コード例 #1
0
void TR_LocalLiveRangeReduction::initPotentialDeps(TR_TreeRefInfo *tree)
   {
   int32_t symRefCount = comp()->getSymRefCount();
   if (tree->getDefSym() == NULL)
      tree->setDefSym(new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc));
   if (tree->getUseSym() == NULL)
      tree->setUseSym(new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc));
   }
コード例 #2
0
ファイル: ReachingBlocks.cpp プロジェクト: bjornvar/omr
void TR_ReachingBlocks::initializeGenAndKillSetInfo()
   {
   // For each block in the CFG build the gen and kill set for this analysis.
   // Go in treetop order, which guarantees that we see the correct (i.e. first)
   // evaluation point for each node.
   //
   int32_t   blockNum;

   for (blockNum = 0; blockNum < _numberOfBlocks; blockNum++)
      {
      _regularGenSetInfo[blockNum] = new (trStackMemory()) TR_BitVector(getNumberOfBits(),trMemory(), stackAlloc);
      _regularGenSetInfo[blockNum]->set(blockNum);
      _exceptionGenSetInfo[blockNum] = new (trStackMemory()) TR_BitVector(getNumberOfBits(),trMemory(), stackAlloc);
      _exceptionGenSetInfo[blockNum]->set(blockNum);
      }
   }
コード例 #3
0
void TR_RegisterAnticipatability::initializeRegisterUsageInfo()
   {
   // initialize outSets bitvector as well
   //
   TR_BitVector **originalRegUsageInfo = _registerUsageInfo;
   _registerUsageInfo = (TR_BitVector **) trMemory()->allocateStackMemory(_numberOfNodes * sizeof(TR_BitVector *));
   _outSetInfo = (TR_BitVector **) trMemory()->allocateStackMemory(_numberOfNodes * sizeof(TR_BitVector *));

   for (int32_t i = 0; i < _numberOfNodes; i++)
      {
      _registerUsageInfo[i] = new (trStackMemory()) TR_BitVector(_numberOfBits, trMemory(), stackAlloc);
      copyFromInto(originalRegUsageInfo[i], _registerUsageInfo[i]);
      _outSetInfo[i] = new (trStackMemory()) TR_BitVector(_numberOfBits, trMemory(), stackAlloc);
      _outSetInfo[i]->empty();
      }

   }
コード例 #4
0
ファイル: DominatorVerifier.cpp プロジェクト: TianyuZuo/omr
bool TR_DominatorVerifier::isExpensiveAlgorithmCorrect(TR_DominatorsChk &expensiveAlgorithm)
   {
   int32_t i,j;
   _nodesSeenOnEveryPath = new (trStackMemory()) TR_BitVector(_numBlocks,trMemory(), stackAlloc);
   _nodesSeenOnCurrentPath = new (trStackMemory()) TR_BitVector(_numBlocks,trMemory(), stackAlloc);
   _dominatorsChkInfo = expensiveAlgorithm.getDominatorsChkInfo();

   for (i = 2; i < _numBlocks-1; i++)
      {
      TR_BitVector *bucket = _dominatorsChkInfo[i]._tmpbucket;

      for (j = 0; j < _numBlocks-1; j++)
         {
         if (bucket->get(j)) // dominator according to algorithm
            {
            // Initializing these BitVectors before checking
            // dominators for the next block.
            // The last bit is not changed for either bit vector - is that what
            // was intended?
            //
            _nodesSeenOnEveryPath->setAll(_numBlocks-1);
            int32_t lastBit = _nodesSeenOnCurrentPath->get(_numBlocks-1);
            _nodesSeenOnCurrentPath->empty();
            if (lastBit)
               _nodesSeenOnCurrentPath->set(_numBlocks-1);

            if ( ! dominates(_dominatorsChkInfo[j+1]._block,_dominatorsChkInfo[i]._block) )  // dominator according to the CFG
               {
               if (debug("traceVER"))
                  {
                  dumpOptDetails(comp(), "   Dominator info for expensive algorithm is incorrect \n");
                  dumpOptDetails(comp(), "   Dominator of [%p] is [%p] as per the algorithm\n", _dominatorsChkInfo[i]._block, _dominatorsChkInfo[j+1]._block);
                  dumpOptDetails(comp(), "   But [%p] is not an the dominator of [%p] as per the Control Flow Graph", _dominatorsChkInfo[j+1]._block, _dominatorsChkInfo[i]._block);
                  }
               return false;
               }
            }
         }
      }

   return true;
   }
コード例 #5
0
//---------------------------- collecting ref info at the beginning -----------------------------------------
void TR_LocalLiveRangeReduction::collectInfo(TR::TreeTop *entryTree,TR::TreeTop *exitTree)
   {

   TR::TreeTop *currentTree = entryTree;
   TR_TreeRefInfo *treeRefInfo;
   int32_t i = 0;
   int32_t maxRefCount = 0;
   vcount_t visitCount = comp()->getVisitCount();

   while (!(currentTree == exitTree))
      {
      treeRefInfo = new (trStackMemory()) TR_TreeRefInfo(currentTree, trMemory());
      collectRefInfo(treeRefInfo, currentTree->getNode(),visitCount,&maxRefCount);
      _treesRefInfoArray[i++] = treeRefInfo;
      initPotentialDeps(treeRefInfo);
      treeRefInfo->resetSyms();
      populatePotentialDeps(treeRefInfo,treeRefInfo->getTreeTop()->getNode());
      currentTree = currentTree->getNextTreeTop();
      }

   comp()->setVisitCount(visitCount+maxRefCount);

   }
コード例 #6
0
//add pair into dependant list
void  TR_LocalLiveRangeReduction::addDepPair(TR_TreeRefInfo *dep,TR_TreeRefInfo *anchor)
   {
   DepPair *depPair = new (trStackMemory()) DepPair(dep,anchor);
   _depPairList.add(depPair);
   }
コード例 #7
0
bool TR_LocalLiveRangeReduction::moveTreeBefore(TR_TreeRefInfo *treeToMove,TR_TreeRefInfo *anchor,int32_t passNumber)
   {
   TR::TreeTop *treeToMoveTT = treeToMove->getTreeTop();
   TR::TreeTop *anchorTT = anchor->getTreeTop();
   if (treeToMoveTT->getNextRealTreeTop() == anchorTT)
      {
      addDepPair(treeToMove, anchor);
      return false;
      }

   if (!performTransformation(comp(), "%sPass %d: moving tree [%p] before Tree %p\n", OPT_DETAILS, passNumber, treeToMoveTT->getNode(),anchorTT->getNode()))
      return false;

   //   printf("Moving [%p] before Tree %p\n",  treeToMoveTT->getNode(),anchorTT->getNode());


   //changing location in block
   TR::TreeTop *origPrevTree = treeToMoveTT->getPrevTreeTop();
   TR::TreeTop *origNextTree = treeToMoveTT->getNextTreeTop();
   origPrevTree->setNextTreeTop(origNextTree);
   origNextTree->setPrevTreeTop(origPrevTree);
   TR::TreeTop *prevTree = anchorTT->getPrevTreeTop();
   anchorTT->setPrevTreeTop(treeToMoveTT);
   treeToMoveTT->setNextTreeTop(anchorTT);
   treeToMoveTT->setPrevTreeTop(prevTree);
   prevTree->setNextTreeTop(treeToMoveTT);

   //UPDATE REFINFO
   //find locations of treeTops in TreeTopsRefInfo array
   //startIndex points to the currentTree that has moved
   //endIndex points to the treeTop after which we moved the tree (nextTree)

   int32_t startIndex = getIndexInArray(treeToMove);
   int32_t endIndex = getIndexInArray(anchor)-1;
   int32_t i=0;
   for ( i = startIndex+1; i<= endIndex ; i++)
      {
      TR_TreeRefInfo *currentTreeRefInfo = _treesRefInfoArray[i];
      List<TR::Node> *firstList = currentTreeRefInfo->getFirstRefNodesList();
      List<TR::Node> *midList = currentTreeRefInfo->getMidRefNodesList();
      List<TR::Node> *lastList = currentTreeRefInfo->getLastRefNodesList();
      List<TR::Node> *M_firstList = treeToMove->getFirstRefNodesList();
      List<TR::Node> *M_midList = treeToMove->getMidRefNodesList();
      List<TR::Node> *M_lastList = treeToMove->getLastRefNodesList();

      if (trace())
    	 {
    	 traceMsg(comp(),"Before move:\n");
    	 printRefInfo(treeToMove);
    	 printRefInfo(currentTreeRefInfo);
    	 }

      updateRefInfo(treeToMove->getTreeTop()->getNode(), currentTreeRefInfo, treeToMove , false);
      treeToMove->resetSyms();
      currentTreeRefInfo->resetSyms();
      populatePotentialDeps(currentTreeRefInfo,currentTreeRefInfo->getTreeTop()->getNode());
      populatePotentialDeps(treeToMove,treeToMove->getTreeTop()->getNode());

      if (trace())
    	 {
    	 traceMsg(comp(),"After move:\n");
    	 printRefInfo(treeToMove);
    	 printRefInfo(currentTreeRefInfo);
    	 traceMsg(comp(),"------------------------\n");
    	 }
      }

   TR_TreeRefInfo *temp = _treesRefInfoArray[startIndex];
   for (i = startIndex; i< endIndex ; i++)
      {
      _treesRefInfoArray[i] = _treesRefInfoArray[i+1];
      }

   _treesRefInfoArray[endIndex]=temp;

#if defined(DEBUG) || defined(PROD_WITH_ASSUMES)
   if (!(comp()->getOption(TR_EnableParanoidOptCheck) || debug("paranoidOptCheck")))
      return true;

   //verifier
   {
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());

   vcount_t visitCount = comp()->getVisitCount();
   int32_t maxRefCount = 0;
   TR::TreeTop *tt;
   TR_TreeRefInfo **treesRefInfoArrayTemp = (TR_TreeRefInfo**)trMemory()->allocateStackMemory(_numTreeTops*sizeof(TR_TreeRefInfo*));
   memset(treesRefInfoArrayTemp, 0, _numTreeTops*sizeof(TR_TreeRefInfo*));
   TR_TreeRefInfo *treeRefInfoTemp;


   //collect info
   for ( int32_t i  = 0; i<_numTreeTops-1; i++)
      {
      tt =_treesRefInfoArray[i]->getTreeTop();
      treeRefInfoTemp = new (trStackMemory()) TR_TreeRefInfo(tt, trMemory());
      collectRefInfo(treeRefInfoTemp, tt->getNode(),visitCount,&maxRefCount);
      treesRefInfoArrayTemp[i] = treeRefInfoTemp;
      }

   comp()->setVisitCount(visitCount+maxRefCount);

   for ( int32_t i  = 0; i<_numTreeTops-1; i++)
      {
      if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getFirstRefNodesList(),_treesRefInfoArray[i]->getFirstRefNodesList()))
    	 {
    	 printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]);
    	 TR_ASSERT(0,"fail to verify firstRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode());
    	 }

      if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getMidRefNodesList(),_treesRefInfoArray[i]->getMidRefNodesList()))
    	 {
    	 printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]);
    	 TR_ASSERT(0,"fail to verify midRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode());
    	 }

      if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getLastRefNodesList(),_treesRefInfoArray[i]->getLastRefNodesList()))
    	 {
    	 printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]);
    	 TR_ASSERT(0,"fail to verify lastRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode());
    	 }


       }
   } // scope of the stack memory region

#endif
   return true;
   }
コード例 #8
0
void TR_LocalLiveRangeReduction::prePerformOnBlocks()
   {
   comp()->incVisitCount();
    int32_t symRefCount = comp()->getSymRefCount();
   _temp = new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc);
   }
コード例 #9
0
ファイル: ARM64SystemLinkage.cpp プロジェクト: LinHu2016/omr
int32_t TR::ARM64SystemLinkage::buildArgs(TR::Node *callNode,
                                       TR::RegisterDependencyConditions *dependencies)

   {
   const TR::ARM64LinkageProperties &properties = getProperties();
   TR::ARM64MemoryArgument *pushToMemory = NULL;
   TR::Register *argMemReg;
   TR::Register *tempReg;
   int32_t argIndex = 0;
   int32_t numMemArgs = 0;
   int32_t argSize = 0;
   int32_t numIntegerArgs = 0;
   int32_t numFloatArgs = 0;
   int32_t totalSize;
   int32_t i;

   TR::Node *child;
   TR::DataType childType;
   TR::DataType resType = callNode->getType();

   uint32_t firstArgumentChild = callNode->getFirstArgumentIndex();

   /* Step 1 - figure out how many arguments are going to be spilled to memory i.e. not in registers */
   for (i = firstArgumentChild; i < callNode->getNumChildren(); i++)
      {
      child = callNode->getChild(i);
      childType = child->getDataType();

      switch (childType)
         {
         case TR::Int8:
         case TR::Int16:
         case TR::Int32:
         case TR::Int64:
         case TR::Address:
            if (numIntegerArgs >= properties.getNumIntArgRegs())
               numMemArgs++;
            numIntegerArgs++;
            break;

         case TR::Float:
         case TR::Double:
            if (numFloatArgs >= properties.getNumFloatArgRegs())
                  numMemArgs++;
            numFloatArgs++;
            break;

         default:
            TR_ASSERT(false, "Argument type %s is not supported\n", childType.toString());
         }
      }

   // From here, down, any new stack allocations will expire / die when the function returns
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());
   /* End result of Step 1 - determined number of memory arguments! */
   if (numMemArgs > 0)
      {
      pushToMemory = new (trStackMemory()) TR::ARM64MemoryArgument[numMemArgs];

      argMemReg = cg()->allocateRegister();
      }

   totalSize = numMemArgs * 8;
   // align to 16-byte boundary
   totalSize = (totalSize + 15) & (~15);

   numIntegerArgs = 0;
   numFloatArgs = 0;

   for (i = firstArgumentChild; i < callNode->getNumChildren(); i++)
      {
      TR::MemoryReference *mref = NULL;
      TR::Register *argRegister;
      TR::InstOpCode::Mnemonic op;

      child = callNode->getChild(i);
      childType = child->getDataType();

      switch (childType)
         {
         case TR::Int8:
         case TR::Int16:
         case TR::Int32:
         case TR::Int64:
         case TR::Address:
            if (childType == TR::Address)
               argRegister = pushAddressArg(child);
            else if (childType == TR::Int64)
               argRegister = pushLongArg(child);
            else
               argRegister = pushIntegerWordArg(child);

            if (numIntegerArgs < properties.getNumIntArgRegs())
               {
               if (!cg()->canClobberNodesRegister(child, 0))
                  {
                  if (argRegister->containsCollectedReference())
                     tempReg = cg()->allocateCollectedReferenceRegister();
                  else
                     tempReg = cg()->allocateRegister();
                  generateMovInstruction(cg(), callNode, tempReg, argRegister);
                  argRegister = tempReg;
                  }
               if (numIntegerArgs == 0 &&
                  (resType.isAddress() || resType.isInt32() || resType.isInt64()))
                  {
                  TR::Register *resultReg;
                  if (resType.isAddress())
                     resultReg = cg()->allocateCollectedReferenceRegister();
                  else
                     resultReg = cg()->allocateRegister();

                  dependencies->addPreCondition(argRegister, TR::RealRegister::x0);
                  dependencies->addPostCondition(resultReg, TR::RealRegister::x0);
                  }
               else
                  {
                  addDependency(dependencies, argRegister, properties.getIntegerArgumentRegister(numIntegerArgs), TR_GPR, cg());
                  }
               }
            else
               {
               // numIntegerArgs >= properties.getNumIntArgRegs()
               if (childType == TR::Address || childType == TR::Int64)
                  {
                  op = TR::InstOpCode::strpostx;
                  }
               else
                  {
                  op = TR::InstOpCode::strpostw;
                  }
               mref = getOutgoingArgumentMemRef(argMemReg, argRegister, op, pushToMemory[argIndex++]);
               argSize += 8; // always 8-byte aligned
               }
            numIntegerArgs++;
            break;

         case TR::Float:
         case TR::Double:
            if (childType == TR::Float)
               argRegister = pushFloatArg(child);
            else
               argRegister = pushDoubleArg(child);

            if (numFloatArgs < properties.getNumFloatArgRegs())
               {
               if (!cg()->canClobberNodesRegister(child, 0))
                  {
                  tempReg = cg()->allocateRegister(TR_FPR);
                  op = (childType == TR::Float) ? TR::InstOpCode::fmovs : TR::InstOpCode::fmovd;
                  generateTrg1Src1Instruction(cg(), op, callNode, tempReg, argRegister);
                  argRegister = tempReg;
                  }
               if ((numFloatArgs == 0 && resType.isFloatingPoint()))
                  {
                  TR::Register *resultReg;
                  if (resType.getDataType() == TR::Float)
                     resultReg = cg()->allocateSinglePrecisionRegister();
                  else
                     resultReg = cg()->allocateRegister(TR_FPR);

                  dependencies->addPreCondition(argRegister, TR::RealRegister::v0);
                  dependencies->addPostCondition(resultReg, TR::RealRegister::v0);
                  }
               else
                  {
                  addDependency(dependencies, argRegister, properties.getFloatArgumentRegister(numFloatArgs), TR_FPR, cg());
                  }
               }
            else
               {
               // numFloatArgs >= properties.getNumFloatArgRegs()
               if (childType == TR::Double)
                  {
                  op = TR::InstOpCode::vstrpostd;
                  }
               else
                  {
                  op = TR::InstOpCode::vstrposts;
                  }
               mref = getOutgoingArgumentMemRef(argMemReg, argRegister, op, pushToMemory[argIndex++]);
               argSize += 8; // always 8-byte aligned
               }
            numFloatArgs++;
            break;
         } // end of switch
      } // end of for

   // NULL deps for non-preserved and non-system regs
   while (numIntegerArgs < properties.getNumIntArgRegs())
      {
      if (numIntegerArgs == 0 && resType.isAddress())
         {
         dependencies->addPreCondition(cg()->allocateRegister(), properties.getIntegerArgumentRegister(0));
         dependencies->addPostCondition(cg()->allocateCollectedReferenceRegister(), properties.getIntegerArgumentRegister(0));
         }
      else
         {
         addDependency(dependencies, NULL, properties.getIntegerArgumentRegister(numIntegerArgs), TR_GPR, cg());
         }
      numIntegerArgs++;
      }

   int32_t floatRegsUsed = (numFloatArgs > properties.getNumFloatArgRegs()) ? properties.getNumFloatArgRegs() : numFloatArgs;
   for (i = (TR::RealRegister::RegNum)((uint32_t)TR::RealRegister::v0 + floatRegsUsed); i <= TR::RealRegister::LastFPR; i++)
      {
      if (!properties.getPreserved((TR::RealRegister::RegNum)i))
         {
         // NULL dependency for non-preserved regs
         addDependency(dependencies, NULL, (TR::RealRegister::RegNum)i, TR_FPR, cg());
         }
      }

   if (numMemArgs > 0)
      {
      TR::RealRegister *sp = cg()->machine()->getRealRegister(properties.getStackPointerRegister());
      generateTrg1Src1ImmInstruction(cg(), TR::InstOpCode::subimmx, callNode, argMemReg, sp, totalSize);

      for (argIndex = 0; argIndex < numMemArgs; argIndex++)
         {
         TR::Register *aReg = pushToMemory[argIndex].argRegister;
         generateMemSrc1Instruction(cg(), pushToMemory[argIndex].opCode, callNode, pushToMemory[argIndex].argMemory, aReg);
         cg()->stopUsingRegister(aReg);
         }

      cg()->stopUsingRegister(argMemReg);
      }

   return totalSize;
   }
コード例 #10
0
TR_ExpressionsSimplification::LoopInfo*
TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region)
   {
   ListIterator<TR::CFGEdge> exitEdges(&region->getExitEdges());

   if (region->getExitEdges().getSize() != 1)
      {
      if (trace())
         traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n");
      return 0;
      }

   TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom());

   if (!exitNode->getStructure()->asBlock())
      {
      if (trace())
         traceMsg(comp(), "The exit block can't be found\n");
      return 0;
      }

   TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock();
   TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode();

   if (trace())
      {
      traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber());
      traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock);
      }


   if (!lastTreeInExitBlock->getOpCode().isBranch())
      {
      if (trace())
         traceMsg(comp(), "The branch node couldn't be found\n");
      return 0;
      }

   if (lastTreeInExitBlock->getNumChildren() < 2)
      {
      if (trace())
         traceMsg(comp(), "The branch node has less than 2 children\n");
      return 0;
      }

   TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild();
   TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild();

   if (!firstChildOfLastTree->getOpCode().hasSymbolReference())
      {
      if (trace())
         traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree);
      return 0;
      }

   TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference();

   if (trace())
      traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol());

   // Locate the induction variable that matches with the exit node symbol
   //
   TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef);
   if (!indVar) return 0;

   if (!indVar->getIncr()->asIntConst())
      {
      if (trace())
         traceMsg(comp(), "Increment is not a constant\n");
      return 0;
      }

   int32_t increment = indVar->getIncr()->getLowInt();

   _visitCount = comp()->incVisitCount();
   bool indVarWrittenAndUsedUnexpectedly = false;
   if (firstChildOfLastTree->getReferenceCount() > 1)
      {
      TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry();
      TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit();

      bool loadSeen = false;
      while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock)
         {
         TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode();
         if (checkForLoad(cursorNode, firstChildOfLastTree))
            loadSeen = true;

         if (!cursorNode->getOpCode().isStore() &&
             (cursorNode->getNumChildren() > 0))
           cursorNode = cursorNode->getFirstChild();

         if (cursorNode->getOpCode().isStore() &&
             (cursorNode->getSymbolReference() == firstChildSymRef))
            {
            indVarWrittenAndUsedUnexpectedly = true;
            if ((cursorNode->getFirstChild() == firstChildOfLastTree) ||
                !loadSeen)
               indVarWrittenAndUsedUnexpectedly = false;
            else
               break;
            }

         cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop();
         }
      }

   if (indVarWrittenAndUsedUnexpectedly)
      {
      return 0;
      }

   int32_t lowerBound;
   int32_t upperBound = 0;
   TR::Node *bound = 0;
   bool equals = false;

   switch(lastTreeInExitBlock->getOpCodeValue())
      {
      case TR::ificmplt:
      case TR::ificmpgt:
         equals = true;
      case TR::ificmple:
      case TR::ificmpge:
         if (!(indVar->getEntry() && indVar->getEntry()->asIntConst()))
            {
            if (trace())
               traceMsg(comp(), "Entry value is not a constant\n");
            return 0;
            }
         lowerBound = indVar->getEntry()->getLowInt();

         if (secondChildOfLastTree->getOpCode().isLoadConst())
            {
            upperBound = secondChildOfLastTree->getInt();
            }
         else if (secondChildOfLastTree->getOpCode().isLoadVar())
            {
            bound = secondChildOfLastTree;
            }
         else
            {
            if (trace())
               traceMsg(comp(), "Second child is not a const or a load\n");
            return 0;
            }
         return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals);


      default:
         if (trace())
            traceMsg(comp(), "The condition has not been implemeted\n");
         return 0;
      }

   return 0;
   }
コード例 #11
0
void TR_ExpressionsSimplification::simplifyInvariantLoopExpressions(ListIterator<TR::Block> &blocks)
   {
   // Need to locate the induction variable of the loop
   //
   LoopInfo *loopInfo = findLoopInfo(_currentRegion);

   if (trace())
      {
      if (!loopInfo)
         {
         traceMsg(comp(), "Accurate loop info is not found, cannot carry out summation reduction\n");
         }
      else
         {
         traceMsg(comp(), "Accurate loop info has been found, will try to carry out summation reduction\n");
         if (loopInfo->getBoundaryNode())
            {
            traceMsg(comp(), "Variable iterations from node %p has not been handled\n",loopInfo->getBoundaryNode());
            }
         else
            {
            traceMsg(comp(), "Natural Loop %p will run %d times\n", _currentRegion, loopInfo->getNumIterations());
            }
         }
      }

   // Initialize the list of candidates
   //
   _candidateTTs = new (trStackMemory()) TR_ScratchList<TR::TreeTop>(trMemory());

   for (TR::Block *currentBlock = blocks.getFirst(); currentBlock; currentBlock  = blocks.getNext())
      {
      if (trace())
         traceMsg(comp(), "Analyzing block #%d, which must be executed once per iteration\n", currentBlock->getNumber());


      // Scan through each node in the block
      //
      TR::TreeTop *tt = currentBlock->getEntry();
      TR::TreeTop *exitTreeTop = currentBlock->getExit();
      while (tt != exitTreeTop)
         {
         TR::Node *currentNode = tt->getNode();
         if (trace())
            traceMsg(comp(), "Analyzing tree top node %p\n", currentNode);

         if (loopInfo)
            {
            // requires loop info for the number of iterations
            setSummationReductionCandidates(currentNode, tt);
            }
         setStoreMotionCandidates(currentNode, tt);

         tt = tt->getNextTreeTop();
         }
      }

   // New code: without using any UDI
   // walk through the trees in the loop
   // to invalidate the candidates
   //
   if (!_supportedExpressions)
      {
      _supportedExpressions = new (trStackMemory()) TR_BitVector(comp()->getNodeCount(), trMemory(), stackAlloc, growable);
      }

   invalidateCandidates();

   ListIterator<TR::TreeTop> treeTops(_candidateTTs);
   for (TR::TreeTop *treeTop = treeTops.getFirst(); treeTop; treeTop = treeTops.getNext())
      {
      if (trace())
         traceMsg(comp(), "Candidate TreeTop: %p, Node:%p\n", treeTop, treeTop->getNode());

      bool usedCandidate = false;
      bool isPreheaderBlockInvalid = false;

      if (loopInfo)
         {
         usedCandidate = tranformSummationReductionCandidate(treeTop, loopInfo, &isPreheaderBlockInvalid);
         }

      if (isPreheaderBlockInvalid)
         {
         break;
         }

      if (!usedCandidate)
         {
         tranformStoreMotionCandidate(treeTop, &isPreheaderBlockInvalid);
         }
      if (isPreheaderBlockInvalid)
         {
         break;
         }
      }
   }
コード例 #12
0
ファイル: LocalAnalysis.cpp プロジェクト: jduimovich/omr
TR_LocalAnalysisInfo::TR_LocalAnalysisInfo(TR::Compilation *c, bool t)
   : _compilation(c), _trace(t), _trMemory(c->trMemory())
   {
   _numNodes = -1;

#if 0  // somehow stops PRE from happening
   // We are going to increment visit count for every tree so can reach max
   // for big methods quickly. Perhaps can improve containsCall() in the future.
   comp()->resetVisitCounts(0);
#endif
   if (comp()->getVisitCount() > HIGH_VISIT_COUNT)
      {
      _compilation->resetVisitCounts(1);
      dumpOptDetails(comp(), "\nResetting visit counts for this method before LocalAnalysisInfo\n");
      }

   TR::CFG *cfg = comp()->getFlowGraph();
   _numBlocks = cfg->getNextNodeNumber();
   TR_ASSERT(_numBlocks > 0, "Local analysis, node numbers not assigned");

   // Allocate information on the stack. It is the responsibility of the user
   // of this class to determine the life of the information by using jitStackMark
   // and jitStackRelease.
   //
   //_blocksInfo = (TR::Block **) trMemory()->allocateStackMemory(_numBlocks*sizeof(TR::Block *));
   //memset(_blocksInfo, 0, _numBlocks*sizeof(TR::Block *));

   TR::TreeTop *currentTree = comp()->getStartTree();

   // Only do this if not done before; typically this would be done in the
   // first call to this method through LocalTransparency and would NOT
   // need to be re-done by LocalAnticipatability.
   //
   if (_numNodes < 0)
      {
      _optimizer = comp()->getOptimizer();

      int32_t numBuckets;
      int32_t numNodes = comp()->getNodeCount();
      if (numNodes < 10)
         numBuckets = 1;
      else if (numNodes < 100)
         numBuckets = 7;
      else if (numNodes < 500)
         numBuckets = 31;
      else if (numNodes < 3000)
         numBuckets = 127;
      else if (numNodes < 6000)
         numBuckets = 511;
      else
         numBuckets = 1023;

      // Allocate hash table for matching expressions
      //
      HashTable hashTable(numBuckets, comp());
      _hashTable = &hashTable;

      // Null checks are handled differently as the criterion for
      // commoning a null check is different than that used for
      // other nodes; for a null check, the null check reference is
      // important (and not the actual indirect access itself)
      //
      _numNullChecks = 0;
      while (currentTree)
         {
         if (currentTree->getNode()->getOpCodeValue() == TR::NULLCHK)
         //////if (currentTree->getNode()->getOpCode().isNullCheck())
            _numNullChecks++;

         currentTree = currentTree->getNextTreeTop();
         }

      if (_numNullChecks == 0)
         _nullCheckNodesAsArray = NULL;
      else
         {
         _nullCheckNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNullChecks*sizeof(TR::Node*));
         memset(_nullCheckNodesAsArray, 0, _numNullChecks*sizeof(TR::Node*));
         }

      currentTree = comp()->getStartTree();
      int32_t symRefCount = comp()->getSymRefCount();
      _checkSymbolReferences = new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc);

      _numNodes = 1;
      _numNullChecks = 0;

      // This loop counts all the nodes that are going to take part in PRE.
      // This is a computation intensive loop as we check if the node that
      // is syntactically equivalent to a given node has been seen before
      // and if so we use the local index of the original node (that
      // is syntactically equivalent to the given node). Could be improved
      // in complexity with value numbering at some stage.
      //
      _visitCount = comp()->incVisitCount();
      while (currentTree)
         {
         TR::Node *firstNodeInTree = currentTree->getNode();
         TR::ILOpCode *opCode = &firstNodeInTree->getOpCode();

         if (((firstNodeInTree->getOpCodeValue() == TR::treetop) ||
              (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) &&
             (firstNodeInTree->getFirstChild()->getOpCode().isStore()))
            {
            firstNodeInTree->setLocalIndex(-1);
            if (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())
               firstNodeInTree->getSecondChild()->setLocalIndex(-1);

            firstNodeInTree = firstNodeInTree->getFirstChild();
            opCode = &firstNodeInTree->getOpCode();
            }

         // This call finds nodes with opcodes that are supported by PRE
         // in this subtree; this accounts for all opcodes other than stores/checks
         // which are handled later on below
         //
         bool firstNodeInTreeHasCallsInStoreLhs = false;
         countSupportedNodes(firstNodeInTree, NULL, firstNodeInTreeHasCallsInStoreLhs);

         if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) ||
             opCode->isCheck())
            {
            int32_t oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree);

            //
            // Return value 0 denotes that the node contains some sub-expression
            // that cannot participate in PRE; e.g. a call or a new
            //
            // Return value -1 denotes that the node can participate in PRE
            // but did not match with any existing expression seen so far
            //
            // Any other return value (should be positive always) denotes that
            // the node can participate in PRE and has been matched with a seen
            // expression having local index == return value
            //
            if (oldExpressionOnRhs == -1)
               {
               if (trace())
                  {
                  traceMsg(comp(), "\nExpression #%d is : \n", _numNodes);
                  comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree, 6, true);
                  }

               firstNodeInTree->setLocalIndex(_numNodes++);
               }
            else
               firstNodeInTree->setLocalIndex(oldExpressionOnRhs);

            if (opCode->isCheck() &&
                (firstNodeInTree->getFirstChild()->getOpCode().isStore() &&
                 !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm()))
               {
               int oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree->getFirstChild());

               if (oldExpressionOnRhs == -1)
                  {
                  if (trace())
                     {
                     traceMsg(comp(), "\nExpression #%d is : \n", _numNodes);
                     comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree->getFirstChild(), 6, true);
                     }

                  firstNodeInTree->getFirstChild()->setLocalIndex(_numNodes++);
                  }
               else
                  firstNodeInTree->getFirstChild()->setLocalIndex(oldExpressionOnRhs);
               }
            }
         else
            firstNodeInTree->setLocalIndex(-1);

         currentTree = currentTree->getNextTreeTop();
         }
      }

   _supportedNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNodes*sizeof(TR::Node*));
   memset(_supportedNodesAsArray, 0, _numNodes*sizeof(TR::Node*));
   _checkExpressions = new (trStackMemory()) TR_BitVector(_numNodes, trMemory(), stackAlloc);

   //_checkExpressions.init(_numNodes, trMemory(), stackAlloc);

   // This loop goes through the trees and collects the nodes
   // that would take part in PRE. Each node has its local index set to
   // the bit position that it occupies in the bit vector analyses.
   //
   currentTree = comp()->getStartTree();
   _visitCount = comp()->incVisitCount();
   while (currentTree)
      {
      TR::Node *firstNodeInTree = currentTree->getNode();
      TR::ILOpCode *opCode = &firstNodeInTree->getOpCode();

      if (((firstNodeInTree->getOpCodeValue() == TR::treetop) ||
           (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) &&
          (firstNodeInTree->getFirstChild()->getOpCode().isStore()))
         {
         firstNodeInTree = firstNodeInTree->getFirstChild();
         opCode = &firstNodeInTree->getOpCode();
         }

      collectSupportedNodes(firstNodeInTree, NULL);

      if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) ||
          opCode->isCheck())
         {
        if (opCode->isCheck())
            {
            _checkSymbolReferences->set(firstNodeInTree->getSymbolReference()->getReferenceNumber());
            _checkExpressions->set(firstNodeInTree->getLocalIndex());
            }

         if (!_supportedNodesAsArray[firstNodeInTree->getLocalIndex()])
            _supportedNodesAsArray[firstNodeInTree->getLocalIndex()] = firstNodeInTree;

         if (opCode->isCheck() &&
             firstNodeInTree->getFirstChild()->getOpCode().isStore() &&
             !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm() &&
             !_supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()])
            _supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()] = firstNodeInTree->getFirstChild();
         }

      currentTree = currentTree->getNextTreeTop();
      }

   //initialize(toBlock(cfg->getStart()));
   }