/** * @brief Internal TAL reset function * * @param set_default_pib Defines whether PIB values need to be set * to its default values * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ static retval_t internal_tal_reset(bool set_default_pib) { if (trx_reset() != MAC_SUCCESS) { return FAILURE; } /* * Generate a seed for the random number generator in function rand(). * This is required (for example) as seed for the CSMA-CA algorithm. */ tal_generate_rand_seed(); /* Configure the transceiver register values. */ trx_config(); if (set_default_pib) { /* Set the default PIB values */ init_tal_pib(); /* implementation can be found in 'tal_pib.c' */ } else { /* nothing to do - the current TAL PIB attribute values are used */ } /* * Write all PIB values to the transceiver * that are needed by the transceiver itself. */ write_all_tal_pib_to_trx(); /* implementation can be found in 'tal_pib.c' */ /* Reset TAL variables. */ tal_state = TAL_IDLE; #ifdef BEACON_SUPPORT tal_csma_state = CSMA_IDLE; #endif /* BEACON_SUPPORT */ #if ((MAC_START_REQUEST_CONFIRM == 1) && (defined BEACON_SUPPORT)) tal_beacon_transmission = false; #endif /* ((MAC_START_REQUEST_CONFIRM == 1) && (defined BEACON_SUPPORT)) */ tal_rx_on_required = false; return MAC_SUCCESS; }
/* * \brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * \return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } if (trx_init() != MAC_SUCCESS) { return FAILURE; } if (tal_timer_init() != MAC_SUCCESS) { return FAILURE; } #ifdef ENABLE_STACK_NVM pal_ps_get(INTERN_EEPROM, EE_IEEE_ADDR, 8, &tal_pib.IeeeAddress); #endif /* * For systems including the AT86RF230B the random seed generation * cannot be done using a dedicated hardware feature. * Therefore all random seed generation needs to be done by special * means (e.g. utilization of ADC) that generate a random value only * within a certain range. * * In case the node already has a valid IEEE address (i.e. an IEEE * address which is different from 0x0000000000000000 or * 0xFFFFFFFFFFFFFFFF), this IEEE address (the lower 16 bit) * shall be used as seed for srand(), since each node should have a *unique * IEEE address. * In this case srand() is called directly and function *tal_generate_rand_seed() * is not called. * * Note: This behaviour is different in all other TALs, since in these * cases the seed for srand() is always generated based on transceiver * hardware support. */ #ifndef DISABLE_IEEE_ADDR_CHECK if ((tal_pib.IeeeAddress == 0x0000000000000000) || (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF) ) { /* * Generate a seed for the random number generator in function *rand(). * This is required (for example) as seed for the CSMA-CA *algorithm. */ tal_generate_rand_seed(); /* * Now that we have generated a random seed, we can generate a *random * IEEE address for this node. */ do { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been *generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib.IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to *8 bit, * and running the loop 8 timers (instead of *only 4 times) * may look cumbersome, it turns out that the *code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } /* Check if a valid IEEE address is available. */ while ((tal_pib.IeeeAddress == 0x0000000000000000) || (tal_pib.IeeeAddress == 0xFFFFFFFFFFFFFFFF) ); } else { /* Valid IEEE address, so no need to generate a new random seed. **/ uint16_t cur_rand_seed = (uint16_t)tal_pib.IeeeAddress; srand(cur_rand_seed); } #else /* * No check for a valid IEEE address done, so directly create a seed * for srand(). */ tal_generate_rand_seed(); #endif /* * Do the reset stuff. * Set the default PIBs. */ if (internal_tal_reset(true) != MAC_SUCCESS) { return FAILURE; } pal_trx_reg_read(RG_IRQ_STATUS); /* clear pending irqs, dummy read */ /* * Configure interrupt handling. * Install a handler for the transceiver interrupt. */ pal_trx_irq_init((FUNC_PTR)trx_irq_handler_cb); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ /* Initialize the buffer management module and get a buffer to store *reveived frames. */ bmm_buffer_init(); tal_rx_buffer = bmm_buffer_alloc(LARGE_BUFFER_SIZE); /* Init incoming frame queue */ #ifdef ENABLE_QUEUE_CAPACITY qmm_queue_init(&tal_incoming_frame_queue, TAL_INCOMING_FRAME_QUEUE_CAPACITY); #else qmm_queue_init(&tal_incoming_frame_queue); #endif /* ENABLE_QUEUE_CAPACITY */ return MAC_SUCCESS; } /* tal_init() */
/** * @brief Initializes the TAL * * This function is called to initialize the TAL. The transceiver is * initialized, the TAL PIBs are set to their default values, and the TAL state * machine is set to TAL_IDLE state. * * @return MAC_SUCCESS if the transceiver state is changed to TRX_OFF and the * current device part number and version number are correct; * FAILURE otherwise */ retval_t tal_init(void) { /* Init the PAL and by this means also the transceiver interface */ if (pal_init() != MAC_SUCCESS) { return FAILURE; } /* Reset trx */ if (trx_reset(RFBOTH) != MAC_SUCCESS) { return FAILURE; } /* Check if RF215 is connected */ if ((trx_reg_read( RG_RF_PN) != 0x34) || (trx_reg_read( RG_RF_VN) != 0x01)) { return FAILURE; } /* Initialize trx */ trx_init(); if (tal_timer_init() != MAC_SUCCESS) { return FAILURE; } /* Initialize the buffer management */ bmm_buffer_init(); /* Configure both trx and set default PIB values */ for (uint8_t trx_id = 0; trx_id < NUM_TRX; trx_id++) { /* Configure transceiver */ trx_config((trx_id_t)trx_id); #ifdef RF215V1 /* Calibrate LO */ calibrate_LO((trx_id_t)trx_id); #endif /* Set the default PIB values */ init_tal_pib((trx_id_t)trx_id); /* see 'tal_pib.c' */ calculate_pib_values((trx_id_t)trx_id); /* * Write all PIB values to the transceiver * that are needed by the transceiver itself. */ write_all_tal_pib_to_trx((trx_id_t)trx_id); /* see 'tal_pib.c' **/ config_phy((trx_id_t)trx_id); tal_rx_buffer[trx_id] = bmm_buffer_alloc(LARGE_BUFFER_SIZE); if (tal_rx_buffer[trx_id] == NULL) { return FAILURE; } /* Init incoming frame queue */ qmm_queue_init(&tal_incoming_frame_queue[trx_id]); tal_state[trx_id] = TAL_IDLE; tx_state[trx_id] = TX_IDLE; } /* Init seed of rand() */ tal_generate_rand_seed(); #ifndef DISABLE_IEEE_ADDR_CHECK for (uint8_t trx_id = 0; trx_id < 2; trx_id++) { /* Check if a valid IEEE address is available. */ /* * This while loop is on purpose, since just in the * rare case that such an address is randomly * generated again, we must repeat this. */ while ((tal_pib[trx_id].IeeeAddress == 0x0000000000000000) || (tal_pib[trx_id].IeeeAddress == ((uint64_t)-1))) { /* * In case no valid IEEE address is available, a random * IEEE address will be generated to be able to run the * applications for demonstration purposes. * In production code this can be omitted. */ /* * The proper seed for function rand() has already been *generated * in function tal_generate_rand_seed(). */ uint8_t *ptr_pib = (uint8_t *)&tal_pib[trx_id].IeeeAddress; for (uint8_t i = 0; i < 8; i++) { *ptr_pib++ = (uint8_t)rand(); /* * Note: * Even if casting the 16 bit rand value back to *8 bit, * and running the loop 8 timers (instead of *only 4 times) * may look cumbersome, it turns out that the *code gets * smaller using 8-bit here. * And timing is not an issue at this place... */ } } } #endif #ifdef IQ_RADIO /* Init BB IRQ handler */ pal_trx_irq_flag_clr(RF215_BB); trx_irq_init(RF215_BB, bb_irq_handler_cb); pal_trx_irq_en(RF215_BB); /* Init RF IRQ handler */ pal_trx_irq_flag_clr(RF215_RF); trx_irq_init(RF215_RF, rf_irq_handler_cb); pal_trx_irq_en(RF215_RF); #else /* * Configure interrupt handling. * Install a handler for the radio and the baseband interrupt. */ pal_trx_irq_flag_clr(); trx_irq_init((FUNC_PTR)trx_irq_handler_cb); pal_trx_irq_en(); /* Enable transceiver main interrupt. */ #endif #if ((defined SUPPORT_FSK) && (defined SUPPORT_MODE_SWITCH)) init_mode_switch(); #endif return MAC_SUCCESS; } /* tal_init() */