コード例 #1
0
static void
svga_vbuf_submit_state( struct svga_vbuf_render *svga_render )
{
   struct svga_context *svga = svga_render->svga;
   SVGA3dVertexDecl vdecl[PIPE_MAX_ATTRIBS];
   enum pipe_error ret;
   int i;

   /* if the vdecl or vbuf hasn't changed do nothing */
   if (!svga->swtnl.new_vdecl)
      return;

   memcpy(vdecl, svga_render->vdecl, sizeof(vdecl));

   /* flush the hw state */
   ret = svga_hwtnl_flush(svga->hwtnl);
   if (ret != PIPE_OK) {
      svga_context_flush(svga, NULL);
      ret = svga_hwtnl_flush(svga->hwtnl);
      /* if we hit this path we might become synced with hw */
      svga->swtnl.new_vbuf = TRUE;
      assert(ret == 0);
   }

   svga_hwtnl_reset_vdecl(svga->hwtnl, svga_render->vdecl_count);

   for (i = 0; i < svga_render->vdecl_count; i++) {
      vdecl[i].array.offset += svga_render->vdecl_offset;

      svga_hwtnl_vdecl( svga->hwtnl,
                        i,
                        &vdecl[i],
                        svga_render->vbuf );
   }

   /* We have already taken care of flatshading, so let the hwtnl
    * module use whatever is most convenient:
    */
   if (svga->state.sw.need_pipeline) {
      svga_hwtnl_set_flatshade(svga->hwtnl, FALSE, FALSE);
      svga_hwtnl_set_unfilled(svga->hwtnl, PIPE_POLYGON_MODE_FILL);
   }
   else {
      svga_hwtnl_set_flatshade( svga->hwtnl,
                                svga->curr.rast->templ.flatshade,
                                svga->curr.rast->templ.flatshade_first );

      svga_hwtnl_set_unfilled( svga->hwtnl,
                               svga->curr.rast->hw_unfilled );
   }

   svga->swtnl.new_vdecl = FALSE;
}
コード例 #2
0
static int emit_hw_vs_vdecl( struct svga_context *svga,
                             unsigned dirty )
{
   const struct pipe_vertex_element *ve = svga->curr.ve;
   SVGA3dVertexDecl decl;
   unsigned i;

   assert(svga->curr.num_vertex_elements >=
          svga->curr.vs->base.info.file_count[TGSI_FILE_INPUT]);

   svga_hwtnl_reset_vdecl( svga->hwtnl, 
                           svga->curr.num_vertex_elements );

   for (i = 0; i < svga->curr.num_vertex_elements; i++) {
      const struct pipe_vertex_buffer *vb = &svga->curr.vb[ve[i].vertex_buffer_index];
      unsigned usage, index;


      svga_generate_vdecl_semantics( i, &usage, &index );

      /* SVGA_NEW_VELEMENT
       */
      decl.identity.type = svga->state.sw.ve_format[i];
      decl.identity.method = SVGA3D_DECLMETHOD_DEFAULT;
      decl.identity.usage = usage;
      decl.identity.usageIndex = index;
      decl.array.stride = vb->stride;
      decl.array.offset = (vb->buffer_offset +
                           ve[i].src_offset);

      svga_hwtnl_vdecl( svga->hwtnl,
                        i,
                        &decl,
                        vb->buffer );
   }

   return 0;
}
コード例 #3
0
ファイル: svga_state_vdecl.c プロジェクト: DirectFB/mesa
static enum pipe_error
emit_hw_vs_vdecl(struct svga_context *svga, unsigned dirty)
{
   const struct pipe_vertex_element *ve = svga->curr.velems->velem;
   unsigned i;
   unsigned neg_bias = 0;

   assert(svga->curr.velems->count >=
          svga->curr.vs->base.info.file_count[TGSI_FILE_INPUT]);

   /* specify number of vertex element declarations to come */
   svga_hwtnl_reset_vdecl( svga->hwtnl,
                           svga->curr.velems->count );

   /**
    * We can't set the VDECL offset to something negative, so we
    * must calculate a common negative additional index bias, and modify
    * the VDECL offsets accordingly so they *all* end up positive.
    *
    * Note that the exact value of the negative index bias is not that
    * important, since we compensate for it when we calculate the vertex
    * buffer offset below. The important thing is that all vertex buffer
    * offsets remain positive.
    *
    * Note that we use a negative bias variable in order to make the
    * rounding maths more easy to follow, and to avoid int / unsigned
    * confusion.
    */

   for (i = 0; i < svga->curr.velems->count; i++) {
      const struct pipe_vertex_buffer *vb =
         &svga->curr.vb[ve[i].vertex_buffer_index];
      const struct svga_buffer *buffer;
      unsigned int offset = vb->buffer_offset + ve[i].src_offset;

      if (!vb->buffer)
         continue;

      buffer = svga_buffer(vb->buffer);
      if (buffer->uploaded.start > offset) {
         unsigned tmp_neg_bias = buffer->uploaded.start - offset;
         if (vb->stride)
            tmp_neg_bias = (tmp_neg_bias + vb->stride - 1) / vb->stride;
         neg_bias = MAX2(neg_bias, tmp_neg_bias);
      }
   }

   for (i = 0; i < svga->curr.velems->count; i++) {
      const struct pipe_vertex_buffer *vb =
         &svga->curr.vb[ve[i].vertex_buffer_index];
      unsigned usage, index;
      const struct svga_buffer *buffer;
      SVGA3dVertexDecl decl;

      if (!vb->buffer)
         continue;

      buffer = svga_buffer(vb->buffer);
      svga_generate_vdecl_semantics( i, &usage, &index );

      /* SVGA_NEW_VELEMENT
       */
      decl.identity.type = svga->state.sw.ve_format[i];
      decl.identity.method = SVGA3D_DECLMETHOD_DEFAULT;
      decl.identity.usage = usage;
      decl.identity.usageIndex = index;
      decl.array.stride = vb->stride;

      /* Compensate for partially uploaded vbo, and
       * for the negative index bias.
       */
      decl.array.offset = (vb->buffer_offset
                           + ve[i].src_offset
			   + neg_bias * vb->stride
			   - buffer->uploaded.start);

      assert(decl.array.offset >= 0);

      svga_hwtnl_vdecl( svga->hwtnl,
                        i,
                        &decl,
                        buffer->uploaded.buffer ? buffer->uploaded.buffer :
                        vb->buffer );
   }

   svga_hwtnl_set_index_bias( svga->hwtnl, -(int) neg_bias );
   return PIPE_OK;
}