
	i_ddi_forceattach_drivers();

	/*
	 * Set the scan rate and other parameters of the paging subsystem.
	 */
	setupclock(0);

	/*
	 * Initialize process 0's lwp directory and lwpid hash table.
	 */
	p->p_lwpdir = p->p_lwpfree = p0_lwpdir;
	p->p_lwpdir->ld_next = p->p_lwpdir + 1;
	p->p_lwpdir_sz = 2;
	p->p_tidhash = p0_tidhash;
	p->p_tidhash_sz = 2;
	p0_lep.le_thread = curthread;
	p0_lep.le_lwpid = curthread->t_tid;
	p0_lep.le_start = curthread->t_start;
	lwp_hash_in(p, &p0_lep, p0_tidhash, 2, 0);

	/*
	 * Initialize extended accounting.
	 */
	exacct_init();

	/*
	 * Initialize threads of sysevent event channels
	 */
	sysevent_evc_thrinit();

	/*
	 * This must be done after post_startup() but before
	 * start_other_cpus()
	 */
	lgrp_init(LGRP_INIT_STAGE4);

	/*
	 * Perform MP initialization, if any.
	 */
	start_other_cpus(0);

#ifdef	__sparc
	/*
	 * Release bootstrap here since PROM interfaces are
	 * used to start other CPUs above.
	 */
	release_bootstrap();
#endif

	/*
	 * Finish lgrp initialization after all CPUS are brought online.
	 */
	lgrp_init(LGRP_INIT_STAGE5);

	/*
	 * After mp_init(), number of cpus are known (this is
	 * true for the time being, when there are actually
	 * hot pluggable cpus then this scheme  would not do).
	 * Any per cpu initialization is done here.
	 */
	kmem_mp_init();
	vmem_update(NULL);

	clock_tick_init_post();

	for (initptr = &mp_init_tbl[0]; *initptr; initptr++)
		(**initptr)();

	/*
	 * These must be called after start_other_cpus
	 */
	pm_cfb_setup_intr();
#if defined(__x86)
	fastboot_post_startup();
#endif

	/*
	 * Make init process; enter scheduling loop with system process.
	 *
	 * Note that we manually assign the pids for these processes, for
	 * historical reasons.  If more pre-assigned pids are needed,
	 * FAMOUS_PIDS will have to be updated.
	 */

	/* create init process */
	if (newproc(start_init, NULL, defaultcid, 59, NULL,
	    FAMOUS_PID_INIT))
		panic("main: unable to fork init.");

	/* create pageout daemon */
	if (newproc(pageout, NULL, syscid, maxclsyspri - 1, NULL,
	    FAMOUS_PID_PAGEOUT))
		panic("main: unable to fork pageout()");

	/* create fsflush daemon */
	if (newproc(fsflush, NULL, syscid, minclsyspri, NULL,
	    FAMOUS_PID_FSFLUSH))
		panic("main: unable to fork fsflush()");

	/* create cluster process if we're a member of one */
	if (cluster_bootflags & CLUSTER_BOOTED) {
		if (newproc(cluster_wrapper, NULL, syscid, minclsyspri,
		    NULL, 0)) {
			panic("main: unable to fork cluster()");
		}
	}

	/*
	 * Create system threads (threads are associated with p0)
	 */

	/* create module uninstall daemon */
	/* BugID 1132273. If swapping over NFS need a bigger stack */
	(void) thread_create(NULL, 0, (void (*)())mod_uninstall_daemon,
	    NULL, 0, &p0, TS_RUN, minclsyspri);

	(void) thread_create(NULL, 0, seg_pasync_thread,
	    NULL, 0, &p0, TS_RUN, minclsyspri);

	pid_setmin();

	/* system is now ready */
	mutex_exit(&ualock);

	bcopy("sched", PTOU(curproc)->u_psargs, 6);
	bcopy("sched", PTOU(curproc)->u_comm, 5);
	sched();
	/* NOTREACHED */
}
コード例 #4
0
ファイル: startup.c プロジェクト: openmach/openmach
/*
 * Now running in a thread.  Create the rest of the kernel threads
 * and the bootstrap task.
 */
void start_kernel_threads()
{
	register int	i;

	/*
	 *	Create the idle threads and the other
	 *	service threads.
	 */
	for (i = 0; i < NCPUS; i++) {
	    if (machine_slot[i].is_cpu) {
		thread_t	th;

		(void) thread_create(kernel_task, &th);
		thread_bind(th, cpu_to_processor(i));
		thread_start(th, idle_thread);
		thread_doswapin(th);
		(void) thread_resume(th);
	    }
	}

	(void) kernel_thread(kernel_task, reaper_thread, (char *) 0);
	(void) kernel_thread(kernel_task, swapin_thread, (char *) 0);
	(void) kernel_thread(kernel_task, sched_thread, (char *) 0);

#if	NCPUS > 1
	/*
	 *	Create the shutdown thread.
	 */
	(void) kernel_thread(kernel_task, action_thread, (char *) 0);

	/*
	 *	Allow other CPUs to run.
	 */
	start_other_cpus();
#endif	NCPUS > 1

	/*
	 *	Create the device service.
	 */
	device_service_create();

	/*
	 *	Initialize NORMA ipc system.
	 */
#if	NORMA_IPC
	norma_ipc_init();
#endif	NORMA_IPC

	/*
	 *	Initialize NORMA vm system.
	 */
#if	NORMA_VM
	norma_vm_init();
#endif	NORMA_VM

	/*
	 *	Start the user bootstrap.
	 */
	bootstrap_create();

#if	XPR_DEBUG
	xprinit();		/* XXX */
#endif	XPR_DEBUG

	/*
	 *	Become the pageout daemon.
	 */
	(void) spl0();
	vm_pageout();
	/*NOTREACHED*/
}
コード例 #5
0
ファイル: startup.c プロジェクト: ctos/bpi
/*
 * Now running in a thread.  Create the rest of the kernel threads
 * and the bootstrap task.
 */
void start_kernel_threads()
{
	register int	i;

	/*
	 *	Create the idle threads and the other
	 *	service threads.
	 */
	for (i = 0; i < NCPUS; i++) {
	    if (machine_slot[i].is_cpu) {
		thread_t	th;

		(void) thread_create(kernel_task, &th);
		thread_bind(th, cpu_to_processor(i));
		thread_start(th, idle_thread);
		thread_doswapin(th);
		(void) thread_resume(th);
	    }
	}

	(void) kernel_thread(kernel_task, reaper_thread, (char *) 0);
	(void) kernel_thread(kernel_task, swapin_thread, (char *) 0);
	(void) kernel_thread(kernel_task, sched_thread, (char *) 0);

#if	NCPUS > 1
	/*
	 *	Create the shutdown thread.
	 */
	(void) kernel_thread(kernel_task, action_thread, (char *) 0);

	/*
	 *	Allow other CPUs to run.
	 */
	start_other_cpus();
#endif	/* NCPUS > 1 */

	/*
	 *	Create the device service.
	 */
	device_service_create();

	/*
	 * 	Initialize kernel task's creation time.
	 * When we created the kernel task in task_init, the mapped
	 * time was not yet available.  Now, last thing before starting
	 * the user bootstrap, record the current time as the kernel
	 * task's creation time.
	 */
	record_time_stamp (&kernel_task->creation_time);

	/*
	 *	Start the user bootstrap.
	 */
	bootstrap_create();

#if	XPR_DEBUG
	xprinit();		/* XXX */
#endif	/* XPR_DEBUG */

	/*
	 *	Become the pageout daemon.
	 */
	(void) spl0();
	vm_pageout();
	/*NOTREACHED*/
}