コード例 #1
0
        void operator ()(Args const &args)
        {
            std::size_t cnt = count(args);

            if(cnt > 1)
            {
                extractor<MeanFeature> const some_mean = {};

                result_type tmp = args[parameter::keyword<Tag>::get()] - some_mean(args);

                this->weighted_variance =
                    numeric::average(this->weighted_variance * (sum_of_weights(args) - args[weight]), sum_of_weights(args))
                  + numeric::average(tmp * tmp * args[weight], sum_of_weights(args) - args[weight] );
            }
        }
コード例 #2
0
        void operator ()(Args const &args)
        {
            std::size_t cnt = count(args);

            if (cnt > 1)
            {
                extractor<tag::weighted_mean_of_variates<VariateType, VariateTag> > const some_weighted_mean_of_variates = {};

                this->cov_ = this->cov_ * (sum_of_weights(args) - args[weight]) / sum_of_weights(args)
                           + numeric::outer_product(
                                 some_weighted_mean_of_variates(args) - args[parameter::keyword<VariateTag>::get()]
                               , weighted_mean(args) - args[sample]
                             ) * args[weight] / (sum_of_weights(args) - args[weight]);
            }
        }
コード例 #3
0
        result_type result(Args const &args) const
        {
            float_type threshold = sum_of_weights(args)
                             * ( ( is_same<LeftRight, left>::value ) ? args[quantile_probability] : 1. - args[quantile_probability] );

            std::size_t n = 0;
            Weight sum = Weight(0);

            while (sum < threshold)
            {
                if (n < static_cast<std::size_t>(tail_weights(args).size()))
                {
                    sum += *(tail_weights(args).begin() + n);
                    n++;
                }
                else
                {
                    if (std::numeric_limits<result_type>::has_quiet_NaN)
                    {
                        return std::numeric_limits<result_type>::quiet_NaN();
                    }
                    else
                    {
                        std::ostringstream msg;
                        msg << "index n = " << n << " is not in valid range [0, " << tail(args).size() << ")";
                        boost::throw_exception(std::runtime_error(msg.str()));
                        return Sample(0);
                    }
                }
            }

            // Note that the cached samples of the left are sorted in ascending order,
            // whereas the samples of the right tail are sorted in descending order
            return *(boost::begin(tail(args)) + n - 1);
        }
コード例 #4
0
        result_type result(Args const &args) const
        {
            float_type threshold = sum_of_weights(args)
                             * ( ( is_same<LeftRight, left>::value ) ? args[quantile_probability] : 1. - args[quantile_probability] );

            std::size_t n = 0;
            Weight sum = Weight(0);

            while (sum < threshold)
            {
                if (n < static_cast<std::size_t>(tail_weights(args).size()))
                {
                    sum += *(tail_weights(args).begin() + n);
                    n++;
                }
                else
                {
                    if (std::numeric_limits<float_type>::has_quiet_NaN)
                    {
                        std::fill(
                            this->tail_means_.begin()
                          , this->tail_means_.end()
                          , std::numeric_limits<float_type>::quiet_NaN()
                        );
                    }
                    else
                    {
                        std::ostringstream msg;
                        msg << "index n = " << n << " is not in valid range [0, " << tail(args).size() << ")";
                        boost::throw_exception(std::runtime_error(msg.str()));
                    }
                }
            }

            std::size_t num_variates = tail_variate(args).begin()->size();

            this->tail_means_.clear();
            this->tail_means_.resize(num_variates, Sample(0));

            this->tail_means_ = std::inner_product(
                tail_variate(args).begin()
              , tail_variate(args).begin() + n
              , tail_weights(args).begin()
              , this->tail_means_
              , numeric::functional::plus<array_type const, array_type const>()
              , numeric::functional::multiply_and_promote_to_double<VariateType const, Weight const>()
            );

            float_type factor = sum * ( (is_same<Impl, relative>::value) ? non_coherent_weighted_tail_mean(args) : 1. );

            std::transform(
                this->tail_means_.begin()
              , this->tail_means_.end()
              , this->tail_means_.begin()
              , std::bind2nd(numeric::functional::divides<typename array_type::value_type const, float_type const>(), factor)
            );

            return make_iterator_range(this->tail_means_);
        }
コード例 #5
0
ファイル: weighted_mean.hpp プロジェクト: imos/icfpc2015
 void operator ()(Args const &args)
 {
     // Matthias:
     //  need to pass the argument pack since the weight might be an external
     //  accumulator set passed as a named parameter
     Weight w_sum = sum_of_weights(args);
     Weight w = args[weight];
     weighted_sample const &s = args[parameter::keyword<Tag>::get()] * w;
     this->mean = numeric::fdiv(this->mean * (w_sum - w) + s, w_sum);
 }
コード例 #6
0
ファイル: weighted_mean.hpp プロジェクト: imos/icfpc2015
        result_type result(Args const &args) const
        {
            typedef
                typename mpl::if_<
                    is_same<Tag, tag::sample>
                  , tag::weighted_sum
                  , tag::weighted_sum_of_variates<Sample, Tag>
                >::type
            weighted_sum_tag;

            extractor<weighted_sum_tag> const some_weighted_sum = {};

            return numeric::fdiv(some_weighted_sum(args), sum_of_weights(args));
        }
コード例 #7
0
        result_type result(Args const &args) const
        {
            float_type threshold = sum_of_weights(args)
                             * ( ( is_same<LeftRight, left>::value ) ? args[quantile_probability] : 1. - args[quantile_probability] );

            std::size_t n = 0;
            Weight sum = Weight(0);

            while (sum < threshold)
            {
                if (n < static_cast<std::size_t>(tail_weights(args).size()))
                {
                    sum += *(tail_weights(args).begin() + n);
                    n++;
                }
                else
                {
                    if (std::numeric_limits<result_type>::has_quiet_NaN)
                    {
                        return std::numeric_limits<result_type>::quiet_NaN();
                    }
                    else
                    {
                        std::ostringstream msg;
                        msg << "index n = " << n << " is not in valid range [0, " << tail(args).size() << ")";
                        boost::throw_exception(std::runtime_error(msg.str()));
                        return result_type(0);
                    }
                }
            }

            return numeric::average(
                std::inner_product(
                    tail(args).begin()
                  , tail(args).begin() + n
                  , tail_weights(args).begin()
                  , weighted_sample(0)
                )
              , sum
            );
        }
コード例 #8
0
        result_type result(Args const &args) const
        {
            if (this->is_dirty_)
            {
                this->is_dirty_ = false;

                this->mu_ = this->sign_ * numeric::average(this->mu_, this->w_sum_);
                this->sigma2_ = numeric::average(this->sigma2_, this->w_sum_);
                this->sigma2_ -= this->mu_ * this->mu_;

                float_type threshold_probability = numeric::average(sum_of_weights(args) - this->w_sum_, sum_of_weights(args));

                float_type tmp = numeric::average(( this->mu_ - this->threshold_ )*( this->mu_ - this->threshold_ ), this->sigma2_);
                float_type xi_hat = 0.5 * ( 1. - tmp );
                float_type beta_hat = 0.5 * ( this->mu_ - this->threshold_ ) * ( 1. + tmp );
                float_type beta_bar = beta_hat * std::pow(1. - threshold_probability, xi_hat);
                float_type u_bar = this->threshold_ - beta_bar * ( std::pow(1. - threshold_probability, -xi_hat) - 1.)/xi_hat;
                this->fit_parameters_ = boost::make_tuple(u_bar, beta_bar, xi_hat);
            }

            return this->fit_parameters_;
        }
コード例 #9
0
        result_type result(Args const &args) const
        {
            if (this->is_dirty_)
            {
                this->is_dirty_ = false;

                float_type threshold = sum_of_weights(args)
                             * ( ( is_same<LeftRight, left>::value ) ? this->threshold_probability_ : 1. - this->threshold_probability_ );

                std::size_t n = 0;
                Weight sum = Weight(0);

                while (sum < threshold)
                {
                    if (n < static_cast<std::size_t>(tail_weights(args).size()))
                    {
                        mu_ += *(tail_weights(args).begin() + n) * *(tail(args).begin() + n);
                        sigma2_ += *(tail_weights(args).begin() + n) * *(tail(args).begin() + n) * (*(tail(args).begin() + n));
                        sum += *(tail_weights(args).begin() + n);
                        n++;
                    }
                    else
                    {
                        if (std::numeric_limits<float_type>::has_quiet_NaN)
                        {
                            return boost::make_tuple(
                                std::numeric_limits<float_type>::quiet_NaN()
                              , std::numeric_limits<float_type>::quiet_NaN()
                              , std::numeric_limits<float_type>::quiet_NaN()
                            );
                        }
                        else
                        {
                            std::ostringstream msg;
                            msg << "index n = " << n << " is not in valid range [0, " << tail(args).size() << ")";
                            boost::throw_exception(std::runtime_error(msg.str()));
                            return boost::make_tuple(Sample(0), Sample(0), Sample(0));
                        }
                    }
                }

                float_type u = *(tail(args).begin() + n - 1) * this->sign_;


                this->mu_ = this->sign_ * numeric::average(this->mu_, sum);
                this->sigma2_ = numeric::average(this->sigma2_, sum);
                this->sigma2_ -= this->mu_ * this->mu_;

                if (is_same<LeftRight, left>::value)
                    this->threshold_probability_ = 1. - this->threshold_probability_;

                float_type tmp = numeric::average(( this->mu_ - u )*( this->mu_ - u ), this->sigma2_);
                float_type xi_hat = 0.5 * ( 1. - tmp );
                float_type beta_hat = 0.5 * ( this->mu_ - u ) * ( 1. + tmp );
                float_type beta_bar = beta_hat * std::pow(1. - threshold_probability_, xi_hat);
                float_type u_bar = u - beta_bar * ( std::pow(1. - threshold_probability_, -xi_hat) - 1.)/xi_hat;
                this->fit_parameters_ = boost::make_tuple(u_bar, beta_bar, xi_hat);

            }

            return this->fit_parameters_;
        }
コード例 #10
0
        void operator ()(Args const &args)
        {
            std::size_t cnt = count(args);
            std::size_t sample_cell = 1; // k
            std::size_t num_quantiles = this->probabilities.size();

            // m+2 principal markers and m+1 middle markers
            std::size_t num_markers = 2 * num_quantiles + 3;

            // first accumulate num_markers samples
            if(cnt <= num_markers)
            {
                this->heights[cnt - 1] = args[sample];
                this->actual_positions[cnt - 1] = args[weight];

                // complete the initialization of heights (and actual_positions) by sorting
                if(cnt == num_markers)
                {
                    // TODO: we need to sort the initial samples (in heights) in ascending order and
                    // sort their weights (in actual_positions) the same way. The following lines do
                    // it, but there must be a better and more efficient way of doing this.
                    typename array_type::iterator it_begin, it_end, it_min;

                    it_begin = this->heights.begin();
                    it_end   = this->heights.end();

                    std::size_t pos = 0;

                    while (it_begin != it_end)
                    {
                        it_min = std::min_element(it_begin, it_end);
                        std::size_t d = std::distance(it_begin, it_min);
                        std::swap(*it_begin, *it_min);
                        std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
                        ++it_begin;
                        ++pos;
                    }

                    // calculate correct initial actual positions
                    for (std::size_t i = 1; i < num_markers; ++i)
                    {
                        actual_positions[i] += actual_positions[i - 1];
                    }
                }
            }
            else
            {
                if(args[sample] < this->heights[0])
                {
                    this->heights[0] = args[sample];
                    this->actual_positions[0] = args[weight];
                    sample_cell = 1;
                }
                else if(args[sample] >= this->heights[num_markers - 1])
                {
                    this->heights[num_markers - 1] = args[sample];
                    sample_cell = num_markers - 1;
                }
                else
                {
                    // find cell k = sample_cell such that heights[k-1] <= sample < heights[k]

                    typedef typename array_type::iterator iterator;
                    iterator it = std::upper_bound(
                        this->heights.begin()
                      , this->heights.end()
                      , args[sample]
                    );

                    sample_cell = std::distance(this->heights.begin(), it);
                }

                // update actual position of all markers above sample_cell
                for(std::size_t i = sample_cell; i < num_markers; ++i)
                {
                    this->actual_positions[i] += args[weight];
                }

                // compute desired positions
                {
                    this->desired_positions[0] = this->actual_positions[0];
                    this->desired_positions[num_markers - 1] = sum_of_weights(args);
                    this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0]) * probabilities[0]
                                              / 2. + this->actual_positions[0];
                    this->desired_positions[num_markers - 2] = (sum_of_weights(args) - this->actual_positions[0])
                                                            * (probabilities[num_quantiles - 1] + 1.)
                                                            / 2. + this->actual_positions[0];

                    for (std::size_t i = 0; i < num_quantiles; ++i)
                    {
                        this->desired_positions[2 * i + 2] = (sum_of_weights(args) - this->actual_positions[0])
                                                          * probabilities[i] + this->actual_positions[0];
                    }

                    for (std::size_t i = 1; i < num_quantiles; ++i)
                    {
                        this->desired_positions[2 * i + 1] = (sum_of_weights(args) - this->actual_positions[0])
                                                      * (probabilities[i - 1] + probabilities[i])
                                                      / 2. + this->actual_positions[0];
                    }
                }

                // adjust heights and actual_positions of markers 1 to num_markers - 2 if necessary
                for (std::size_t i = 1; i <= num_markers - 2; ++i)
                {
                    // offset to desired position
                    float_type d = this->desired_positions[i] - this->actual_positions[i];

                    // offset to next position
                    float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];

                    // offset to previous position
                    float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];

                    // height ds
                    float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
                    float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;

                    if((d >= 1 && dp > 1) || (d <= -1 && dm < -1))
                    {
                        short sign_d = static_cast<short>(d / std::abs(d));

                        float_type h = this->heights[i] + sign_d / (dp - dm) * ((sign_d - dm)*hp + (dp - sign_d) * hm);

                        // try adjusting heights[i] using p-squared formula
                        if(this->heights[i - 1] < h && h < this->heights[i + 1])
                        {
                            this->heights[i] = h;
                        }
                        else
                        {
                            // use linear formula
                            if(d > 0)
                            {
                                this->heights[i] += hp;
                            }
                            if(d < 0)
                            {
                                this->heights[i] -= hm;
                            }
                        }
                        this->actual_positions[i] += sign_d;
                    }
                }
            }
        }
コード例 #11
0
 result_type result(Args const &args) const
 {
     return numeric::average(this->sum, sum_of_weights(args));
 }
コード例 #12
0
  result_type result(Args const &args) const
  {
	  if(count(args[accumulator])<1) return 1.;
	  return sum_of_weights(args[accumulator])/count(args[accumulator]);
  }
コード例 #13
0
        result_type result(Args const &args) const
        {
            if (this->is_dirty)
            {
                this->is_dirty = false;

                // creates a vector of std::pair where each pair i holds
                // the values heights[i] (x-axis of histogram) and
                // actual_positions[i] / sum_of_weights (y-axis of histogram)

                for (std::size_t i = 0; i < this->histogram.size(); ++i)
                {
                    this->histogram[i] = std::make_pair(this->heights[i], numeric::fdiv(this->actual_positions[i], sum_of_weights(args)));
                }
            }

            return make_iterator_range(this->histogram);
        }
コード例 #14
0
        void operator ()(Args const &args)
        {
            std::size_t cnt = count(args);

            // accumulate 5 first samples
            if (cnt <= 5)
            {
                this->heights[cnt - 1] = args[sample];

                // In this initialization phase, actual_positions stores the weights of the
                // inital samples that are needed at the end of the initialization phase to
                // compute the correct initial positions of the markers.
                this->actual_positions[cnt - 1] = args[weight];

                // complete the initialization of heights and actual_positions by sorting
                if (cnt == 5)
                {
                    // TODO: we need to sort the initial samples (in heights) in ascending order and
                    // sort their weights (in actual_positions) the same way. The following lines do
                    // it, but there must be a better and more efficient way of doing this.
                    typename array_type::iterator it_begin, it_end, it_min;

                    it_begin = this->heights.begin();
                    it_end   = this->heights.end();

                    std::size_t pos = 0;

                    while (it_begin != it_end)
                    {
                        it_min = std::min_element(it_begin, it_end);
                        std::size_t d = std::distance(it_begin, it_min);
                        std::swap(*it_begin, *it_min);
                        std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
                        ++it_begin;
                        ++pos;
                    }

                    // calculate correct initial actual positions
                    for (std::size_t i = 1; i < 5; ++i)
                    {
                        this->actual_positions[i] += this->actual_positions[i - 1];
                    }
                }
            }
            else
            {
                std::size_t sample_cell = 1; // k

                // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
                if (args[sample] < this->heights[0])
                {
                    this->heights[0] = args[sample];
                    this->actual_positions[0] = args[weight];
                    sample_cell = 1;
                }
                else if (this->heights[4] <= args[sample])
                {
                    this->heights[4] = args[sample];
                    sample_cell = 4;
                }
                else
                {
                    typedef typename array_type::iterator iterator;
                    iterator it = std::upper_bound(
                        this->heights.begin()
                      , this->heights.end()
                      , args[sample]
                    );

                    sample_cell = std::distance(this->heights.begin(), it);
                }

                // increment positions of markers above sample_cell
                for (std::size_t i = sample_cell; i < 5; ++i)
                {
                    this->actual_positions[i] += args[weight];
                }

                // update desired positions for all markers
                this->desired_positions[0] = this->actual_positions[0];
                this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0])
                                           * this->p/2. + this->actual_positions[0];
                this->desired_positions[2] = (sum_of_weights(args) - this->actual_positions[0])
                                           * this->p + this->actual_positions[0];
                this->desired_positions[3] = (sum_of_weights(args) - this->actual_positions[0])
                                           * (1. + this->p)/2. + this->actual_positions[0];
                this->desired_positions[4] = sum_of_weights(args);

                // adjust height and actual positions of markers 1 to 3 if necessary
                for (std::size_t i = 1; i <= 3; ++i)
                {
                    // offset to desired positions
                    float_type d = this->desired_positions[i] - this->actual_positions[i];

                    // offset to next position
                    float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];

                    // offset to previous position
                    float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];

                    // height ds
                    float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
                    float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;

                    if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
                    {
                        short sign_d = static_cast<short>(d / std::abs(d));

                        // try adjusting heights[i] using p-squared formula
                        float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );

                        if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
                        {
                            this->heights[i] = h;
                        }
                        else
                        {
                            // use linear formula
                            if (d>0)
                            {
                                this->heights[i] += hp;
                            }
                            if (d<0)
                            {
                                this->heights[i] -= hm;
                            }
                        }
                        this->actual_positions[i] += sign_d;
                    }
                }
            }
        }
コード例 #15
0
        void operator ()(Args const &args)
        {
            this->is_dirty = true;

            std::size_t cnt = count(args);
            std::size_t sample_cell = 1; // k
            std::size_t b = this->num_cells;

            // accumulate num_cells + 1 first samples
            if (cnt <= b + 1)
            {
                this->heights[cnt - 1] = args[sample];
                this->actual_positions[cnt - 1] = args[weight];

                // complete the initialization of heights by sorting
                if (cnt == b + 1)
                {
                    //std::sort(this->heights.begin(), this->heights.end());

                    // TODO: we need to sort the initial samples (in heights) in ascending order and
                    // sort their weights (in actual_positions) the same way. The following lines do
                    // it, but there must be a better and more efficient way of doing this.
                    typename array_type::iterator it_begin, it_end, it_min;

                    it_begin = this->heights.begin();
                    it_end   = this->heights.end();

                    std::size_t pos = 0;

                    while (it_begin != it_end)
                    {
                        it_min = std::min_element(it_begin, it_end);
                        std::size_t d = std::distance(it_begin, it_min);
                        std::swap(*it_begin, *it_min);
                        std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
                        ++it_begin;
                        ++pos;
                    }

                    // calculate correct initial actual positions
                    for (std::size_t i = 1; i < b; ++i)
                    {
                        this->actual_positions[i] += this->actual_positions[i - 1];
                    }
                }
            }
            else
            {
                // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
                if (args[sample] < this->heights[0])
                {
                    this->heights[0] = args[sample];
                    this->actual_positions[0] = args[weight];
                    sample_cell = 1;
                }
                else if (this->heights[b] <= args[sample])
                {
                    this->heights[b] = args[sample];
                    sample_cell = b;
                }
                else
                {
                    typename array_type::iterator it;
                    it = std::upper_bound(
                        this->heights.begin()
                      , this->heights.end()
                      , args[sample]
                    );

                    sample_cell = std::distance(this->heights.begin(), it);
                }

                // increment positions of markers above sample_cell
                for (std::size_t i = sample_cell; i < b + 1; ++i)
                {
                    this->actual_positions[i] += args[weight];
                }

                // determine desired marker positions
                for (std::size_t i = 1; i < b + 1; ++i)
                {
                    this->desired_positions[i] = this->actual_positions[0]
                                               + numeric::fdiv((i-1) * (sum_of_weights(args) - this->actual_positions[0]), b);
                }

                // adjust heights of markers 2 to num_cells if necessary
                for (std::size_t i = 1; i < b; ++i)
                {
                    // offset to desire position
                    float_type d = this->desired_positions[i] - this->actual_positions[i];

                    // offset to next position
                    float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];

                    // offset to previous position
                    float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];

                    // height ds
                    float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
                    float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;

                    if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
                    {
                        short sign_d = static_cast<short>(d / std::abs(d));

                        // try adjusting heights[i] using p-squared formula
                        float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );

                        if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
                        {
                            this->heights[i] = h;
                        }
                        else
                        {
                            // use linear formula
                            if (d>0)
                            {
                                this->heights[i] += hp;
                            }
                            if (d<0)
                            {
                                this->heights[i] -= hm;
                            }
                        }
                        this->actual_positions[i] += sign_d;
                    }
                }
            }
        }
コード例 #16
0
ファイル: weighted_density.hpp プロジェクト: imos/icfpc2015
        result_type result(Args const &args) const
        {
            if (this->is_dirty)
            {
                this->is_dirty = false;

                // creates a vector of std::pair where each pair i holds
                // the values bin_positions[i] (x-axis of histogram) and
                // samples_in_bin[i] / cnt (y-axis of histogram).

                for (std::size_t i = 0; i < this->num_bins + 2; ++i)
                {
                    this->histogram[i] = std::make_pair(this->bin_positions[i], numeric::fdiv(this->samples_in_bin[i], sum_of_weights(args)));
                }
            }

            // returns a range of pairs
            return make_iterator_range(this->histogram);
        }
コード例 #17
0
ファイル: test_factoring.c プロジェクト: hrbigelow/depngs
int main(int argc, char **argv)
{
    char *str_alpha_p = argv[1], *str_alpha_q = argv[2];
    char *cdf = argv[3];

    unsigned nprior = atoi(argv[4]);
    unsigned npost = atoi(argv[5]);
    unsigned ngold = atoi(argv[6]);
    /* double step_mult = atof(argv[7]); */

    gsl_set_error_handler_off();

    FILE *cdf_fh = fopen(cdf, "w");

    double alpha_p[4], alpha_q[4];
    sscanf(str_alpha_p, "%lf,%lf,%lf,%lf", &alpha_p[0], &alpha_p[1], &alpha_p[2], &alpha_p[3]);
    sscanf(str_alpha_q, "%lf,%lf,%lf,%lf", &alpha_q[0], &alpha_q[1], &alpha_q[2], &alpha_q[3]);

    double alpha_combined[] = { 
        alpha_p[0] + alpha_q[0] - 1,
        alpha_p[1] + alpha_q[1] - 1,
        alpha_p[2] + alpha_q[2] - 1,
        alpha_p[3] + alpha_q[3] - 1
    };

    unsigned ntotal = nprior + npost + ngold;
    struct wpoint *buf = (struct wpoint *)malloc(ntotal * sizeof(struct wpoint));
    struct wpoint *p_points = buf, *q_points = buf + nprior, *g_points = q_points + npost;
    struct wpoint **tmp_points = (struct wpoint **)malloc((nprior + npost) * sizeof(struct wpoint *));
    struct wpoint **int_smooth_points = (struct wpoint **)malloc(npost * sizeof(struct wpoint *));
    struct wpoint **ext_points = (struct wpoint **)malloc(nprior * sizeof(struct wpoint *));
    struct wpoint **ext_smooth_points = (struct wpoint **)malloc(nprior * sizeof(struct wpoint *));
    struct wpoint **ext_rough_points = (struct wpoint **)malloc(nprior * sizeof(struct wpoint *));
    struct wpoint **all_smooth_points = (struct wpoint **)malloc((nprior + npost) * sizeof(struct wpoint *));

    struct wpoint **pg = (struct wpoint **)malloc(ngold * sizeof(struct wpoint *));

    struct wpoint **pp, **pp2, **pe;
    struct wpoint *s, *p_end = p_points + nprior, *q_end = q_points + npost;

    gsl_rng *rand = gsl_rng_alloc(gsl_rng_taus);

    // populate P(*)
    double p_norm;
    populate_points(p_points, nprior, alpha_p, alpha_q, rand, "prior", &p_norm);

    // populate Q(*)
    double q_norm;
    populate_points(q_points, npost, alpha_q, alpha_p, rand, "post", &q_norm);

    int i;
    for (i = 0; i != 10; ++i)
    {
        populate_points(q_points, npost, alpha_q, alpha_p, rand, "post", &q_norm);
        fprintf(stderr, "q_norm = %g\n", q_norm);
    }        


    /* populate gold(*) */
    double g_norm;
    double alpha_uniform[] = { 1, 1, 1, 1 };
    populate_points(g_points, ngold, alpha_combined, alpha_uniform, rand, "gold", &g_norm);

    /* normalize */
    normalize_points(p_points, nprior, p_norm, q_norm);
    normalize_points(q_points, npost, q_norm, p_norm);
    normalize_points(g_points, ngold, g_norm, g_norm);

    unsigned n;
    
    /* gather all Q(*) points (use int_smooth_points temporarily) */
    for (s = q_points, pp = int_smooth_points; s != q_end; ++s)
        *pp++ = s;
    n = pp - int_smooth_points;

    /* collect Q(*) smooth (interior) points */
    // double ln_p_bound = smooth_threshold(int_smooth_points, step_mult, &n);
    /* for (s = q_points, pp = int_smooth_points; s != q_end; ++s) */
    /*     if (s->ln_o <= ln_p_bound) */
    /*         *pp++ = s; */
    for (s = q_points, pp = int_smooth_points; s != q_end; ++s)
        if (s->ln_d > s->ln_o)
            *pp++ = s;
    unsigned n_int_smooth_q = pp - int_smooth_points;

    /* double ma_ratio = max_to_avg_ratio(int_smooth_points,); */
    double int_mass_on_q = sum_of_weights(int_smooth_points, n_int_smooth_q);

    /* collect exterior P(*) points */
    /* for (s = p_points, pp = ext_points; s != p_end; ++s) */
    /*     if (s->ln_d > ln_p_bound) */
    /*         *pp++ = s; */
    for (s = p_points, pp = ext_smooth_points; s != p_end; ++s)
        if (s->ln_d > s->ln_o)
            *pp++ = s;
    /* unsigned n_ext_p = n = pp - ext_points; */
    /* double ln_q_bound = smooth_threshold(ext_points, step_mult, &n); */

    /* collect exterior P(*) smooth points */
    /* for (s = p_points, pp = ext_smooth_points; s != p_end; ++s) */
    /*     if (s->ln_d > ln_p_bound && s->ln_o < ln_q_bound) */
    /*         *pp++ = s; */
    unsigned n_ext_smooth_p = pp - ext_smooth_points;

    
    /* double ma2_ratio = max_to_avg_ratio(ext_smooth_points, n_ext_smooth_p); */
    double ext_mass_on_p = sum_of_weights(ext_smooth_points, n_ext_smooth_p);
    double total_mixed_mass = int_mass_on_q + ext_mass_on_p;
    /* fprintf(stderr, "Number of points unaccounted for: %u\n", n_ext_p - n_ext_smooth_p); */

    // print out numerical CDFs
    char hdr[] = "Dist\tBase\tComp\tPointIndex\tCDF\tln_d\tln_o\tBaseDist\n";
    fprintf(cdf_fh, hdr);

    print_cdf(int_smooth_points, n_int_smooth_q, total_mixed_mass, buf, "int_smooth_q", cdf_fh);
    print_cdf(ext_smooth_points, n_ext_smooth_p, total_mixed_mass, buf, "ext_smooth_p", cdf_fh);

   
    pe = int_smooth_points + n_int_smooth_q;
    for (pp = int_smooth_points, pp2 = all_smooth_points; pp != pe; ++pp, ++pp2)
        *pp2 = *pp;

    pe = ext_smooth_points + n_ext_smooth_p;
    for (pp = ext_smooth_points; pp != pe; ++pp, ++pp2)
        *pp2 = *pp;

    unsigned n_smooth = n_int_smooth_q + n_ext_smooth_p;
    print_cdf(all_smooth_points, n_smooth, total_mixed_mass, p_points, "smooth_combined", cdf_fh);

    /* all points in the P(*) sampling */
    for (s = p_points, pp = tmp_points; s != p_end; ++s)
        *pp++ = s;
    print_cdf(tmp_points, nprior, total_mixed_mass, p_points, "all_p", cdf_fh);

    /* all points in the Q(*) sampling */
    for (s = q_points, pp = tmp_points; s != q_end; ++s)
        *pp++ = s;

    print_cdf(tmp_points, npost, total_mixed_mass, q_points, "all_q", cdf_fh);


    /* print out the gold standard */
    struct wpoint *gold_end = g_points + ngold;
    for (s = g_points, pp = pg; s != gold_end; ++s)
        *pp++ = s;
    
    double gold_mass = sum_of_weights(pg, ngold);
    print_cdf(pg, ngold, gold_mass, g_points, "dgold", cdf_fh);

    /* compute component-wise marginal estimates. */
    /* double q[] = { 0.0001, 0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999, 0.9999 }; */
    /* double qv[NUCS][sizeof(q) / sizeof(double)]; */
    
    // print out marginal estimates
    /* unsigned iq; */
    /* for (dim = 0; dim != NUCS; ++dim) */
    /* { */
        /* for (iq = 0; iq != sizeof(qv[dim]) / sizeof(double); ++iq) */
        /*     printf(iq ? "\t%f" : "%f", qv[dim][iq]); */
        /* printf("\n"); */
    /* } */

    free(buf);
    free(tmp_points);
    free(int_smooth_points);
    free(ext_points);
    free(ext_smooth_points);
    free(ext_rough_points);
    free(all_smooth_points);
    free(pg);
    gsl_rng_free(rand);

    fclose(cdf_fh);

    return 0;
}