/** * __request_module - try to load a kernel module * @wait: wait (or not) for the operation to complete * @fmt: printf style format string for the name of the module * @...: arguments as specified in the format string * * Load a module using the user mode module loader. The function returns * zero on success or a negative errno code on failure. Note that a * successful module load does not mean the module did not then unload * and exit on an error of its own. Callers must check that the service * they requested is now available not blindly invoke it. * * If module auto-loading support is disabled then this function * becomes a no-operation. */ int __request_module(bool wait, const char *fmt, ...) { va_list args; char module_name[MODULE_NAME_LEN]; unsigned int max_modprobes; int ret; char *argv[] = { modprobe_path, "-q", "--", module_name, NULL }; static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; static atomic_t kmod_concurrent = ATOMIC_INIT(0); #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */ static int kmod_loop_msg; va_start(args, fmt); ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); va_end(args); if (ret >= MODULE_NAME_LEN) return -ENAMETOOLONG; ret = security_kernel_module_request(module_name); if (ret) return ret; /* If modprobe needs a service that is in a module, we get a recursive * loop. Limit the number of running kmod threads to max_threads/2 or * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method * would be to run the parents of this process, counting how many times * kmod was invoked. That would mean accessing the internals of the * process tables to get the command line, proc_pid_cmdline is static * and it is not worth changing the proc code just to handle this case. * KAO. * * "trace the ppid" is simple, but will fail if someone's * parent exits. I think this is as good as it gets. --RR */ max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT); atomic_inc(&kmod_concurrent); if (atomic_read(&kmod_concurrent) > max_modprobes) { /* We may be blaming an innocent here, but unlikely */ if (kmod_loop_msg++ < 5) printk(KERN_ERR "request_module: runaway loop modprobe %s\n", module_name); atomic_dec(&kmod_concurrent); return -ENOMEM; } trace_module_request(module_name, wait, _RET_IP_); ret = call_usermodehelper_fns(modprobe_path, argv, envp, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC, NULL, NULL, NULL); atomic_dec(&kmod_concurrent); return ret; }
int __request_module(bool wait, const char *fmt, ...) { va_list args; char module_name[MODULE_NAME_LEN]; unsigned int max_modprobes; int ret; char *argv[] = { modprobe_path, "-q", "--", module_name, NULL }; static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; static atomic_t kmod_concurrent = ATOMIC_INIT(0); #define MAX_KMOD_CONCURRENT 50 static int kmod_loop_msg; ret = security_kernel_module_request(); if (ret) return ret; va_start(args, fmt); ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); va_end(args); if (ret >= MODULE_NAME_LEN) return -ENAMETOOLONG; max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT); atomic_inc(&kmod_concurrent); if (atomic_read(&kmod_concurrent) > max_modprobes) { if (kmod_loop_msg++ < 5) printk(KERN_ERR "request_module: runaway loop modprobe %s\n", module_name); atomic_dec(&kmod_concurrent); return -ENOMEM; } trace_module_request(module_name, wait, _RET_IP_); ret = call_usermodehelper(modprobe_path, argv, envp, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC); atomic_dec(&kmod_concurrent); return ret; }