コード例 #1
0
ファイル: io.c プロジェクト: CDACBANG/u-boot-wingz
/**
 * self_check_write - make sure write succeeded.
 * @ubi: UBI device description object
 * @buf: buffer with data which were written
 * @pnum: physical eraseblock number the data were written to
 * @offset: offset within the physical eraseblock the data were written to
 * @len: how many bytes were written
 *
 * This functions reads data which were recently written and compares it with
 * the original data buffer - the data have to match. Returns zero if the data
 * match and a negative error code if not or in case of failure.
 */
static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
			    int offset, int len)
{
	int err, i;
	size_t read;
	void *buf1;
	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;

	if (!ubi_dbg_chk_io(ubi))
		return 0;

	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
	if (!buf1) {
		ubi_err("cannot allocate memory to check writes");
		return 0;
	}

	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
	if (err && !mtd_is_bitflip(err))
		goto out_free;

	for (i = 0; i < len; i++) {
		uint8_t c = ((uint8_t *)buf)[i];
		uint8_t c1 = ((uint8_t *)buf1)[i];
#if !defined(CONFIG_UBI_SILENCE_MSG)
		int dump_len = max_t(int, 128, len - i);
#endif

		if (c == c1)
			continue;

		ubi_err("self-check failed for PEB %d:%d, len %d",
			pnum, offset, len);
		ubi_msg("data differ at position %d", i);
		ubi_msg("hex dump of the original buffer from %d to %d",
			i, i + dump_len);
		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
			       buf + i, dump_len, 1);
		ubi_msg("hex dump of the read buffer from %d to %d",
			i, i + dump_len);
		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
			       buf1 + i, dump_len, 1);
		dump_stack();
		err = -EINVAL;
		goto out_free;
	}

	vfree(buf1);
	return 0;

out_free:
	vfree(buf1);
	return err;
}
コード例 #2
0
ファイル: ubispl.c プロジェクト: 0xFelix/u-boot-edminiv2
static int ubi_io_read_vid_hdr(struct ubi_scan_info *ubi, int pnum,
			       struct ubi_vid_hdr *vh, int unused)
{
	u32 magic;
	int res;

	/* No point in rescanning a corrupt block */
	if (test_bit(pnum, ubi->corrupt))
		return UBI_IO_BAD_HDR;
	/*
	 * If the block has been scanned already, no need to rescan
	 */
	if (test_and_set_bit(pnum, ubi->scanned))
		return 0;

	res = ubi_io_read(ubi, vh, pnum, ubi->vid_offset, sizeof(*vh));

	/*
	 * Bad block, unrecoverable ECC error, skip the block
	 */
	if (res) {
		ubi_dbg("Skipping bad or unreadable block %d", pnum);
		vh->magic = 0;
		generic_set_bit(pnum, ubi->corrupt);
		return res;
	}

	/* Magic number available ? */
	magic = be32_to_cpu(vh->magic);
	if (magic != UBI_VID_HDR_MAGIC) {
		generic_set_bit(pnum, ubi->corrupt);
		if (magic == 0xffffffff)
			return UBI_IO_FF;
		ubi_msg("Bad magic in block 0%d %08x", pnum, magic);
		return UBI_IO_BAD_HDR;
	}

	/* Header CRC correct ? */
	if (crc32(UBI_CRC32_INIT, vh, UBI_VID_HDR_SIZE_CRC) !=
	    be32_to_cpu(vh->hdr_crc)) {
		ubi_msg("Bad CRC in block 0%d", pnum);
		generic_set_bit(pnum, ubi->corrupt);
		return UBI_IO_BAD_HDR;
	}

	ubi_dbg("RV: pnum: %i sqnum %llu", pnum, be64_to_cpu(vh->sqnum));

	return 0;
}
コード例 #3
0
ファイル: io.c プロジェクト: John677/Kernal_k3note
/* Read one page with oob one time */
int ubi_io_read_oob(const struct ubi_device *ubi, void *databuf, void *oobbuf,
                int pnum, int offset)
{
        int err;
        loff_t addr;
        struct mtd_oob_ops ops;

        dbg_io("read from PEB %d:%d", pnum, offset);

        ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
        ubi_assert(offset >= 0 && offset + ubi->mtd->writesize <= ubi->peb_size);

        addr = (loff_t)pnum * ubi->peb_size + offset;

        ops.mode = MTD_OPS_AUTO_OOB;
        ops.ooblen = ubi->mtd->oobavail;
        ops.oobbuf = oobbuf;
        ops.ooboffs = 0;
        ops.len = ubi->mtd->writesize;
        ops.datbuf = databuf;
        ops.retlen = ops.oobretlen = 0;

        err = mtd_read_oob(ubi->mtd, addr, &ops);
        if (err) {
                if (err == -EUCLEAN) {
                        /*
                         * -EUCLEAN is reported if there was a bit-flip which
                         * was corrected, so this is harmless.
                         *
                         * We do not report about it here unless debugging is
                         * enabled. A corresponding message will be printed
                         * later, when it is has been scrubbed.
                         */
                        ubi_msg("fixable bit-flip detected at addr %lld", addr);
                        if(oobbuf)
                                ubi_assert(ops.oobretlen == ops.ooblen);
                        return UBI_IO_BITFLIPS;
                }
                if (ops.retlen != ops.len && err == -EBADMSG) {
                        ubi_err("err(%d), retlen(%zu), len(%zu)", err, ops.retlen, ops.len);
			dump_stack();
                        err = -EIO;
                }
		ubi_msg("mtd_read_oob err %d\n", err);
        }

        return err;
}
コード例 #4
0
ファイル: io.c プロジェクト: KaZoom/buildroot-linux-kernel-m3
/**
 * ubi_dbg_check_all_ff - check that a region of flash is empty.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock number to check
 * @offset: the starting offset within the physical eraseblock to check
 * @len: the length of the region to check
 *
 * This function returns zero if only 0xFF bytes are present at offset
 * @offset of the physical eraseblock @pnum, and a negative error code if not
 * or if an error occurred.
 */
int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
{
	size_t read;
	int err;
	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;

	mutex_lock(&ubi->dbg_buf_mutex);
	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
	if (err && err != -EUCLEAN) {
		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
			"read %zd bytes", err, len, pnum, offset, read);
		goto error;
	}

	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
	if (err == 0) {
		ubi_err("flash region at PEB %d:%d, length %d does not "
			"contain all 0xFF bytes", pnum, offset, len);
		goto fail;
	}
	mutex_unlock(&ubi->dbg_buf_mutex);

	return 0;

fail:
	ubi_err("paranoid check failed for PEB %d", pnum);
	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
		       ubi->dbg_peb_buf, len, 1);
	err = -EINVAL;
error:
	ubi_dbg_dump_stack();
	mutex_unlock(&ubi->dbg_buf_mutex);
	return err;
}
コード例 #5
0
ファイル: cdev.c プロジェクト: bmourit/barebox
int ubi_volume_cdev_add(struct ubi_device *ubi, struct ubi_volume *vol)
{
	struct cdev *cdev = &vol->cdev;
	struct ubi_volume_cdev_priv *priv;
	int ret;

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);

	priv->vol = vol;
	priv->ubi = ubi;

	cdev->ops = &ubi_volume_fops;
	cdev->name = asprintf("ubi%d.%s", ubi->ubi_num, vol->name);
	cdev->priv = priv;
	cdev->size = vol->used_bytes;
	cdev->dev = &vol->dev;
	ubi_msg("registering %s as /dev/%s\n", vol->name, cdev->name);
	ret = devfs_create(cdev);
	if (ret) {
		kfree(priv);
		free(cdev->name);
	}

	list_add_tail(&vol->list, &ubi_volumes_list);

	return 0;
}
コード例 #6
0
ファイル: cmd_ubi.c プロジェクト: jing-git/rt-n56u
static void ubi_dump_vol_info_wide(const struct ubi_volume *vol)
{
	char name[UBI_VOL_NAME_MAX+1], type[] = "UNKNOWN (%d)XXX";

	memset(name, 0, sizeof(name));
	if (vol->name_len <= UBI_VOL_NAME_MAX &&
		strnlen(vol->name, vol->name_len + 1) == vol->name_len) {
		strcpy(name, vol->name);
	} else {
		strncpy(name, vol->name, 5);
	}

	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
		strcpy(type, "dynamic");
	else if (vol->vol_type == UBI_STATIC_VOLUME)
		strcpy(type, "static");
	else
		sprintf(type, "Unknown (%d)", vol->vol_type);

	ubi_msg(UBI_LAYOUT_DATA_FMT,
		vol->vol_id,
		vol->reserved_pebs,
		vol->alignment,
		vol->data_pad,
		type,
		vol->usable_leb_size,
		vol->used_ebs,
		(long)vol->used_bytes,
		vol->last_eb_bytes,
		vol->corrupted,
		vol->upd_marker,
		vol->name_len,
		name);
}
コード例 #7
0
ファイル: barebox.c プロジェクト: gazoo74/barebox
int ubi_volume_cdev_add(struct ubi_device *ubi, struct ubi_volume *vol)
{
	struct cdev *cdev = &vol->cdev;
	struct ubi_volume_cdev_priv *priv;
	int ret;

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);

	priv->vol = vol;
	priv->ubi = ubi;

	cdev->ops = &ubi_volume_fops;
	cdev->name = basprintf("%s.%s", ubi->cdev.name, vol->name);
	cdev->priv = priv;
	cdev->size = vol->used_bytes;

	if (vol->vol_type == UBI_STATIC_VOLUME)
		cdev->flags = DEVFS_IS_CHARACTER_DEV;

	cdev->dev = &vol->dev;
	ubi_msg(ubi, "registering %s as /dev/%s", vol->name, cdev->name);
	ret = devfs_create(cdev);
	if (ret) {
		kfree(priv);
		free(cdev->name);
	}

	list_add_tail(&vol->list, &ubi_volumes_list);

	return 0;
}
コード例 #8
0
/**
 * ubi_dump_flash - dump a region of flash.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock number to dump
 * @offset: the starting offset within the physical eraseblock to dump
 * @len: the length of the region to dump
 */
void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len)
{
	int err;
	size_t read;
	void *buf;
	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;

	buf = vmalloc(len);
	if (!buf)
		return;
	err = mtd_read(ubi->mtd, addr, len, &read, buf);
	if (err && err != -EUCLEAN) {
		ubi_err(ubi->ubi_num,
		"err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
			err, len, pnum, offset, read);
		goto out;
	}
	if (ubi->lookuptbl) {
		if (ubi->lookuptbl[pnum]->rc < UBI_MAX_READCOUNTER)
			ubi->lookuptbl[pnum]->rc++;
		else
			ubi_err(ubi->ubi_num,
				"read counter overflow at PEB %d, RC %d",
					pnum, ubi->lookuptbl[pnum]->rc);
	} else
		ubi_err(ubi->ubi_num, "Can't update RC. No lookuptbl");

	ubi_msg(ubi->ubi_num, "dumping %d bytes of data from PEB %d, offset %d",
		len, pnum, offset);
	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
out:
	vfree(buf);
	return;
}
コード例 #9
0
ファイル: cmd_ubi.c プロジェクト: jing-git/rt-n56u
static int ubi_remove_vol(char *volume)
{
	int err, reserved_pebs, i;
	struct ubi_volume *vol;

	vol = ubi_find_volume(volume);
	if (vol == NULL)
		return ENODEV;

	if (!strncmp(vol->name, "Factory", 7)) {
		printf("Remove volume %s is inhibited\n", vol->name);
		return EROFS;
	}
	printf("Remove UBI volume %s (id %d)\n", vol->name, vol->vol_id);

	if (ubi->ro_mode) {
		printf("It's read-only mode\n");
		err = EROFS;
		goto out_err;
	}

	err = ubi_change_vtbl_record(ubi, vol->vol_id, NULL);
	if (err) {
		printf("Error changing Vol tabel record err=%x\n", err);
		goto out_err;
	}
	reserved_pebs = vol->reserved_pebs;
	for (i = 0; i < vol->reserved_pebs; i++) {
		err = ubi_eba_unmap_leb(ubi, vol, i);
		if (err)
			goto out_err;
	}

	kfree(vol->eba_tbl);
	ubi->volumes[vol->vol_id]->eba_tbl = NULL;
	ubi->volumes[vol->vol_id] = NULL;

	ubi->rsvd_pebs -= reserved_pebs;
	ubi->avail_pebs += reserved_pebs;
	i = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs;
	if (i > 0) {
		i = ubi->avail_pebs >= i ? i : ubi->avail_pebs;
		ubi->avail_pebs -= i;
		ubi->rsvd_pebs += i;
		ubi->beb_rsvd_pebs += i;
		if (i > 0)
			ubi_msg("reserve more %d PEBs", i);
	}
	ubi->vol_count -= 1;

	return 0;
out_err:
	ubi_err("cannot remove volume %s, error %d", volume, err);
	if (err < 0)
		err = -err;
	return err;
}
コード例 #10
0
ファイル: barebox.c プロジェクト: gazoo74/barebox
void ubi_cdev_remove(struct ubi_device *ubi)
{
	struct cdev *cdev = &ubi->cdev;

	ubi_msg(ubi, "removing %s", cdev->name);

	devfs_remove(cdev);
	kfree(cdev->name);
}
コード例 #11
0
ファイル: io.c プロジェクト: KaZoom/buildroot-linux-kernel-m3
/**
 * ubi_dbg_check_write - make sure write succeeded.
 * @ubi: UBI device description object
 * @buf: buffer with data which were written
 * @pnum: physical eraseblock number the data were written to
 * @offset: offset within the physical eraseblock the data were written to
 * @len: how many bytes were written
 *
 * This functions reads data which were recently written and compares it with
 * the original data buffer - the data have to match. Returns zero if the data
 * match and a negative error code if not or in case of failure.
 */
int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
			int offset, int len)
{
	int err, i;

	mutex_lock(&ubi->dbg_buf_mutex);
	err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
	if (err)
		goto out_unlock;

	for (i = 0; i < len; i++) {
		uint8_t c = ((uint8_t *)buf)[i];
		uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
		int dump_len;

		if (c == c1)
			continue;

		ubi_err("paranoid check failed for PEB %d:%d, len %d",
			pnum, offset, len);
		ubi_msg("data differ at position %d", i);
		dump_len = max_t(int, 128, len - i);
		ubi_msg("hex dump of the original buffer from %d to %d",
			i, i + dump_len);
		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
			       buf + i, dump_len, 1);
		ubi_msg("hex dump of the read buffer from %d to %d",
			i, i + dump_len);
		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
			       ubi->dbg_peb_buf + i, dump_len, 1);
		ubi_dbg_dump_stack();
		err = -EINVAL;
		goto out_unlock;
	}
	mutex_unlock(&ubi->dbg_buf_mutex);

	return 0;

out_unlock:
	mutex_unlock(&ubi->dbg_buf_mutex);
	return err;
}
コード例 #12
0
ファイル: ubispl.c プロジェクト: 0xFelix/u-boot-edminiv2
int ubispl_load_volumes(struct ubispl_info *info, struct ubispl_load *lvols,
			int nrvols)
{
	struct ubi_scan_info *ubi = info->ubi;
	int res, i, fastmap = info->fastmap;
	u32 fsize;

retry:
	/*
	 * We do a partial initializiation of @ubi. Cleaning fm_buf is
	 * not necessary.
	 */
	memset(ubi, 0, offsetof(struct ubi_scan_info, fm_buf));

	ubi->read = info->read;

	/* Precalculate the offsets */
	ubi->vid_offset = info->vid_offset;
	ubi->leb_start = info->leb_start;
	ubi->leb_size = info->peb_size - ubi->leb_start;
	ubi->peb_count = info->peb_count;
	ubi->peb_offset = info->peb_offset;

	fsize = info->peb_size * info->peb_count;
	ubi->fsize_mb = fsize >> 20;

	/* Fastmap init */
	ubi->fm_size = ubi_calc_fm_size(ubi);
	ubi->fm_enabled = fastmap;

	for (i = 0; i < nrvols; i++) {
		struct ubispl_load *lv = lvols + i;

		generic_set_bit(lv->vol_id, ubi->toload);
	}

	ipl_scan(ubi);

	for (i = 0; i < nrvols; i++) {
		struct ubispl_load *lv = lvols + i;

		ubi_msg("Loading VolId #%d", lv->vol_id);
		res = ipl_load(ubi, lv->vol_id, lv->load_addr);
		if (res < 0) {
			if (fastmap) {
				fastmap = 0;
				goto retry;
			}
			ubi_warn("Failed");
			return res;
		}
	}
	return 0;
}
コード例 #13
0
ファイル: io.c プロジェクト: PennPanda/linux-repo
/**
 * ubi_io_read - read data from a physical eraseblock.
 * @ubi: UBI device description object
 * @buf: buffer where to store the read data
 * @pnum: physical eraseblock number to read from
 * @offset: offset within the physical eraseblock from where to read
 * @len: how many bytes to read
 *
 * This function reads data from offset @offset of physical eraseblock @pnum
 * and stores the read data in the @buf buffer. The following return codes are
 * possible:
 *
 * o %0 if all the requested data were successfully read;
 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 *   correctable bit-flips were detected; this is harmless but may indicate
 *   that this eraseblock may become bad soon (but do not have to);
 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 *   example it can be an ECC error in case of NAND; this most probably means
 *   that the data is corrupted;
 * o %-EIO if some I/O error occurred;
 * o other negative error codes in case of other errors.
 */
int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
		int len)
{
	int err, retries = 0;
	size_t read;
	loff_t addr;

	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);

	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
	ubi_assert(len > 0);

	err = paranoid_check_not_bad(ubi, pnum);
	if (err)
		return err > 0 ? -EINVAL : err;

	addr = (loff_t)pnum * ubi->peb_size + offset;
retry:
	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
	if (err) {
		if (err == -EUCLEAN) {
			/*
			 * -EUCLEAN is reported if there was a bit-flip which
			 * was corrected, so this is harmless.
			 */
			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
			ubi_assert(len == read);
			return UBI_IO_BITFLIPS;
		}

		if (read != len && retries++ < UBI_IO_RETRIES) {
			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
			       "read only %zd bytes, retry",
			       err, len, pnum, offset, read);
			yield();
			goto retry;
		}

		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
			"read %zd bytes", err, len, pnum, offset, read);
		ubi_dbg_dump_stack();
	} else {
		ubi_assert(len == read);

		if (ubi_dbg_is_bitflip()) {
			dbg_msg("bit-flip (emulated)");
			err = UBI_IO_BITFLIPS;
		}
	}

	return err;
}
コード例 #14
0
ファイル: build.c プロジェクト: AubrCool/barebox
/**
 * ubi_detach_mtd_dev - detach an MTD device.
 * @ubi_num: UBI device number to detach from
 * @anyway: detach MTD even if device reference count is not zero
 *
 * This function destroys an UBI device number @ubi_num and detaches the
 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
 * exist.
 *
 * Note, the invocations of this function has to be serialized by the
 * @ubi_devices_mutex.
 */
int ubi_detach_mtd_dev(int ubi_num, int anyway)
{
	struct ubi_device *ubi;

	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
		return -EINVAL;

	ubi = ubi_get_device(ubi_num);
	if (!ubi)
		return -EINVAL;

	ubi->ref_count--;

	if (ubi->ref_count)
		return -EBUSY;

	ubi_devices[ubi_num] = NULL;

	ubi_assert(ubi_num == ubi->ubi_num);

	ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
#ifdef CONFIG_MTD_UBI_FASTMAP
	/* If we don't write a new fastmap at detach time we lose all
	 * EC updates that have been made since the last written fastmap. */
	ubi_update_fastmap(ubi);
	ubi_free_fastmap(ubi);
#endif

	uif_close(ubi);

	ubi_wl_close(ubi);
	ubi_free_internal_volumes(ubi);
	vfree(ubi->vtbl);
	vfree(ubi->peb_buf);
	vfree(ubi->fm_buf);
	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
	kfree(ubi);

	return 0;
}
コード例 #15
0
ファイル: barebox.c プロジェクト: gazoo74/barebox
int ubi_cdev_add(struct ubi_device *ubi)
{
	struct cdev *cdev = &ubi->cdev;
	int ret;

	cdev->ops = &ubi_fops;
	cdev->name = basprintf("%s.ubi", ubi->mtd->cdev.name);
	cdev->priv = ubi;
	cdev->size = 0;

	ubi_msg(ubi, "registering /dev/%s", cdev->name);
	ret = devfs_create(cdev);
	if (ret)
		kfree(cdev->name);

	return ret;
}
コード例 #16
0
ファイル: build.c プロジェクト: AubrCool/barebox
/**
 * autoresize - re-size the volume which has the "auto-resize" flag set.
 * @ubi: UBI device description object
 * @vol_id: ID of the volume to re-size
 *
 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
 * the volume table to the largest possible size. See comments in ubi-header.h
 * for more description of the flag. Returns zero in case of success and a
 * negative error code in case of failure.
 */
static int autoresize(struct ubi_device *ubi, int vol_id)
{
	struct ubi_volume_desc desc;
	struct ubi_volume *vol = ubi->volumes[vol_id];
	int err, old_reserved_pebs = vol->reserved_pebs;

	if (ubi->ro_mode) {
		ubi_warn("skip auto-resize because of R/O mode");
		return 0;
	}

	/*
	 * Clear the auto-resize flag in the volume in-memory copy of the
	 * volume table, and 'ubi_resize_volume()' will propagate this change
	 * to the flash.
	 */
	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;

	if (ubi->avail_pebs == 0) {
		struct ubi_vtbl_record vtbl_rec;

		/*
		 * No available PEBs to re-size the volume, clear the flag on
		 * flash and exit.
		 */
		vtbl_rec = ubi->vtbl[vol_id];
		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
		if (err)
			ubi_err("cannot clean auto-resize flag for volume %d",
				vol_id);
	} else {
		desc.vol = vol;
		err = ubi_resize_volume(&desc,
					old_reserved_pebs + ubi->avail_pebs);
		if (err)
			ubi_err("cannot auto-resize volume %d", vol_id);
	}

	if (err)
		return err;

	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
		vol->name, old_reserved_pebs, vol->reserved_pebs);
	return 0;
}
コード例 #17
0
ファイル: io.c プロジェクト: 383530895/linux
/**
 * ubi_self_check_all_ff - check that a region of flash is empty.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock number to check
 * @offset: the starting offset within the physical eraseblock to check
 * @len: the length of the region to check
 *
 * This function returns zero if only 0xFF bytes are present at offset
 * @offset of the physical eraseblock @pnum, and a negative error code if not
 * or if an error occurred.
 */
int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
{
	size_t read;
	int err;
	void *buf;
	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;

	if (!ubi_dbg_chk_io(ubi))
		return 0;

	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
	if (!buf) {
		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
		return 0;
	}

	err = mtd_read(ubi->mtd, addr, len, &read, buf);
	if (err && !mtd_is_bitflip(err)) {
		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
			err, len, pnum, offset, read);
		goto error;
	}

	err = ubi_check_pattern(buf, 0xFF, len);
	if (err == 0) {
		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
			pnum, offset, len);
		goto fail;
	}

	vfree(buf);
	return 0;

fail:
	ubi_err(ubi, "self-check failed for PEB %d", pnum);
	ubi_msg(ubi, "hex dump of the %d-%d region",
		 offset, offset + len);
	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
	err = -EINVAL;
error:
	dump_stack();
	vfree(buf);
	return err;
}
コード例 #18
0
ファイル: debug.c プロジェクト: ARMWorks/FA_2451_Linux_Kernel
/**
 * ubi_dump_flash - dump a region of flash.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock number to dump
 * @offset: the starting offset within the physical eraseblock to dump
 * @len: the length of the region to dump
 */
void ubi_dump_flash(struct ubi_device *ubi, int pnum, int offset, int len)
{
	int err;
	size_t read;
	void *buf;
	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;

	buf = vmalloc(len);
	if (!buf)
		return;
	err = mtd_read(ubi->mtd, addr, len, &read, buf);
	if (err && err != -EUCLEAN) {
		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
			"read %zd bytes", err, len, pnum, offset, read);
		goto out;
	}

	ubi_msg("dumping %d bytes of data from PEB %d, offset %d",
		len, pnum, offset);
	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
out:
	vfree(buf);
	return;
}
コード例 #19
0
ファイル: cmd_ubi.c プロジェクト: jing-git/rt-n56u
static void display_volume_info_wide(struct ubi_device *ubi)
{
	int i;

	ubi_msg(UBI_LAYOUT_HEAD_FMT,
		"vol_id",
		"reserved_pebs",
		"alignment",
		"data_pad",
		"vol_type",
		"usable_leb_size",
		"used_ebs",
		"used_bytes",
		"last_eb_bytes",
		"corrupted",
		"upd_marker",
		"name_len",
		"name");
	for (i = 0; i < (ubi->vtbl_slots + 1); i++) {
		if (!ubi->volumes[i])
			continue;	/* Empty record */
		ubi_dump_vol_info_wide(ubi->volumes[i]);
	}
}
コード例 #20
0
ファイル: cmd_ubi.c プロジェクト: haitend/u-boot-for-mpc8315
static void display_ubi_info(struct ubi_device *ubi)
{
	ubi_msg("MTD device name:            \"%s\"", ubi->mtd->name);
	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
			ubi->peb_size, ubi->peb_size >> 10);
	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
	ubi_msg("VID header offset:          %d (aligned %d)",
			ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
	ubi_msg("data offset:                %d", ubi->leb_start);
	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
	ubi_msg("number of user volumes:     %d",
			ubi->vol_count - UBI_INT_VOL_COUNT);
	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
			ubi->beb_rsvd_pebs);
	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
}
コード例 #21
0
ファイル: io.c プロジェクト: 383530895/linux
/**
 * torture_peb - test a supposedly bad physical eraseblock.
 * @ubi: UBI device description object
 * @pnum: the physical eraseblock number to test
 *
 * This function returns %-EIO if the physical eraseblock did not pass the
 * test, a positive number of erase operations done if the test was
 * successfully passed, and other negative error codes in case of other errors.
 */
static int torture_peb(struct ubi_device *ubi, int pnum)
{
	int err, i, patt_count;

	ubi_msg(ubi, "run torture test for PEB %d", pnum);
	patt_count = ARRAY_SIZE(patterns);
	ubi_assert(patt_count > 0);

	mutex_lock(&ubi->buf_mutex);
	for (i = 0; i < patt_count; i++) {
		err = do_sync_erase(ubi, pnum);
		if (err)
			goto out;

		/* Make sure the PEB contains only 0xFF bytes */
		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
		if (err)
			goto out;

		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
		if (err == 0) {
			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
				pnum);
			err = -EIO;
			goto out;
		}

		/* Write a pattern and check it */
		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
		if (err)
			goto out;

		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
		if (err)
			goto out;

		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
					ubi->peb_size);
		if (err == 0) {
			ubi_err(ubi, "pattern %x checking failed for PEB %d",
				patterns[i], pnum);
			err = -EIO;
			goto out;
		}
	}

	err = patt_count;
	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);

out:
	mutex_unlock(&ubi->buf_mutex);
	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
		/*
		 * If a bit-flip or data integrity error was detected, the test
		 * has not passed because it happened on a freshly erased
		 * physical eraseblock which means something is wrong with it.
		 */
		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
			pnum);
		err = -EIO;
	}
	return err;
}
コード例 #22
0
ファイル: io.c プロジェクト: 383530895/linux
/**
 * ubi_io_read - read data from a physical eraseblock.
 * @ubi: UBI device description object
 * @buf: buffer where to store the read data
 * @pnum: physical eraseblock number to read from
 * @offset: offset within the physical eraseblock from where to read
 * @len: how many bytes to read
 *
 * This function reads data from offset @offset of physical eraseblock @pnum
 * and stores the read data in the @buf buffer. The following return codes are
 * possible:
 *
 * o %0 if all the requested data were successfully read;
 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 *   correctable bit-flips were detected; this is harmless but may indicate
 *   that this eraseblock may become bad soon (but do not have to);
 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 *   example it can be an ECC error in case of NAND; this most probably means
 *   that the data is corrupted;
 * o %-EIO if some I/O error occurred;
 * o other negative error codes in case of other errors.
 */
int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
		int len)
{
	int err, retries = 0;
	size_t read;
	loff_t addr;

	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);

	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
	ubi_assert(len > 0);

	err = self_check_not_bad(ubi, pnum);
	if (err)
		return err;

	/*
	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
	 * do not do this, the following may happen:
	 * 1. The buffer contains data from previous operation, e.g., read from
	 *    another PEB previously. The data looks like expected, e.g., if we
	 *    just do not read anything and return - the caller would not
	 *    notice this. E.g., if we are reading a VID header, the buffer may
	 *    contain a valid VID header from another PEB.
	 * 2. The driver is buggy and returns us success or -EBADMSG or
	 *    -EUCLEAN, but it does not actually put any data to the buffer.
	 *
	 * This may confuse UBI or upper layers - they may think the buffer
	 * contains valid data while in fact it is just old data. This is
	 * especially possible because UBI (and UBIFS) relies on CRC, and
	 * treats data as correct even in case of ECC errors if the CRC is
	 * correct.
	 *
	 * Try to prevent this situation by changing the first byte of the
	 * buffer.
	 */
	*((uint8_t *)buf) ^= 0xFF;

	addr = (loff_t)pnum * ubi->peb_size + offset;
retry:
	err = mtd_read(ubi->mtd, addr, len, &read, buf);
	if (err) {
		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";

		if (mtd_is_bitflip(err)) {
			/*
			 * -EUCLEAN is reported if there was a bit-flip which
			 * was corrected, so this is harmless.
			 *
			 * We do not report about it here unless debugging is
			 * enabled. A corresponding message will be printed
			 * later, when it is has been scrubbed.
			 */
			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
				pnum);
			ubi_assert(len == read);
			return UBI_IO_BITFLIPS;
		}

		if (retries++ < UBI_IO_RETRIES) {
			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
				 err, errstr, len, pnum, offset, read);
			yield();
			goto retry;
		}

		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
			err, errstr, len, pnum, offset, read);
		dump_stack();

		/*
		 * The driver should never return -EBADMSG if it failed to read
		 * all the requested data. But some buggy drivers might do
		 * this, so we change it to -EIO.
		 */
		if (read != len && mtd_is_eccerr(err)) {
			ubi_assert(0);
			err = -EIO;
		}
	} else {
		ubi_assert(len == read);

		if (ubi_dbg_is_bitflip(ubi)) {
			dbg_gen("bit-flip (emulated)");
			err = UBI_IO_BITFLIPS;
		}
	}

	return err;
}
コード例 #23
0
ファイル: cmd_ubi.c プロジェクト: haitend/u-boot-for-mpc8315
static int ubi_remove_vol(char *volume)
{
	int i, err, reserved_pebs;
	int found = 0, vol_id = 0;
	struct ubi_volume *vol;

	for (i = 0; i < ubi->vtbl_slots; i++) {
		vol = ubi->volumes[i];
		if (vol && !strcmp(vol->name, volume)) {
			printf("Volume %s found at valid %d\n", volume, i);
			vol_id = i;
			found = 1;
			break;
		}
	}
	if (!found) {
		printf("%s volume not found\n", volume);
		return -ENODEV;
	}
	printf("remove UBI volume %s (id %d)\n", vol->name, vol->vol_id);

	if (ubi->ro_mode) {
		printf("It's read-only mode\n");
		err = -EROFS;
		goto out_err;
	}

	err = ubi_change_vtbl_record(ubi, vol_id, NULL);
	if (err) {
		printf("Error changing Vol tabel record err=%x\n", err);
		goto out_err;
	}
	reserved_pebs = vol->reserved_pebs;
	for (i = 0; i < vol->reserved_pebs; i++) {
		err = ubi_eba_unmap_leb(ubi, vol, i);
		if (err)
			goto out_err;
	}

	kfree(vol->eba_tbl);
	ubi->volumes[vol_id]->eba_tbl = NULL;
	ubi->volumes[vol_id] = NULL;

	ubi->rsvd_pebs -= reserved_pebs;
	ubi->avail_pebs += reserved_pebs;
	i = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs;
	if (i > 0) {
		i = ubi->avail_pebs >= i ? i : ubi->avail_pebs;
		ubi->avail_pebs -= i;
		ubi->rsvd_pebs += i;
		ubi->beb_rsvd_pebs += i;
		if (i > 0)
			ubi_msg("reserve more %d PEBs", i);
	}
	ubi->vol_count -= 1;

	return 0;
out_err:
	ubi_err("cannot remove volume %d, error %d", vol_id, err);
	return err;
}
コード例 #24
0
ファイル: build.c プロジェクト: AubrCool/barebox
/**
 * io_init - initialize I/O sub-system for a given UBI device.
 * @ubi: UBI device description object
 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 *
 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
 * assumed:
 *   o EC header is always at offset zero - this cannot be changed;
 *   o VID header starts just after the EC header at the closest address
 *     aligned to @io->hdrs_min_io_size;
 *   o data starts just after the VID header at the closest address aligned to
 *     @io->min_io_size
 *
 * This function returns zero in case of success and a negative error code in
 * case of failure.
 */
static int io_init(struct ubi_device *ubi, int max_beb_per1024)
{
	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));

	if (ubi->mtd->numeraseregions != 0) {
		/*
		 * Some flashes have several erase regions. Different regions
		 * may have different eraseblock size and other
		 * characteristics. It looks like mostly multi-region flashes
		 * have one "main" region and one or more small regions to
		 * store boot loader code or boot parameters or whatever. I
		 * guess we should just pick the largest region. But this is
		 * not implemented.
		 */
		ubi_err("multiple regions, not implemented");
		return -EINVAL;
	}

	if (ubi->vid_hdr_offset < 0)
		return -EINVAL;

	/*
	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
	 * physical eraseblocks maximum.
	 */

	ubi->peb_size   = ubi->mtd->erasesize;
	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
	ubi->flash_size = ubi->mtd->size;

	if (mtd_can_have_bb(ubi->mtd)) {
		ubi->bad_allowed = 1;
		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
	}

	if (ubi->mtd->type == MTD_NORFLASH) {
		ubi_assert(ubi->mtd->writesize == 1);
		ubi->nor_flash = 1;
	}

	ubi->min_io_size = ubi->mtd->writesize;
	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;

	/*
	 * Make sure minimal I/O unit is power of 2. Note, there is no
	 * fundamental reason for this assumption. It is just an optimization
	 * which allows us to avoid costly division operations.
	 */
	if (!is_power_of_2(ubi->min_io_size)) {
		ubi_err("min. I/O unit (%d) is not power of 2",
			ubi->min_io_size);
		return -EINVAL;
	}

	ubi_assert(ubi->hdrs_min_io_size > 0);
	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);

	ubi->max_write_size = ubi->mtd->writesize; /* FIXME: writebufsize */
	/*
	 * Maximum write size has to be greater or equivalent to min. I/O
	 * size, and be multiple of min. I/O size.
	 */
	if (ubi->max_write_size < ubi->min_io_size ||
	    ubi->max_write_size % ubi->min_io_size ||
	    !is_power_of_2(ubi->max_write_size)) {
		ubi_err("bad write buffer size %d for %d min. I/O unit",
			ubi->max_write_size, ubi->min_io_size);
		return -EINVAL;
	}

	/* Calculate default aligned sizes of EC and VID headers */
	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);

	dbg_gen("min_io_size      %d", ubi->min_io_size);
	dbg_gen("max_write_size   %d", ubi->max_write_size);
	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);

	if (ubi->vid_hdr_offset == 0)
		/* Default offset */
		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
				      ubi->ec_hdr_alsize;
	else {
		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
						~(ubi->hdrs_min_io_size - 1);
		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
						ubi->vid_hdr_aloffset;
	}

	/* Similar for the data offset */
	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);

	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
	dbg_gen("leb_start        %d", ubi->leb_start);

	/* The shift must be aligned to 32-bit boundary */
	if (ubi->vid_hdr_shift % 4) {
		ubi_err("unaligned VID header shift %d",
			ubi->vid_hdr_shift);
		return -EINVAL;
	}

	/* Check sanity */
	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
	    ubi->leb_start & (ubi->min_io_size - 1)) {
		ubi_err("bad VID header (%d) or data offsets (%d)",
			ubi->vid_hdr_offset, ubi->leb_start);
		return -EINVAL;
	}

	/*
	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
	 * Erroneous PEB are those which have read errors.
	 */
	ubi->max_erroneous = ubi->peb_count / 10;
	if (ubi->max_erroneous < 16)
		ubi->max_erroneous = 16;
	dbg_gen("max_erroneous    %d", ubi->max_erroneous);

	/*
	 * It may happen that EC and VID headers are situated in one minimal
	 * I/O unit. In this case we can only accept this UBI image in
	 * read-only mode.
	 */
	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
		ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
		ubi->ro_mode = 1;
	}

	ubi->leb_size = ubi->peb_size - ubi->leb_start;

	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
		ubi_msg("MTD device %d is write-protected, attach in read-only mode",
			ubi->mtd->index);
		ubi->ro_mode = 1;
	}

	/*
	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
	 * unfortunately, MTD does not provide this information. We should loop
	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
	 * uninitialized so far.
	 */

	return 0;
}
コード例 #25
0
ファイル: ubispl.c プロジェクト: 0xFelix/u-boot-edminiv2
static int ubi_scan_fastmap(struct ubi_scan_info *ubi,
			    struct ubi_attach_info *ai,
			    int fm_anchor)
{
	struct ubi_fm_sb *fmsb, *fmsb2;
	struct ubi_vid_hdr *vh;
	struct ubi_fastmap_layout *fm;
	int i, used_blocks, pnum, ret = 0;
	size_t fm_size;
	__be32 crc, tmp_crc;
	unsigned long long sqnum = 0;

	fmsb = &ubi->fm_sb;
	fm = &ubi->fm_layout;

	ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb));
	if (ret && ret != UBI_IO_BITFLIPS)
		goto free_fm_sb;
	else if (ret == UBI_IO_BITFLIPS)
		fm->to_be_tortured[0] = 1;

	if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) {
		ubi_err("bad super block magic: 0x%x, expected: 0x%x",
			be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC);
		ret = UBI_BAD_FASTMAP;
		goto free_fm_sb;
	}

	if (fmsb->version != UBI_FM_FMT_VERSION) {
		ubi_err("bad fastmap version: %i, expected: %i",
			fmsb->version, UBI_FM_FMT_VERSION);
		ret = UBI_BAD_FASTMAP;
		goto free_fm_sb;
	}

	used_blocks = be32_to_cpu(fmsb->used_blocks);
	if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) {
		ubi_err("number of fastmap blocks is invalid: %i", used_blocks);
		ret = UBI_BAD_FASTMAP;
		goto free_fm_sb;
	}

	fm_size = ubi->leb_size * used_blocks;
	if (fm_size != ubi->fm_size) {
		ubi_err("bad fastmap size: %zi, expected: %zi", fm_size,
			ubi->fm_size);
		ret = UBI_BAD_FASTMAP;
		goto free_fm_sb;
	}

	vh = &ubi->fm_vh;

	for (i = 0; i < used_blocks; i++) {
		pnum = be32_to_cpu(fmsb->block_loc[i]);

		if (ubi_io_is_bad(ubi, pnum)) {
			ret = UBI_BAD_FASTMAP;
			goto free_hdr;
		}

#ifdef LATER
		int image_seq;
		ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
		if (ret && ret != UBI_IO_BITFLIPS) {
			ubi_err("unable to read fastmap block# %i EC (PEB: %i)",
				i, pnum);
			if (ret > 0)
				ret = UBI_BAD_FASTMAP;
			goto free_hdr;
		} else if (ret == UBI_IO_BITFLIPS)
			fm->to_be_tortured[i] = 1;

		image_seq = be32_to_cpu(ech->image_seq);
		if (!ubi->image_seq)
			ubi->image_seq = image_seq;
		/*
		 * Older UBI implementations have image_seq set to zero, so
		 * we shouldn't fail if image_seq == 0.
		 */
		if (image_seq && (image_seq != ubi->image_seq)) {
			ubi_err("wrong image seq:%d instead of %d",
				be32_to_cpu(ech->image_seq), ubi->image_seq);
			ret = UBI_BAD_FASTMAP;
			goto free_hdr;
		}
#endif
		ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
		if (ret && ret != UBI_IO_BITFLIPS) {
			ubi_err("unable to read fastmap block# %i (PEB: %i)",
				i, pnum);
			goto free_hdr;
		}

		/*
		 * Mainline code rescans the anchor header. We've done
		 * that already so we merily copy it over.
		 */
		if (pnum == fm_anchor)
			memcpy(vh, ubi->blockinfo + pnum, sizeof(*fm));

		if (i == 0) {
			if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) {
				ubi_err("bad fastmap anchor vol_id: 0x%x," \
					" expected: 0x%x",
					be32_to_cpu(vh->vol_id),
					UBI_FM_SB_VOLUME_ID);
				ret = UBI_BAD_FASTMAP;
				goto free_hdr;
			}
		} else {
			if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) {
				ubi_err("bad fastmap data vol_id: 0x%x," \
					" expected: 0x%x",
					be32_to_cpu(vh->vol_id),
					UBI_FM_DATA_VOLUME_ID);
				ret = UBI_BAD_FASTMAP;
				goto free_hdr;
			}
		}

		if (sqnum < be64_to_cpu(vh->sqnum))
			sqnum = be64_to_cpu(vh->sqnum);

		ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum,
				  ubi->leb_start, ubi->leb_size);
		if (ret && ret != UBI_IO_BITFLIPS) {
			ubi_err("unable to read fastmap block# %i (PEB: %i, " \
				"err: %i)", i, pnum, ret);
			goto free_hdr;
		}
	}

	fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf);
	tmp_crc = be32_to_cpu(fmsb2->data_crc);
	fmsb2->data_crc = 0;
	crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size);
	if (crc != tmp_crc) {
		ubi_err("fastmap data CRC is invalid");
		ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc);
		ret = UBI_BAD_FASTMAP;
		goto free_hdr;
	}

	fmsb2->sqnum = sqnum;

	fm->used_blocks = used_blocks;

	ret = ubi_attach_fastmap(ubi, ai, fm);
	if (ret) {
		if (ret > 0)
			ret = UBI_BAD_FASTMAP;
		goto free_hdr;
	}

	ubi->fm = fm;
	ubi->fm_pool.max_size = ubi->fm->max_pool_size;
	ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size;
	ubi_msg("attached by fastmap %uMB %u blocks",
		ubi->fsize_mb, ubi->peb_count);
	ubi_dbg("fastmap pool size: %d", ubi->fm_pool.max_size);
	ubi_dbg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);

out:
	if (ret)
		ubi_err("Attach by fastmap failed, doing a full scan!");
	return ret;

free_hdr:
free_fm_sb:
	goto out;
}
コード例 #26
0
ファイル: cmd_ubi.c プロジェクト: haitend/u-boot-for-mpc8315
static void ubi_dump_vol_info(const struct ubi_volume *vol)
{
	ubi_msg("volume information dump:");
	ubi_msg("vol_id          %d", vol->vol_id);
	ubi_msg("reserved_pebs   %d", vol->reserved_pebs);
	ubi_msg("alignment       %d", vol->alignment);
	ubi_msg("data_pad        %d", vol->data_pad);
	ubi_msg("vol_type        %d", vol->vol_type);
	ubi_msg("name_len        %d", vol->name_len);
	ubi_msg("usable_leb_size %d", vol->usable_leb_size);
	ubi_msg("used_ebs        %d", vol->used_ebs);
	ubi_msg("used_bytes      %lld", vol->used_bytes);
	ubi_msg("last_eb_bytes   %d", vol->last_eb_bytes);
	ubi_msg("corrupted       %d", vol->corrupted);
	ubi_msg("upd_marker      %d", vol->upd_marker);

	if (vol->name_len <= UBI_VOL_NAME_MAX &&
		strnlen(vol->name, vol->name_len + 1) == vol->name_len) {
		ubi_msg("name            %s", vol->name);
	} else {
		ubi_msg("the 1st 5 characters of the name: %c%c%c%c%c",
				vol->name[0], vol->name[1], vol->name[2],
				vol->name[3], vol->name[4]);
	}
	printf("\n");
}
コード例 #27
0
ファイル: io.c プロジェクト: Jokymon/barebox
/**
 * ubi_io_read - read data from a physical eraseblock.
 * @ubi: UBI device description object
 * @buf: buffer where to store the read data
 * @pnum: physical eraseblock number to read from
 * @offset: offset within the physical eraseblock from where to read
 * @len: how many bytes to read
 *
 * This function reads data from offset @offset of physical eraseblock @pnum
 * and stores the read data in the @buf buffer. The following return codes are
 * possible:
 *
 * o %0 if all the requested data were successfully read;
 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 *   correctable bit-flips were detected; this is harmless but may indicate
 *   that this eraseblock may become bad soon (but do not have to);
 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 *   example it can be an ECC error in case of NAND; this most probably means
 *   that the data is corrupted;
 * o %-EIO if some I/O error occurred;
 * o other negative error codes in case of other errors.
 */
int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
		int len)
{
	int err, retries = 0;
	size_t read;
	loff_t addr;

	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);

	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
	ubi_assert(len > 0);

	err = paranoid_check_not_bad(ubi, pnum);
	if (err)
		return err > 0 ? -EINVAL : err;

	addr = (loff_t)pnum * ubi->peb_size + offset;
retry:
	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
	if (err) {
		if (err == -EUCLEAN) {
			/*
			 * -EUCLEAN is reported if there was a bit-flip which
			 * was corrected, so this is harmless.
			 */
			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
			ubi_assert(len == read);
			return UBI_IO_BITFLIPS;
		}

		if (read != len && retries++ < UBI_IO_RETRIES) {
			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
			       "read only %zd bytes, retry",
			       err, len, pnum, offset, read);
			yield();
			goto retry;
		}

		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
			"read %zd bytes", err, len, pnum, offset, read);
		ubi_dbg_dump_stack();

		/*
		 * The driver should never return -EBADMSG if it failed to read
		 * all the requested data. But some buggy drivers might do
		 * this, so we change it to -EIO.
		 */
		if (read != len && err == -EBADMSG) {
			ubi_assert(0);
			printk("%s[%d] not here\n", __func__, __LINE__);
/*			err = -EIO; */
		}
	} else {
		ubi_assert(len == read);

		if (ubi_dbg_is_bitflip()) {
			dbg_msg("bit-flip (emulated)");
			err = UBI_IO_BITFLIPS;
		}
	}

	return err;
}
コード例 #28
0
ファイル: build.c プロジェクト: AubrCool/barebox
/**
 * ubi_attach_mtd_dev - attach an MTD device.
 * @mtd: MTD device description object
 * @ubi_num: number to assign to the new UBI device
 * @vid_hdr_offset: VID header offset
 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
 *
 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
 * which case this function finds a vacant device number and assigns it
 * automatically. Returns the new UBI device number in case of success and a
 * negative error code in case of failure.
 *
 * Note, the invocations of this function has to be serialized by the
 * @ubi_devices_mutex.
 */
int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
		       int vid_hdr_offset, int max_beb_per1024)
{
	struct ubi_device *ubi;
	int i, err, ref = 0;

	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
		return -EINVAL;

	if (!max_beb_per1024)
		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;

	/*
	 * Check if we already have the same MTD device attached.
	 *
	 * Note, this function assumes that UBI devices creations and deletions
	 * are serialized, so it does not take the &ubi_devices_lock.
	 */
	for (i = 0; i < UBI_MAX_DEVICES; i++) {
		ubi = ubi_devices[i];
		if (ubi && mtd == ubi->mtd) {
			ubi_err("mtd%d is already attached to ubi%d",
				mtd->index, i);
			return -EEXIST;
		}
	}

	/*
	 * Make sure this MTD device is not emulated on top of an UBI volume
	 * already. Well, generally this recursion works fine, but there are
	 * different problems like the UBI module takes a reference to itself
	 * by attaching (and thus, opening) the emulated MTD device. This
	 * results in inability to unload the module. And in general it makes
	 * no sense to attach emulated MTD devices, so we prohibit this.
	 */
	if (mtd->type == MTD_UBIVOLUME) {
		ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
			mtd->index);
		return -EINVAL;
	}

	if (ubi_num == UBI_DEV_NUM_AUTO) {
		/* Search for an empty slot in the @ubi_devices array */
		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
			if (!ubi_devices[ubi_num])
				break;
		if (ubi_num == UBI_MAX_DEVICES) {
			ubi_err("only %d UBI devices may be created",
				UBI_MAX_DEVICES);
			return -ENFILE;
		}
	} else {
		if (ubi_num >= UBI_MAX_DEVICES)
			return -EINVAL;

		/* Make sure ubi_num is not busy */
		if (ubi_devices[ubi_num]) {
			ubi_err("ubi%d already exists", ubi_num);
			return -EEXIST;
		}
	}

	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
	if (!ubi)
		return -ENOMEM;

	ubi->mtd = mtd;
	ubi->ubi_num = ubi_num;
	ubi->vid_hdr_offset = vid_hdr_offset;
	ubi->autoresize_vol_id = -1;

#ifdef CONFIG_MTD_UBI_FASTMAP
	ubi->fm_pool.used = ubi->fm_pool.size = 0;
	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;

	/*
	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
	 */
	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
	if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
		ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;

	ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
	ubi->fm_disabled = !fm_autoconvert;

	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
	    <= UBI_FM_MAX_START) {
		ubi_err("More than %i PEBs are needed for fastmap, sorry.",
			UBI_FM_MAX_START);
		ubi->fm_disabled = 1;
	}

	ubi_debug("default fastmap pool size: %d", ubi->fm_pool.max_size);
	ubi_debug("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
#else
	ubi->fm_disabled = 1;
#endif

	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);

	err = io_init(ubi, max_beb_per1024);
	if (err)
		goto out_free;

	err = -ENOMEM;
	ubi->peb_buf = vmalloc(ubi->peb_size);
	if (!ubi->peb_buf)
		goto out_free;

#ifdef CONFIG_MTD_UBI_FASTMAP
	ubi->fm_size = ubi_calc_fm_size(ubi);
	ubi->fm_buf = kzalloc(ubi->fm_size, GFP_KERNEL);
	if (!ubi->fm_buf)
		goto out_free;
#endif
	err = ubi_attach(ubi, 0);
	if (err) {
		ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
		goto out_free;
	}

	if (ubi->autoresize_vol_id != -1) {
		err = autoresize(ubi, ubi->autoresize_vol_id);
		if (err)
			goto out_detach;
	}

	err = uif_init(ubi, &ref);
	if (err)
		goto out_detach;

	ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
		mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
	ubi_debug("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
	ubi_debug("min./max. I/O unit sizes: %d/%d, sub-page size %d",
		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
	ubi_debug("VID header offset: %d (aligned %d), data offset: %d",
		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
	ubi_debug("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
	ubi_debug("user volume: %d, internal volumes: %d, max. volumes count: %d",
		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
		ubi->vtbl_slots);
	ubi_debug("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
		ubi->image_seq);
	ubi_debug("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);

	dev_add_param_int_ro(&ubi->dev, "peb_size", ubi->peb_size, "%d");
	dev_add_param_int_ro(&ubi->dev, "leb_size", ubi->leb_size, "%d");
	dev_add_param_int_ro(&ubi->dev, "vid_header_offset", ubi->vid_hdr_offset, "%d");
	dev_add_param_int_ro(&ubi->dev, "min_io_size", ubi->min_io_size, "%d");
	dev_add_param_int_ro(&ubi->dev, "sub_page_size", ubi->hdrs_min_io_size, "%d");
	dev_add_param_int_ro(&ubi->dev, "good_peb_count", ubi->good_peb_count, "%d");
	dev_add_param_int_ro(&ubi->dev, "bad_peb_count", ubi->bad_peb_count, "%d");
	dev_add_param_int_ro(&ubi->dev, "max_erase_counter", ubi->max_ec, "%d");
	dev_add_param_int_ro(&ubi->dev, "mean_erase_counter", ubi->mean_ec, "%d");
	dev_add_param_int_ro(&ubi->dev, "available_pebs", ubi->avail_pebs, "%d");
	dev_add_param_int_ro(&ubi->dev, "reserved_pebs", ubi->rsvd_pebs, "%d");

	/*
	 * The below lock makes sure we do not race with 'ubi_thread()' which
	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
	 */
	ubi->thread_enabled = 1;
	wake_up_process(ubi->bgt_thread);

	ubi_devices[ubi_num] = ubi;

	return ubi_num;

out_detach:
	ubi_wl_close(ubi);
	ubi_free_internal_volumes(ubi);
	vfree(ubi->vtbl);
out_free:
	vfree(ubi->peb_buf);
	vfree(ubi->fm_buf);
	kfree(ubi);
	return err;
}