void _exit(int status) { _TCB* tcb; /* Disable interrupts. They will be restored when the next * task is started. */ (void)irqsave(); slldbg("TCB=%p exitting\n", g_readytorun.head); #if defined(CONFIG_DUMP_ON_EXIT) && defined(CONFIG_DEBUG) slldbg("Other tasks:\n"); sched_foreach(_up_dumponexit, NULL); #endif /* Destroy the task at the head of the ready to run list. */ (void)task_deletecurrent(); /* Now, perform the context switch to the new ready-to-run task at the * head of the list. */ tcb = (_TCB*)g_readytorun.head; /* Then switch contexts */ up_fullcontextrestore(tcb->xcp.regs); }
void up_sigdeliver(void) { #ifndef CONFIG_DISABLE_SIGNALS struct tcb_s *rtcb = this_task(); uint32_t regs[XCPTCONTEXT_REGS]; sig_deliver_t sigdeliver; /* Save the errno. This must be preserved throughout the signal handling * so that the user code final gets the correct errno value (probably * EINTR). */ int saved_errno = rtcb->pterrno; board_autoled_on(LED_SIGNAL); sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head); ASSERT(rtcb->xcp.sigdeliver != NULL); /* Save the real return state on the stack. */ up_copystate(regs, rtcb->xcp.regs); regs[REG_PC] = rtcb->xcp.saved_pc; regs[REG_SR] = rtcb->xcp.saved_sr; /* Get a local copy of the sigdeliver function pointer. We do this so * that we can nullify the sigdeliver function pointer in the TCB and * accept more signal deliveries while processing the current pending * signals. */ sigdeliver = rtcb->xcp.sigdeliver; rtcb->xcp.sigdeliver = NULL; /* Then restore the task interrupt state. */ up_irq_restore(regs[REG_SR] & 0x000000f0); /* Deliver the signals */ sigdeliver(rtcb); /* Output any debug messages BEFORE restoring errno (because they may * alter errno), then disable interrupts again and restore the original * errno that is needed by the user logic (it is probably EINTR). */ sinfo("Resuming\n"); (void)up_irq_save(); rtcb->pterrno = saved_errno; /* Then restore the correct state for this thread of execution. */ board_autoled_off(LED_SIGNAL); up_fullcontextrestore(regs); #endif }
void up_sigdeliver(void) { _TCB *rtcb = (_TCB*)g_readytorun.head; uint32_t regs[XCPTCONTEXT_REGS]; sig_deliver_t sigdeliver; /* Save the errno. This must be preserved throughout the signal handling * so that the user code final gets the correct errno value (probably * EINTR). */ int saved_errno = rtcb->pterrno; up_ledon(LED_SIGNAL); sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head); ASSERT(rtcb->xcp.sigdeliver != NULL); /* Save the real return state on the stack. */ up_copystate(regs, rtcb->xcp.regs); regs[REG_PC] = rtcb->xcp.saved_pc; regs[REG_PRIMASK] = rtcb->xcp.saved_primask; regs[REG_XPSR] = rtcb->xcp.saved_xpsr; /* Get a local copy of the sigdeliver function pointer. We do this so that * we can nullify the sigdeliver function pointer in the TCB and accept * more signal deliveries while processing the current pending signals. */ sigdeliver = rtcb->xcp.sigdeliver; rtcb->xcp.sigdeliver = NULL; /* Then restore the task interrupt state */ irqrestore((uint16_t)regs[REG_PRIMASK]); /* Deliver the signals */ sigdeliver(rtcb); /* Output any debug messages BEFORE restoring errno (because they may * alter errno), then disable interrupts again and restore the original * errno that is needed by the user logic (it is probably EINTR). */ sdbg("Resuming\n"); (void)irqsave(); rtcb->pterrno = saved_errno; /* Then restore the correct state for this thread of * execution. */ up_ledoff(LED_SIGNAL); up_fullcontextrestore(regs); }
void up_sigdeliver(void) { struct tcb_s *rtcb = this_task(); uint32_t regs[XCPTCONTEXT_REGS]; sig_deliver_t sigdeliver; /* Save the errno. This must be preserved throughout the signal handling * so that the user code final gets the correct errno value (probably * EINTR). */ int saved_errno = rtcb->pterrno; board_autoled_on(LED_SIGNAL); svdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head); ASSERT(rtcb->xcp.sigdeliver != NULL); /* Save the real return state on the stack. */ up_copyfullstate(regs, rtcb->xcp.regs); regs[REG_PC] = rtcb->xcp.saved_pc; regs[REG_CPSR] = rtcb->xcp.saved_cpsr; /* Get a local copy of the sigdeliver function pointer. we do this so that * we can nullify the sigdeliver function pointer in the TCB and accept * more signal deliveries while processing the current pending signals. */ sigdeliver = rtcb->xcp.sigdeliver; rtcb->xcp.sigdeliver = NULL; /* Then restore the task interrupt state */ irqrestore(regs[REG_CPSR]); /* Deliver the signals */ sigdeliver(rtcb); /* Output any debug messages BEFORE restoring errno (because they may * alter errno), then disable interrupts again and restore the original * errno that is needed by the user logic (it is probably EINTR). */ svdbg("Resuming\n"); (void)irqsave(); rtcb->pterrno = saved_errno; /* Then restore the correct state for this thread of execution. */ board_autoled_off(LED_SIGNAL); #ifdef CONFIG_TASK_SCHED_HISTORY /* Save the task name which will be scheduled */ save_task_scheduling_status(rtcb); #endif up_fullcontextrestore(regs); }
void up_release_pending(void) { struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; slldbg("From TCB=%p\n", rtcb); /* Merge the g_pendingtasks list into the g_readytorun task list */ /* sched_lock(); */ if (sched_mergepending()) { /* The currently active task has changed! We will need to * switch contexts. First check if we are operating in * interrupt context: */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_copystate(rtcb->xcp.regs, current_regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; slldbg("New Active Task TCB=%p\n", rtcb); /* Then switch contexts */ current_regs = rtcb->xcp.regs; } /* Copy the exception context into the TCB of the task that * was currently active. if up_saveusercontext returns a non-zero * value, then this is really the previously running task * restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; slldbg("New Active Task TCB=%p\n", rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } }
void _exit(int status) { struct tcb_s *tcb; /* Disable interrupts. They will be restored when the next * task is started. */ (void)irqsave(); slldbg("TCB=%p exiting\n", this_task()); #if defined(CONFIG_DUMP_ON_EXIT) && defined(CONFIG_DEBUG) slldbg("Other tasks:\n"); sched_foreach(_up_dumponexit, NULL); #endif /* Destroy the task at the head of the ready to run list. */ (void)task_exit(); /* Now, perform the context switch to the new ready-to-run task at the * head of the list. */ tcb = this_task(); #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously running * task is closed down gracefully (data caches dump, MMU flushed) and * set up the address environment for the new thread at the head of * the ready-to-run list. */ (void)group_addrenv(tcb); #endif /* Then switch contexts */ up_fullcontextrestore(tcb->xcp.regs); /* up_fullcontextrestore() should not return but could if the software * interrupts are disabled. */ PANIC(); }
void _exit(int status) { struct tcb_s *tcb; /* Make sure that we are in a critical section with local interrupts. * The IRQ state will be restored when the next task is started. */ (void)enter_critical_section(); sinfo("TCB=%p exiting\n", this_task()); #ifdef CONFIG_DUMP_ON_EXIT sinfo("Other tasks:\n"); sched_foreach(_up_dumponexit, NULL); #endif /* Destroy the task at the head of the ready to run list. */ (void)task_exit(); /* Now, perform the context switch to the new ready-to-run task at the * head of the list. */ tcb = this_task(); #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously running * task is closed down gracefully (data caches dump, MMU flushed) and * set up the address environment for the new thread at the head of * the ready-to-run list. */ (void)group_addrenv(tcb); #endif /* Then switch contexts */ up_fullcontextrestore(tcb->xcp.regs); }
void up_sigdeliver(void) { _TCB *rtcb = (_TCB*)g_readytorun.head; #if 0 uint32_t regs[XCPTCONTEXT_REGS+3]; /* Why +3? See below */ #else uint32_t regs[XCPTCONTEXT_REGS]; #endif sig_deliver_t sigdeliver; /* Save the errno. This must be preserved throughout the signal handling * so that the user code final gets the correct errno value (probably EINTR). */ int saved_errno = rtcb->pterrno; up_ledon(LED_SIGNAL); sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head); ASSERT(rtcb->xcp.sigdeliver != NULL); /* Save the real return state on the stack. */ up_copystate(regs, rtcb->xcp.regs); regs[REG_PC] = rtcb->xcp.saved_pc; regs[REG_SR] = rtcb->xcp.saved_sr; /* Get a local copy of the sigdeliver function pointer. We do this so that * we can nullify the sigdeliver function pointer in the TCB and accept * more signal deliveries while processing the current pending signals. */ sigdeliver = rtcb->xcp.sigdeliver; rtcb->xcp.sigdeliver = NULL; /* Then restore the task interrupt state */ irqrestore(regs[REG_SR]); /* Deliver the signals */ sigdeliver(rtcb); /* Output any debug messages BEFORE restoring errno (because they may * alter errno), then disable interrupts again and restore the original * errno that is needed by the user logic (it is probably EINTR). */ sdbg("Resuming\n"); (void)irqsave(); rtcb->pterrno = saved_errno; /* Then restore the correct state for this thread of execution. This is an * unusual case that must be handled by up_fullcontextresore. This case is * unusal in two ways: * * 1. It is not a context switch between threads. Rather, up_fullcontextrestore * must behave more it more like a longjmp within the same task, using * he same stack. * 2. In this case, up_fullcontextrestore is called with r12 pointing to * a register save area on the stack to be destroyed. This is * dangerous because there is the very real possibility that the new * stack pointer might overlap with the register save area and hat stack * usage in up_fullcontextrestore might corrupt the register save data * before the state is restored. At present, there does not appear to * be any stack overlap problems. If there were, then adding 3 words * to the size of register save structure size will protect its contents. */ up_ledoff(LED_SIGNAL); up_fullcontextrestore(regs); }
void up_unblock_task(struct tcb_s *tcb) { struct tcb_s *rtcb = this_task(); /* Verify that the context switch can be performed */ ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) && (tcb->task_state <= LAST_BLOCKED_STATE)); /* Remove the task from the blocked task list */ sched_removeblocked(tcb); /* Add the task in the correct location in the prioritized * ready-to-run task list */ if (sched_addreadytorun(tcb)) { /* The currently active task has changed! We need to do * a context switch to the new task. */ /* Update scheduler parameters */ sched_suspend_scheduler(rtcb); /* Are we in an interrupt handler? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_copystate(rtcb->xcp.regs, current_regs); /* Restore the exception context of the rtcb at the (new) head * of the ready-to-run task list. */ rtcb = this_task(); /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts. Any necessary address environment * changes will be made when the interrupt returns. */ current_regs = rtcb->xcp.regs; } /* We are not in an interrupt handler. Copy the user C context * into the TCB of the task that was previously active. if * up_saveusercontext returns a non-zero value, then this is really the * previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the new task that is ready to * run (probably tcb). This is the new rtcb at the head of the * ready-to-run task list. */ rtcb = this_task(); #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously * running task is closed down gracefully (data caches dump, * MMU flushed) and set up the address environment for the new * thread at the head of the ready-to-run list. */ (void)group_addrenv(rtcb); #endif /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } }
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority) { /* Verify that the caller is sane */ if (tcb->task_state < FIRST_READY_TO_RUN_STATE || tcb->task_state > LAST_READY_TO_RUN_STATE #if SCHED_PRIORITY_MIN > 0 || priority < SCHED_PRIORITY_MIN #endif #if SCHED_PRIORITY_MAX < UINT8_MAX || priority > SCHED_PRIORITY_MAX #endif ) { PANIC(OSERR_BADREPRIORITIZESTATE); } else { struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; bool switch_needed; slldbg("TCB=%p PRI=%d\n", tcb, priority); /* Remove the tcb task from the ready-to-run list. * sched_removereadytorun will return true if we just * remove the head of the ready to run list. */ switch_needed = sched_removereadytorun(tcb); /* Setup up the new task priority */ tcb->sched_priority = (uint8_t)priority; /* Return the task to the specified blocked task list. * sched_addreadytorun will return true if the task was * added to the new list. We will need to perform a context * switch only if the EXCLUSIVE or of the two calls is non-zero * (i.e., one and only one the calls changes the head of the * ready-to-run list). */ switch_needed ^= sched_addreadytorun(tcb); /* Now, perform the context switch if one is needed */ if (switch_needed) { /* If we are going to do a context switch, then now is the right * time to add any pending tasks back into the ready-to-run list. * task list now */ if (g_pendingtasks.head) { sched_mergepending(); } /* Are we in an interrupt handler? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_savestate(rtcb->xcp.regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; slldbg("New Active Task TCB=%p\n", rtcb); /* Then switch contexts */ up_restorestate(rtcb->xcp.regs); } /* Copy the exception context into the TCB at the (old) head of the * g_readytorun Task list. if up_saveusercontext returns a non-zero * value, then this is really the previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; slldbg("New Active Task TCB=%p\n", rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } } }
void up_release_pending(void) { struct tcb_s *rtcb = this_task(); sinfo("From TCB=%p\n", rtcb); /* Merge the g_pendingtasks list into the ready-to-run task list */ /* sched_lock(); */ if (sched_mergepending()) { /* The currently active task has changed! We will need to * switch contexts. */ /* Update scheduler parameters */ sched_suspend_scheduler(rtcb); /* Are we operating in interrupt context? */ if (CURRENT_REGS) { /* Yes, then we have to do things differently. * Just copy the CURRENT_REGS into the OLD rtcb. */ up_savestate(rtcb->xcp.regs); /* Restore the exception context of the rtcb at the (new) head * of the ready-to-run task list. */ rtcb = this_task(); /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts. Any necessary address environment * changes will be made when the interrupt returns. */ up_restorestate(rtcb->xcp.regs); } /* Copy the exception context into the TCB of the task that * was currently active. if up_saveusercontext returns a non-zero * value, then this is really the previously running task * restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the ready-to-run task list. */ rtcb = this_task(); /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } }
void up_unblock_task(struct tcb_s *tcb) { struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; /* Verify that the context switch can be performed */ ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) && (tcb->task_state <= LAST_BLOCKED_STATE)); /* Remove the task from the blocked task list */ sched_removeblocked(tcb); /* Reset its timeslice. This is only meaningful for round * robin tasks but it doesn't here to do it for everything */ #if CONFIG_RR_INTERVAL > 0 tcb->timeslice = MSEC2TICK(CONFIG_RR_INTERVAL); #endif /* Add the task in the correct location in the prioritized * g_readytorun task list */ if (sched_addreadytorun(tcb)) { /* The currently active task has changed! We need to do * a context switch to the new task. * * Are we in an interrupt handler? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_savestate(rtcb->xcp.regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; /* Then switch contexts */ up_restorestate(rtcb->xcp.regs); #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously * running task is closed down gracefully (data caches dump, * MMU flushed) and set up the address environment for the new * thread at the head of the ready-to-run list. */ (void)group_addrenv(rtcb); #endif } /* We are not in an interrupt handler. Copy the user C context * into the TCB of the task that was previously active. if * up_saveusercontext returns a non-zero value, then this is really the * previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the new task that is ready to * run (probably tcb). This is the new rtcb at the head of the * g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously * running task is closed down gracefully (data caches dump, * MMU flushed) and set up the address environment for the new * thread at the head of the ready-to-run list. */ (void)group_addrenv(rtcb); #endif /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } }
void up_sigdeliver(void) { struct tcb_s *rtcb = this_task(); uint32_t regs[XCPTCONTEXT_REGS]; sig_deliver_t sigdeliver; /* Save the errno. This must be preserved throughout the signal handling * so that the user code final gets the correct errno value (probably * EINTR). */ int saved_errno = rtcb->pterrno; board_autoled_on(LED_SIGNAL); sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head); ASSERT(rtcb->xcp.sigdeliver != NULL); /* Save the real return state on the stack. */ up_copystate(regs, rtcb->xcp.regs); regs[REG_EPC] = rtcb->xcp.saved_epc; regs[REG_STATUS] = rtcb->xcp.saved_status; /* Get a local copy of the sigdeliver function pointer. We do this so that * we can nullify the sigdeliver function pointer in the TCB and accept * more signal deliveries while processing the current pending signals. */ sigdeliver = rtcb->xcp.sigdeliver; rtcb->xcp.sigdeliver = NULL; /* Then restore the task interrupt state */ up_irq_restore((irqstate_t)regs[REG_STATUS]); /* Deliver the signals */ sigdeliver(rtcb); /* Output any debug messages BEFORE restoring errno (because they may * alter errno), then disable interrupts again and restore the original * errno that is needed by the user logic (it is probably EINTR). */ sinfo("Resuming EPC: %08x STATUS: %08x\n", regs[REG_EPC], regs[REG_STATUS]); (void)up_irq_save(); rtcb->pterrno = saved_errno; /* Then restore the correct state for this thread of * execution. */ board_autoled_off(LED_SIGNAL); up_fullcontextrestore(regs); /* up_fullcontextrestore() should not return but could if the software * interrupts are disabled. */ PANIC(); }
void up_sigdeliver(void) { /* NOTE the "magic" guard space added to regs. This is a little kludge * because up_fullcontextrestore (called below) will do a stack-to-stack * copy an may overwrite the regs[] array contents. Sorry. */ struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; uint32_t regs[XCPTCONTEXT_REGS + 4]; sig_deliver_t sigdeliver; /* Save the errno. This must be preserved throughout the signal handling * so that the user code final gets the correct errno value (probably * EINTR). */ int saved_errno = rtcb->pterrno; board_led_on(LED_SIGNAL); sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head); ASSERT(rtcb->xcp.sigdeliver != NULL); /* Save the real return state on the stack. */ up_copyfullstate(regs, rtcb->xcp.regs); regs[REG_PC] = rtcb->xcp.saved_pc; regs[REG_PRIMASK] = rtcb->xcp.saved_primask; regs[REG_XPSR] = rtcb->xcp.saved_xpsr; #ifdef CONFIG_BUILD_PROTECTED regs[REG_LR] = rtcb->xcp.saved_lr; #endif /* Get a local copy of the sigdeliver function pointer. We do this so that * we can nullify the sigdeliver function pointer in the TCB and accept * more signal deliveries while processing the current pending signals. */ sigdeliver = rtcb->xcp.sigdeliver; rtcb->xcp.sigdeliver = NULL; /* Then restore the task interrupt state */ irqrestore((uint8_t)regs[REG_PRIMASK]); /* Deliver the signal */ sigdeliver(rtcb); /* Output any debug messages BEFORE restoring errno (because they may * alter errno), then disable interrupts again and restore the original * errno that is needed by the user logic (it is probably EINTR). */ sdbg("Resuming\n"); (void)irqsave(); rtcb->pterrno = saved_errno; /* Then restore the correct state for this thread of * execution. */ board_led_off(LED_SIGNAL); up_fullcontextrestore(regs); }
void up_block_task(_TCB *tcb, tstate_t task_state) { /* Verify that the context switch can be performed */ if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) || (tcb->task_state > LAST_READY_TO_RUN_STATE)) { PANIC(OSERR_BADBLOCKSTATE); } else { _TCB *rtcb = (_TCB*)g_readytorun.head; bool switch_needed; /* Remove the tcb task from the ready-to-run list. If we * are blocking the task at the head of the task list (the * most likely case), then a context switch to the next * ready-to-run task is needed. In this case, it should * also be true that rtcb == tcb. */ switch_needed = sched_removereadytorun(tcb); /* Add the task to the specified blocked task list */ sched_addblocked(tcb, (tstate_t)task_state); /* If there are any pending tasks, then add them to the g_readytorun * task list now */ if (g_pendingtasks.head) { switch_needed |= sched_mergepending(); } /* Now, perform the context switch if one is needed */ if (switch_needed) { /* Are we in an interrupt handler? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_savestate(rtcb->xcp.regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (_TCB*)g_readytorun.head; /* Then switch contexts */ up_restorestate(rtcb->xcp.regs); } /* Copy the user C context into the TCB at the (old) head of the * g_readytorun Task list. if up_saveusercontext returns a non-zero * value, then this is really the previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (_TCB*)g_readytorun.head; /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } } }
void up_block_task(struct tcb_s *tcb, tstate_t task_state) { struct tcb_s *rtcb = this_task(); bool switch_needed; /* Verify that the context switch can be performed */ DEBUGASSERT((tcb->task_state >= FIRST_READY_TO_RUN_STATE) && (tcb->task_state <= LAST_READY_TO_RUN_STATE)); /* Remove the tcb task from the ready-to-run list. If we * are blocking the task at the head of the task list (the * most likely case), then a context switch to the next * ready-to-run task is needed. In this case, it should * also be true that rtcb == tcb. */ switch_needed = sched_removereadytorun(tcb); /* Add the task to the specified blocked task list */ sched_addblocked(tcb, (tstate_t)task_state); /* If there are any pending tasks, then add them to the ready-to-run * task list now */ if (g_pendingtasks.head) { switch_needed |= sched_mergepending(); } /* Now, perform the context switch if one is needed */ if (switch_needed) { /* Update scheduler parameters */ sched_suspend_scheduler(rtcb); /* Are we in an interrupt handler? */ if (g_current_regs) { /* Yes, then we have to do things differently. * Just copy the g_current_regs into the OLD rtcb. */ up_copystate(rtcb->xcp.regs, g_current_regs); /* Restore the exception context of the rtcb at the (new) head * of the ready-to-run task list. */ rtcb = this_task(); /* Reset scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts. Any necessary address environment * changes will be made when the interrupt returns. */ g_current_regs = rtcb->xcp.regs; } /* Copy the user C context into the TCB at the (old) head of the * ready-to-run Task list. if up_saveusercontext returns a non-zero * value, then this is really the previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the ready-to-run task list. */ rtcb = this_task(); #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously * running task is closed down gracefully (data caches dump, * MMU flushed) and set up the address environment for the new * thread at the head of the ready-to-run list. */ (void)group_addrenv(rtcb); #endif /* Reset scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } }
void up_release_pending(void) { struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; slldbg("From TCB=%p\n", rtcb); /* Merge the g_pendingtasks list into the g_readytorun task list */ /* sched_lock(); */ if (sched_mergepending()) { /* The currently active task has changed! We will need to switch * contexts. * * Update scheduler parameters. */ sched_suspend_scheduler(rtcb); /* Are we operating in interrupt context? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_savestate(rtcb->xcp.regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts. Any necessary address environment * changes will be made when the interrupt returns. */ up_restorestate(rtcb->xcp.regs); } /* Copy the exception context into the TCB of the task that * was currently active. if up_saveusercontext returns a non-zero * value, then this is really the previously running task * restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously * running task is closed down gracefully (data caches dump, * MMU flushed) and set up the address environment for the new * thread at the head of the ready-to-run list. */ (void)group_addrenv(rtcb); #endif /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } }
void up_unblock_task(struct tcb_s *tcb) { /* Verify that the context switch can be performed */ if ((tcb->task_state < FIRST_BLOCKED_STATE) || (tcb->task_state > LAST_BLOCKED_STATE)) { PANIC(OSERR_BADUNBLOCKSTATE); } else { struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; /* Remove the task from the blocked task list */ sched_removeblocked(tcb); /* Reset its timeslice. This is only meaningful for round * robin tasks but it doesn't here to do it for everything */ #if CONFIG_RR_INTERVAL > 0 tcb->timeslice = CONFIG_RR_INTERVAL / MSEC_PER_TICK; #endif /* Add the task in the correct location in the prioritized * g_readytorun task list */ if (sched_addreadytorun(tcb)) { /* The currently active task has changed! We need to do * a context switch to the new task. * * Are we in an interrupt handler? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_copystate(rtcb->xcp.regs, current_regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; /* Then switch contexts */ current_regs = rtcb->xcp.regs; } /* We are not in an interrupt handler. Copy the user C context * into the TCB of the task that was previously active. if * up_saveusercontext returns a non-zero value, then this is really the * previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the new task that is ready to * run (probably tcb). This is the new rtcb at the head of the * g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } } }
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority) { /* Verify that the caller is sane */ if (tcb->task_state < FIRST_READY_TO_RUN_STATE || tcb->task_state > LAST_READY_TO_RUN_STATE #if SCHED_PRIORITY_MIN > 0 || priority < SCHED_PRIORITY_MIN #endif #if SCHED_PRIORITY_MAX < UINT8_MAX || priority > SCHED_PRIORITY_MAX #endif ) { PANIC(); } else { struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head; bool switch_needed; slldbg("TCB=%p PRI=%d\n", tcb, priority); /* Remove the tcb task from the ready-to-run list. * sched_removereadytorun will return true if we just * remove the head of the ready to run list. */ switch_needed = sched_removereadytorun(tcb); /* Setup up the new task priority */ tcb->sched_priority = (uint8_t)priority; /* Return the task to the specified blocked task list. * sched_addreadytorun will return true if the task was * added to the new list. We will need to perform a context * switch only if the EXCLUSIVE or of the two calls is non-zero * (i.e., one and only one the calls changes the head of the * ready-to-run list). */ switch_needed ^= sched_addreadytorun(tcb); /* Now, perform the context switch if one is needed */ if (switch_needed) { /* If we are going to do a context switch, then now is the right * time to add any pending tasks back into the ready-to-run list. * task list now */ if (g_pendingtasks.head) { sched_mergepending(); } /* Update scheduler parameters */ sched_suspend_scheduler(rtcb); /* Are we in an interrupt handler? */ if (current_regs) { /* Yes, then we have to do things differently. * Just copy the current_regs into the OLD rtcb. */ up_savestate(rtcb->xcp.regs); /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts. Any necessary address environment * changes will be made when the interrupt returns. */ up_restorestate(rtcb->xcp.regs); } /* Copy the exception context into the TCB at the (old) head of the * g_readytorun Task list. if up_saveusercontext returns a non-zero * value, then this is really the previously running task restarting! */ else if (!up_saveusercontext(rtcb->xcp.regs)) { /* Restore the exception context of the rtcb at the (new) head * of the g_readytorun task list. */ rtcb = (struct tcb_s*)g_readytorun.head; #ifdef CONFIG_ARCH_ADDRENV /* Make sure that the address environment for the previously * running task is closed down gracefully (data caches dump, * MMU flushed) and set up the address environment for the new * thread at the head of the ready-to-run list. */ (void)group_addrenv(rtcb); #endif /* Update scheduler parameters */ sched_resume_scheduler(rtcb); /* Then switch contexts */ up_fullcontextrestore(rtcb->xcp.regs); } } } }