static ssize_t ikalcd_write(struct file *file, const char *user_buffer, size_t count, loff_t *ppos) { struct usb_ikalcd *dev; int retval = 0; struct urb *urb = NULL; char *buf = NULL; struct usb_ctrlrequest *cr; size_t writesize = min(count, (size_t)LCD_COMMAND_SIZE); int i; dev = file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto exit; /* * limit the number of URBs in flight to stop a user from using up all * RAM */ if (!(file->f_flags & O_NONBLOCK)) { if (down_interruptible(&dev->limit_sem)) { retval = -ERESTARTSYS; goto exit; } } else { if (down_trylock(&dev->limit_sem)) { retval = -EAGAIN; goto exit; } } spin_lock_irq(&dev->err_lock); retval = dev->errors; if (retval < 0) { /* any error is reported once */ dev->errors = 0; /* to preserve notifications about reset */ retval = (retval == -EPIPE) ? retval : -EIO; } spin_unlock_irq(&dev->err_lock); if (retval < 0) goto error; /* create a urb, and a buffer for it, and copy the data to the urb */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } /* buf = usb_alloc_coherent(dev->udev, writesize, GFP_KERNEL, &urb->transfer_dma); */ buf = kmalloc(LCD_COMMAND_SIZE, GFP_KERNEL); if (!buf) { retval = -ENOMEM; goto error; } cr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!cr) { retval = -ENOMEM; goto error; } for (i=0; i<LCD_COMMAND_SIZE; i++) buf[i] = 0x11; if (copy_from_user(buf, user_buffer, writesize)) { retval = -EFAULT; goto error; } /* this lock makes sure we don't submit URBs to gone devices */ mutex_lock(&dev->io_mutex); if (!dev->interface) { /* disconnect() was called */ mutex_unlock(&dev->io_mutex); retval = -ENODEV; goto error; } cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE; cr->bRequest = 0x09; cr->wValue = cpu_to_le16(0x300); cr->wIndex = cpu_to_le16(dev->interface->cur_altsetting->desc.bInterfaceNumber); cr->wLength = cpu_to_le16(LCD_COMMAND_SIZE); /* initialize the urb properly */ /* usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr), buf, writesize, ikalcd_write_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; */ usb_fill_control_urb(urb, dev->udev, usb_sndctrlpipe(dev->udev, 0), (unsigned char*)cr, (void*)buf, LCD_COMMAND_SIZE, ikalcd_write_control_callback, dev); usb_anchor_urb(urb, &dev->submitted); /* send the data out the bulk port */ retval = usb_submit_urb(urb, GFP_KERNEL); mutex_unlock(&dev->io_mutex); if (retval) { dev_err(&dev->interface->dev, "%s - failed submitting write urb, error %d\n", __func__, retval); goto error_unanchor; } /* * release our reference to this urb, the USB core will eventually free * it entirely */ usb_free_urb(urb); return writesize; error_unanchor: usb_unanchor_urb(urb); error: if (urb) { usb_free_coherent(dev->udev, writesize, buf, urb->transfer_dma); usb_free_urb(urb); } up(&dev->limit_sem); exit: return retval; }
static int xpad_probe(struct usb_interface *intf, const struct usb_device_id *id) //探针函数 相当于设备驱动的主函数 { struct usb_device *udev = interface_to_usbdev(intf); //根据usb设备接口获取到usb设备 实际 返回的是 intf->dev.parent 即设备的父亲 struct usb_xpad *xpad; //自己的定义的手柄设备类型 struct input_dev *input_dev;//输入设备 struct usb_endpoint_descriptor *ep_irq_in; //in endpoint 的描述 int ep_irq_in_idx; int i, error; for (i = 0; xpad_device[i].idVendor; i++) //根据实际插入的设备的生产商id和产品id 找到匹配的设备 { if ((le16_to_cpu(udev->descriptor.idVendor) == xpad_device[i].idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == xpad_device[i].idProduct)) break; } xpad = kzalloc(sizeof(struct usb_xpad), GFP_KERNEL); //在内核空间为手柄设备申请内存空间 input_dev = input_allocate_device(); //为输入设备在内核空间申请内存空间 input_allocate_device()这个函数是用kzalloc函数申请了空间后 然后对该内存进行了初始化 if (!xpad || !input_dev) //申请空间失败 { error = -ENOMEM; goto fail1; } //usb_alloc_coherent (struct usb_device *dev,size_t size,gfp_t mem_flags,dma_addr_t *dma)--allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP //分配DMA接口的缓冲区 返回 idata_dma 和 idata(raw packet,原始数据包) xpad->idata = usb_alloc_coherent(udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->idata_dma); if (!xpad->idata) //返回raw packet(原始数据包)失败 { error = -ENOMEM; goto fail1; } //usb_alloc_urb (int iso_packets,gfp_t mem_flags) create a new urb for a USB driver to use iso_packets = 0 when use interrupt endpoints //创建新的urb给设备使用 xpad->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_in) //urb创建失败 { error = -ENOMEM; goto fail2; } xpad->udev = udev; //保存usb设备信息 xpad->intf = intf; //保存usb接口信息 xpad->dev = input_dev; //保存输入设备信息 //创建物理路径 usb_make_path(udev, xpad->phys, sizeof(xpad->phys)); strlcat(xpad->phys, "/input0", sizeof(xpad->phys)); //input0类型的 input_dev->name = xpad_device[i].name; //保存输入设备名字 input_dev->phys = xpad->phys; //保存输入设备的物理路径 usb_to_input_id(udev, &input_dev->id); //保存输入设备ID input_dev->dev.parent = &intf->dev; //保存输入设备的设备 输入设备的父亲是usb接口 , usb接口的父亲 usb设备 input_set_drvdata(input_dev, xpad); input_dev->open = xpad_open; //输入设备的打开函数 input_dev->close = xpad_close; //输入设备的关闭函数 //BIT_MASK(nr) (1UL<<((nr)%BITS_PER_LONG)) input_dev->evbit[0] = BIT_MASK(EV_KEY); //注册键盘事件 input_dev->evbit[0] |= BIT_MASK(EV_REL); //注册相对轴事件 input_dev->evbit[0] |= BIT_MASK(EV_ABS); //注册绝对轴事件 /* set up axes */ for (i = 0; xpad_abs[i] >= 0; i++) ///注册对应的绝对轴 xpad_set_up_abs(input_dev, xpad_abs[i]); xpad_set_up_rel(input_dev, REL_WHEEL); //注册对应的相对轴 for (i = 0 ; key_need_register[i] >= 0; i++) __set_bit(key_need_register[i], input_dev->keybit); //注册按键 for (i = 0; xpad_common_btn[i] >= 0; i++) __set_bit(xpad_common_btn[i], input_dev->keybit); //注册游戏手柄按键 for (i = 0; xpad360_btn[i] >= 0; i++) __set_bit(xpad360_btn[i], input_dev->keybit); //注册LT RT按键 for (i = 0; xpad_abs_triggers[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_triggers[i]); //初始化设备输出 error = xpad_init_output(intf, xpad); if (error) goto fail3; ep_irq_in_idx = 0; ep_irq_in = &intf->cur_altsetting->endpoint[ep_irq_in_idx].desc; //根据usb接口得到 in endpoint口的描述信息 //函数结构 usb_fill_int_urb(struct urb* urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete,void * context,int interval) //根据 usb设备,usb管道,输入缓冲区的首地址,缓冲区长度,urb入口函数,手柄设备数据信息,in endpoint口的轮换间隔信息 得到 输入的urb usb_fill_int_urb(xpad->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xpad->idata, XPAD_PKT_LEN, xpad_irq_in, xpad, ep_irq_in->bInterval); xpad->irq_in->transfer_dma = xpad->idata_dma; //传输的DMA接口地址 xpad->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; //传输标志(允许DMA方式传输) urb->transfer_dma valid on submit //根据输入设备信息 注册设备 error = input_register_device(xpad->dev); if (error) goto fail5; usb_set_intfdata(intf, xpad); return 0; fail5: if (input_dev) input_ff_destroy(input_dev); //free force feedback structures fail4: xpad_deinit_output(xpad); //free out urb and out dma fail3: usb_free_urb(xpad->irq_in); //free in urb fail2: usb_free_coherent(udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); //free in dma fail1: input_free_device(input_dev); //free input_dev kfree(xpad); //free xpad return error; }
static int xpad_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_xpad *xpad; struct input_dev *input_dev; struct usb_endpoint_descriptor *ep_irq_in; int i, error; for (i = 0; xpad_device[i].idVendor; i++) { if ((le16_to_cpu(udev->descriptor.idVendor) == xpad_device[i].idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == xpad_device[i].idProduct)) break; } xpad = kzalloc(sizeof(struct usb_xpad), GFP_KERNEL); input_dev = input_allocate_device(); if (!xpad || !input_dev) { error = -ENOMEM; goto fail1; } xpad->idata = usb_alloc_coherent(udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->idata_dma); if (!xpad->idata) { error = -ENOMEM; goto fail1; } xpad->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_in) { error = -ENOMEM; goto fail2; } xpad->udev = udev; xpad->mapping = xpad_device[i].mapping; xpad->xtype = xpad_device[i].xtype; if (xpad->xtype == XTYPE_UNKNOWN) { if (intf->cur_altsetting->desc.bInterfaceClass == USB_CLASS_VENDOR_SPEC) { if (intf->cur_altsetting->desc.bInterfaceProtocol == 129) xpad->xtype = XTYPE_XBOX360W; else xpad->xtype = XTYPE_XBOX360; } else xpad->xtype = XTYPE_XBOX; if (dpad_to_buttons) xpad->mapping |= MAP_DPAD_TO_BUTTONS; if (triggers_to_buttons) xpad->mapping |= MAP_TRIGGERS_TO_BUTTONS; if (sticks_to_null) xpad->mapping |= MAP_STICKS_TO_NULL; } xpad->dev = input_dev; usb_make_path(udev, xpad->phys, sizeof(xpad->phys)); strlcat(xpad->phys, "/input0", sizeof(xpad->phys)); input_dev->name = xpad_device[i].name; input_dev->phys = xpad->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, xpad); input_dev->open = xpad_open; input_dev->close = xpad_close; input_dev->evbit[0] = BIT_MASK(EV_KEY); if (!(xpad->mapping & MAP_STICKS_TO_NULL)) { input_dev->evbit[0] |= BIT_MASK(EV_ABS); /* set up axes */ for (i = 0; xpad_abs[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs[i]); } /* set up standard buttons */ for (i = 0; xpad_common_btn[i] >= 0; i++) __set_bit(xpad_common_btn[i], input_dev->keybit); /* set up model-specific ones */ if (xpad->xtype == XTYPE_XBOX360 || xpad->xtype == XTYPE_XBOX360W) { for (i = 0; xpad360_btn[i] >= 0; i++) __set_bit(xpad360_btn[i], input_dev->keybit); } else { for (i = 0; xpad_btn[i] >= 0; i++) __set_bit(xpad_btn[i], input_dev->keybit); } if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { for (i = 0; xpad_btn_pad[i] >= 0; i++) __set_bit(xpad_btn_pad[i], input_dev->keybit); } else { for (i = 0; xpad_abs_pad[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_pad[i]); } if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { for (i = 0; xpad_btn_triggers[i] >= 0; i++) __set_bit(xpad_btn_triggers[i], input_dev->keybit); } else { for (i = 0; xpad_abs_triggers[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_triggers[i]); } error = xpad_init_output(intf, xpad); if (error) goto fail3; error = xpad_init_ff(xpad); if (error) goto fail4; error = xpad_led_probe(xpad); if (error) goto fail5; ep_irq_in = &intf->cur_altsetting->endpoint[0].desc; usb_fill_int_urb(xpad->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xpad->idata, XPAD_PKT_LEN, xpad_irq_in, xpad, ep_irq_in->bInterval); xpad->irq_in->transfer_dma = xpad->idata_dma; xpad->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; error = input_register_device(xpad->dev); if (error) goto fail6; usb_set_intfdata(intf, xpad); if (xpad->xtype == XTYPE_XBOX360W) { /* * Setup the message to set the LEDs on the * controller when it shows up */ xpad->bulk_out = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->bulk_out) { error = -ENOMEM; goto fail7; } xpad->bdata = kzalloc(XPAD_PKT_LEN, GFP_KERNEL); if (!xpad->bdata) { error = -ENOMEM; goto fail8; } xpad->bdata[2] = 0x08; switch (intf->cur_altsetting->desc.bInterfaceNumber) { case 0: xpad->bdata[3] = 0x42; break; case 2: xpad->bdata[3] = 0x43; break; case 4: xpad->bdata[3] = 0x44; break; case 6: xpad->bdata[3] = 0x45; } ep_irq_in = &intf->cur_altsetting->endpoint[1].desc; usb_fill_bulk_urb(xpad->bulk_out, udev, usb_sndbulkpipe(udev, ep_irq_in->bEndpointAddress), xpad->bdata, XPAD_PKT_LEN, xpad_bulk_out, xpad); /* * Submit the int URB immediately rather than waiting for open * because we get status messages from the device whether * or not any controllers are attached. In fact, it's * exactly the message that a controller has arrived that * we're waiting for. */ xpad->irq_in->dev = xpad->udev; error = usb_submit_urb(xpad->irq_in, GFP_KERNEL); if (error) goto fail9; } return 0; fail9: kfree(xpad->bdata); fail8: usb_free_urb(xpad->bulk_out); fail7: input_unregister_device(input_dev); input_dev = NULL; fail6: xpad_led_disconnect(xpad); fail5: if (input_dev) input_ff_destroy(input_dev); fail4: xpad_deinit_output(xpad); fail3: usb_free_urb(xpad->irq_in); fail2: usb_free_coherent(udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); fail1: input_free_device(input_dev); kfree(xpad); return error; }
static int appledisplay_probe(struct usb_interface *iface, const struct usb_device_id *id) { struct backlight_properties props; struct appledisplay *pdata; struct usb_device *udev = interface_to_usbdev(iface); struct usb_endpoint_descriptor *endpoint; int int_in_endpointAddr = 0; int retval, brightness; char bl_name[20]; /* set up the endpoint information */ /* use only the first interrupt-in endpoint */ retval = usb_find_int_in_endpoint(iface->cur_altsetting, &endpoint); if (retval) { dev_err(&iface->dev, "Could not find int-in endpoint\n"); return retval; } int_in_endpointAddr = endpoint->bEndpointAddress; /* allocate memory for our device state and initialize it */ pdata = kzalloc(sizeof(struct appledisplay), GFP_KERNEL); if (!pdata) { retval = -ENOMEM; goto error; } pdata->udev = udev; INIT_DELAYED_WORK(&pdata->work, appledisplay_work); mutex_init(&pdata->sysfslock); /* Allocate buffer for control messages */ pdata->msgdata = kmalloc(ACD_MSG_BUFFER_LEN, GFP_KERNEL); if (!pdata->msgdata) { retval = -ENOMEM; goto error; } /* Allocate interrupt URB */ pdata->urb = usb_alloc_urb(0, GFP_KERNEL); if (!pdata->urb) { retval = -ENOMEM; goto error; } /* Allocate buffer for interrupt data */ pdata->urbdata = usb_alloc_coherent(pdata->udev, ACD_URB_BUFFER_LEN, GFP_KERNEL, &pdata->urb->transfer_dma); if (!pdata->urbdata) { retval = -ENOMEM; dev_err(&iface->dev, "Allocating URB buffer failed\n"); goto error; } /* Configure interrupt URB */ usb_fill_int_urb(pdata->urb, udev, usb_rcvintpipe(udev, int_in_endpointAddr), pdata->urbdata, ACD_URB_BUFFER_LEN, appledisplay_complete, pdata, 1); pdata->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; if (usb_submit_urb(pdata->urb, GFP_KERNEL)) { retval = -EIO; dev_err(&iface->dev, "Submitting URB failed\n"); goto error; } /* Register backlight device */ snprintf(bl_name, sizeof(bl_name), "appledisplay%d", atomic_inc_return(&count_displays) - 1); memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_RAW; props.max_brightness = 0xff; pdata->bd = backlight_device_register(bl_name, NULL, pdata, &appledisplay_bl_data, &props); if (IS_ERR(pdata->bd)) { dev_err(&iface->dev, "Backlight registration failed\n"); retval = PTR_ERR(pdata->bd); goto error; } /* Try to get brightness */ brightness = appledisplay_bl_get_brightness(pdata->bd); if (brightness < 0) { retval = brightness; dev_err(&iface->dev, "Error while getting initial brightness: %d\n", retval); goto error; } /* Set brightness in backlight device */ pdata->bd->props.brightness = brightness; /* save our data pointer in the interface device */ usb_set_intfdata(iface, pdata); printk(KERN_INFO "appledisplay: Apple Cinema Display connected\n"); return 0; error: if (pdata) { if (pdata->urb) { usb_kill_urb(pdata->urb); if (pdata->urbdata) usb_free_coherent(pdata->udev, ACD_URB_BUFFER_LEN, pdata->urbdata, pdata->urb->transfer_dma); usb_free_urb(pdata->urb); } if (!IS_ERR(pdata->bd)) backlight_device_unregister(pdata->bd); kfree(pdata->msgdata); } usb_set_intfdata(iface, NULL); kfree(pdata); return retval; }
static ssize_t skel_write(struct file *file, const char *user_buffer, size_t count, loff_t *ppos) { struct usb_skel *dev; int retval = 0; struct urb *urb = NULL; char *buf = NULL; size_t writesize = min(count, (size_t)MAX_TRANSFER); dev = (struct usb_skel *)file->private_data; /* verify that we actually have some data to write */ if (count == 0) goto exit; /* * limit the number of URBs in flight to stop a user from using up all * RAM */ if (!(file->f_flags & O_NONBLOCK)) { if (down_interruptible(&dev->limit_sem)) { retval = -ERESTARTSYS; goto exit; } } else { if (down_trylock(&dev->limit_sem)) { retval = -EAGAIN; goto exit; } } spin_lock_irq(&dev->err_lock); retval = dev->errors; if (retval < 0) { /* any error is reported once */ dev->errors = 0; /* to preserve notifications about reset */ retval = (retval == -EPIPE) ? retval : -EIO; } spin_unlock_irq(&dev->err_lock); if (retval < 0) goto error; /* create a urb, and a buffer for it, and copy the data to the urb */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } buf = usb_alloc_coherent(dev->udev, writesize, GFP_KERNEL, &urb->transfer_dma); if (!buf) { retval = -ENOMEM; goto error; } if (copy_from_user(buf, user_buffer, writesize)) { retval = -EFAULT; goto error; } /* this lock makes sure we don't submit URBs to gone devices */ mutex_lock(&dev->io_mutex); if (!dev->interface) { /* disconnect() was called */ mutex_unlock(&dev->io_mutex); retval = -ENODEV; goto error; } /* initialize the urb properly */ usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr), buf, writesize, skel_write_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->submitted); /* send the data out the bulk port */ retval = usb_submit_urb(urb, GFP_KERNEL); mutex_unlock(&dev->io_mutex); if (retval) { err("%s - failed submitting write urb, error %d", __func__, retval); goto error_unanchor; } /* * release our reference to this urb, the USB core will eventually free * it entirely */ usb_free_urb(urb); return writesize; error_unanchor: usb_unanchor_urb(urb); error: if (urb) { usb_free_coherent(dev->udev, writesize, buf, urb->transfer_dma); usb_free_urb(urb); } up(&dev->limit_sem); exit: return retval; }
static void ar5523_free_rx_cmd(struct ar5523 *ar) { usb_free_coherent(ar->dev, AR5523_MAX_RXCMDSZ, ar->rx_cmd_buf, ar->rx_cmd_urb->transfer_dma); usb_free_urb(ar->rx_cmd_urb); }
/* * iowarrior_write */ static ssize_t iowarrior_write(struct file *file, const char __user *user_buffer, size_t count, loff_t *ppos) { struct iowarrior *dev; int retval = 0; char *buf = NULL; /* for IOW24 and IOW56 we need a buffer */ struct urb *int_out_urb = NULL; dev = file->private_data; mutex_lock(&dev->mutex); /* verify that the device wasn't unplugged */ if (!dev->present) { retval = -ENODEV; goto exit; } dbg("%s - minor %d, count = %zd", __func__, dev->minor, count); /* if count is 0 we're already done */ if (count == 0) { retval = 0; goto exit; } /* We only accept full reports */ if (count != dev->report_size) { retval = -EINVAL; goto exit; } switch (dev->product_id) { case USB_DEVICE_ID_CODEMERCS_IOW24: case USB_DEVICE_ID_CODEMERCS_IOWPV1: case USB_DEVICE_ID_CODEMERCS_IOWPV2: case USB_DEVICE_ID_CODEMERCS_IOW40: /* IOW24 and IOW40 use a synchronous call */ buf = kmalloc(count, GFP_KERNEL); if (!buf) { retval = -ENOMEM; goto exit; } if (copy_from_user(buf, user_buffer, count)) { retval = -EFAULT; kfree(buf); goto exit; } retval = usb_set_report(dev->interface, 2, 0, buf, count); kfree(buf); goto exit; break; case USB_DEVICE_ID_CODEMERCS_IOW56: /* The IOW56 uses asynchronous IO and more urbs */ if (atomic_read(&dev->write_busy) == MAX_WRITES_IN_FLIGHT) { /* Wait until we are below the limit for submitted urbs */ if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto exit; } else { retval = wait_event_interruptible(dev->write_wait, (!dev->present || (atomic_read (&dev-> write_busy) < MAX_WRITES_IN_FLIGHT))); if (retval) { /* we were interrupted by a signal */ retval = -ERESTART; goto exit; } if (!dev->present) { /* The device was unplugged */ retval = -ENODEV; goto exit; } if (!dev->opened) { /* We were closed while waiting for an URB */ retval = -ENODEV; goto exit; } } } atomic_inc(&dev->write_busy); int_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!int_out_urb) { retval = -ENOMEM; dbg("%s Unable to allocate urb ", __func__); goto error_no_urb; } buf = usb_alloc_coherent(dev->udev, dev->report_size, GFP_KERNEL, &int_out_urb->transfer_dma); if (!buf) { retval = -ENOMEM; dbg("%s Unable to allocate buffer ", __func__); goto error_no_buffer; } usb_fill_int_urb(int_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->int_out_endpoint->bEndpointAddress), buf, dev->report_size, iowarrior_write_callback, dev, dev->int_out_endpoint->bInterval); int_out_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; if (copy_from_user(buf, user_buffer, count)) { retval = -EFAULT; goto error; } retval = usb_submit_urb(int_out_urb, GFP_KERNEL); if (retval) { dbg("%s submit error %d for urb nr.%d", __func__, retval, atomic_read(&dev->write_busy)); goto error; } /* submit was ok */ retval = count; usb_free_urb(int_out_urb); goto exit; break; default: /* what do we have here ? An unsupported Product-ID ? */ dev_err(&dev->interface->dev, "%s - not supported for product=0x%x\n", __func__, dev->product_id); retval = -EFAULT; goto exit; break; } error: usb_free_coherent(dev->udev, dev->report_size, buf, int_out_urb->transfer_dma); error_no_buffer: usb_free_urb(int_out_urb); error_no_urb: atomic_dec(&dev->write_busy); wake_up_interruptible(&dev->write_wait); exit: mutex_unlock(&dev->mutex); return retval; }
static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ems_usb *dev = netdev_priv(netdev); struct ems_tx_urb_context *context = NULL; struct net_device_stats *stats = &netdev->stats; struct can_frame *cf = (struct can_frame *)skb->data; struct ems_cpc_msg *msg; struct urb *urb; u8 *buf; int i, err; size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN + sizeof(struct cpc_can_msg); if (can_dropped_invalid_skb(netdev, skb)) return NETDEV_TX_OK; /* create a URB, and a buffer for it, and copy the data to the URB */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { netdev_err(netdev, "No memory left for URBs\n"); goto nomem; } buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma); if (!buf) { netdev_err(netdev, "No memory left for USB buffer\n"); usb_free_urb(urb); goto nomem; } msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE]; msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK); msg->msg.can_msg.length = cf->can_dlc; if (cf->can_id & CAN_RTR_FLAG) { msg->type = cf->can_id & CAN_EFF_FLAG ? CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME; msg->length = CPC_CAN_MSG_MIN_SIZE; } else { msg->type = cf->can_id & CAN_EFF_FLAG ? CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME; for (i = 0; i < cf->can_dlc; i++) msg->msg.can_msg.msg[i] = cf->data[i]; msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc; } for (i = 0; i < MAX_TX_URBS; i++) { if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) { context = &dev->tx_contexts[i]; break; } } /* * May never happen! When this happens we'd more URBs in flight as * allowed (MAX_TX_URBS). */ if (!context) { usb_free_coherent(dev->udev, size, buf, urb->transfer_dma); usb_free_urb(urb); netdev_warn(netdev, "couldn't find free context\n"); return NETDEV_TX_BUSY; } context->dev = dev; context->echo_index = i; context->dlc = cf->can_dlc; usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf, size, ems_usb_write_bulk_callback, context); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->tx_submitted); can_put_echo_skb(skb, netdev, context->echo_index); atomic_inc(&dev->active_tx_urbs); err = usb_submit_urb(urb, GFP_ATOMIC); if (unlikely(err)) { can_free_echo_skb(netdev, context->echo_index); usb_unanchor_urb(urb); usb_free_coherent(dev->udev, size, buf, urb->transfer_dma); dev_kfree_skb(skb); atomic_dec(&dev->active_tx_urbs); if (err == -ENODEV) { netif_device_detach(netdev); } else { netdev_warn(netdev, "failed tx_urb %d\n", err); stats->tx_dropped++; } } else { netif_trans_update(netdev); /* Slow down tx path */ if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS || dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) { netif_stop_queue(netdev); } } /* * Release our reference to this URB, the USB core will eventually free * it entirely. */ usb_free_urb(urb); return NETDEV_TX_OK; nomem: dev_kfree_skb(skb); stats->tx_dropped++; return NETDEV_TX_OK; }
static int wdm_probe(struct usb_interface *intf, const struct usb_device_id *id) { int rv = -EINVAL; struct usb_device *udev = interface_to_usbdev(intf); struct wdm_device *desc; struct usb_host_interface *iface; struct usb_endpoint_descriptor *ep; struct usb_cdc_dmm_desc *dmhd; u8 *buffer = intf->altsetting->extra; int buflen = intf->altsetting->extralen; u16 maxcom = 0; if (!buffer) goto out; while (buflen > 2) { if (buffer [1] != USB_DT_CS_INTERFACE) { dev_err(&intf->dev, "skipping garbage\n"); goto next_desc; } switch (buffer [2]) { case USB_CDC_HEADER_TYPE: break; case USB_CDC_DMM_TYPE: dmhd = (struct usb_cdc_dmm_desc *)buffer; maxcom = le16_to_cpu(dmhd->wMaxCommand); dev_dbg(&intf->dev, "Finding maximum buffer length: %d", maxcom); break; default: dev_err(&intf->dev, "Ignoring extra header, type %d, length %d\n", buffer[2], buffer[0]); break; } next_desc: buflen -= buffer[0]; buffer += buffer[0]; } rv = -ENOMEM; desc = kzalloc(sizeof(struct wdm_device), GFP_KERNEL); if (!desc) goto out; mutex_init(&desc->lock); spin_lock_init(&desc->iuspin); init_waitqueue_head(&desc->wait); desc->wMaxCommand = maxcom; /* this will be expanded and needed in hardware endianness */ desc->inum = cpu_to_le16((u16)intf->cur_altsetting->desc.bInterfaceNumber); desc->intf = intf; INIT_WORK(&desc->rxwork, wdm_rxwork); rv = -EINVAL; iface = intf->cur_altsetting; if (iface->desc.bNumEndpoints != 1) goto err; ep = &iface->endpoint[0].desc; if (!ep || !usb_endpoint_is_int_in(ep)) goto err; desc->wMaxPacketSize = le16_to_cpu(ep->wMaxPacketSize); desc->bMaxPacketSize0 = udev->descriptor.bMaxPacketSize0; desc->orq = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!desc->orq) goto err; desc->irq = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); if (!desc->irq) goto err; desc->validity = usb_alloc_urb(0, GFP_KERNEL); if (!desc->validity) goto err; desc->response = usb_alloc_urb(0, GFP_KERNEL); if (!desc->response) goto err; desc->command = usb_alloc_urb(0, GFP_KERNEL); if (!desc->command) goto err; desc->ubuf = kmalloc(desc->wMaxCommand, GFP_KERNEL); if (!desc->ubuf) goto err; desc->sbuf = usb_alloc_coherent(interface_to_usbdev(intf), desc->wMaxPacketSize, GFP_KERNEL, &desc->validity->transfer_dma); if (!desc->sbuf) goto err; desc->inbuf = usb_alloc_coherent(interface_to_usbdev(intf), desc->bMaxPacketSize0, GFP_KERNEL, &desc->response->transfer_dma); if (!desc->inbuf) goto err2; usb_fill_int_urb( desc->validity, interface_to_usbdev(intf), usb_rcvintpipe(interface_to_usbdev(intf), ep->bEndpointAddress), desc->sbuf, desc->wMaxPacketSize, wdm_int_callback, desc, ep->bInterval ); desc->validity->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_set_intfdata(intf, desc); rv = usb_register_dev(intf, &wdm_class); if (rv < 0) goto err3; else dev_info(&intf->dev, "cdc-wdm%d: USB WDM device\n", intf->minor - WDM_MINOR_BASE); out: return rv; err3: usb_set_intfdata(intf, NULL); usb_free_coherent(interface_to_usbdev(desc->intf), desc->bMaxPacketSize0, desc->inbuf, desc->response->transfer_dma); err2: usb_free_coherent(interface_to_usbdev(desc->intf), desc->wMaxPacketSize, desc->sbuf, desc->validity->transfer_dma); err: free_urbs(desc); kfree(desc->ubuf); kfree(desc->orq); kfree(desc->irq); kfree(desc); return rv; }
static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id) //@: vf_usb_operation_probe_t /*@ requires usb_interface(usb_mouse_probe, ?disconnect_cb, intf, _, ?originalData, false, ?fracsize) &*& permission_to_submit_urb(?urbs_submitted, false) &*& not_in_interrupt_context(currentThread) &*& [fracsize]probe_disconnect_userdata(usb_mouse_probe, disconnect_cb)() &*& [?callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb); @*/ /*@ ensures not_in_interrupt_context(currentThread) &*& [callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb) &*& result == 0 ? // success // probe_disconnect_userdata is not returned, so the user "has to put it somewhere", // and give it back with _disconnect. // you can put it in usb_interface: it includes userdata which // can eat whatever probe_disconnect_userdata contains. usb_interface(usb_mouse_probe, disconnect_cb, intf, _, ?data, true, fracsize) //&*& permission_to_submit_urb(_, false) : // failure usb_interface(usb_mouse_probe, disconnect_cb, intf, _, ?data, false, fracsize) // XXX meh, the permission count thing is annoying and I don't think it actually // solves much at all, so made it "_" for now. &*& permission_to_submit_urb(_, false) &*& data == originalData || data == 0 &*& [fracsize]probe_disconnect_userdata(usb_mouse_probe, _)() ; @*/ { struct usb_host_endpoint* ep; //@ open [callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb); //@ close [callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb); struct usb_device *dev = interface_to_usbdev(intf); struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct usb_mouse *mouse; struct input_dev *input_dev; int pipe, maxp; int error = -ENOMEM; //@ open usb_interface(usb_mouse_probe, _, _, _, _, _, _); interface = intf->cur_altsetting; //@ open [?f2]usb_host_interface(interface); //@ open [?f3]usb_interface_descriptor(&interface->desc, ?bNumEndpoints, ?bInterfaceNumber); if (interface->desc.bNumEndpoints != 1) { //@ close [f3]usb_interface_descriptor(&interface->desc, bNumEndpoints, bInterfaceNumber); //@ close [f2]usb_host_interface(interface); //@ close usb_interface(usb_mouse_probe, disconnect_cb, intf, _, originalData, false, fracsize); return -ENODEV; } ep = interface->endpoint; endpoint = &(ep->desc); //@ open usb_host_endpoint(interface->endpoint); //int usb_endpoint_is_int_in_res = ; if (! usb_endpoint_is_int_in(endpoint)) { //@ close usb_host_endpoint(interface->endpoint); //@ close [f3]usb_interface_descriptor(&interface->desc, bNumEndpoints, bInterfaceNumber); //@ close [f2]usb_host_interface(interface); //@ close usb_interface(usb_mouse_probe, disconnect_cb, intf, _, originalData, false, fracsize); return -ENODEV; } pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress); // original: maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); __u16 usb_maxpacket_ret = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); maxp = usb_maxpacket_ret; mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL); input_dev = input_allocate_device(); if (! mouse || ! input_dev) goto fail1; //@ uchars_to_chars(mouse); //@ close_struct(mouse); //@ assert chars((void*) &mouse->name, 128, ?zeros); //@ assume(mem(0, zeros)); // follows because kzalloc is used //@ assert chars((void*) &mouse->phys, 64, ?zeros2); //@ assume(mem(0, zeros2)); // follows because kzalloc is used mouse->usbdev = 0; mouse->dev = 0; mouse->irq = 0; mouse->data = 0; mouse->data_dma = 0; mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma); //@ signed char* data_tmp = mouse->data; if (! mouse->data) { //@ open_struct(mouse); //@ chars_to_uchars(mouse); goto fail1; } mouse->irq = usb_alloc_urb(0, GFP_KERNEL); if (! mouse->irq) goto fail2; mouse->usbdev = dev; mouse->dev = input_dev; if (dev->manufacturer) strlcpy(mouse->name, dev->manufacturer, 128/*sizeof(mouse->name)*/); if (dev->product) { if (dev->manufacturer) { strlcat(mouse->name, " ", 128/*sizeof(mouse->name)*/); } strlcat(mouse->name, dev->product, 128/*sizeof(mouse->name)*/); } if (strlen(mouse->name)) ; //TODO //snprintf(mouse->name, 128 /*sizeof(mouse->name)*/, // "USB HIDBP Mouse %04x:%04x", // le16_to_cpu(dev->descriptor.idVendor), // le16_to_cpu(dev->descriptor.idProduct)); usb_make_path(dev, mouse->phys, 64/*sizeof(mouse->phys)*/); strlcat(mouse->phys, "/input0", 64/*sizeof(mouse->phys)*/); //@ open input_dev_unregistered(input_dev, _, _, _, _, _, _); input_dev->name = mouse->name; input_dev->phys = mouse->phys; //@ close usb_device(dev, _); usb_to_input_id(dev, &input_dev->id); //@ open usb_device(dev, _); //TODO: input_dev->dev.parent = &intf->dev; //TODO: /*input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE); input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) | BIT_MASK(BTN_EXTRA); input_dev->relbit[0] |= BIT_MASK(REL_WHEEL);*/ //@ close input_dev_unregistered(input_dev, _, _, _, _, _, _); input_set_drvdata(input_dev, mouse); //@ open input_dev_unregistered(input_dev, _, _, _, _, _, _); input_dev->open = usb_mouse_open; input_dev->close = usb_mouse_close; input_dev->event = usb_mouse_event_dummy; // not original code, HACK //@ close usb_device(dev, _); //@ close complete_t_ghost_param(usb_mouse_irq, usb_mouse_irq); usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data, (maxp > 8 ? 8 : maxp), usb_mouse_irq, mouse, endpoint->bInterval); mouse->irq->transfer_dma = mouse->data_dma; mouse->irq->transfer_flags = mouse->irq->transfer_flags | URB_NO_TRANSFER_DMA_MAP; /*@ urb_transfer_flags_add_no_transfer_dma_map( mouse->irq, data_tmp, mouse->data_dma, 8, mouse->irq->transfer_flags); @*/ //@ assert mouse->irq |-> ?irq; //@ close urb_struct(true, irq, _, data_tmp, mouse->data_dma, 8, true, usb_mouse_irq, mouse, 0); //@ close input_open_t_ghost_param(usb_mouse_open, usb_mouse_open); //@ close input_close_t_ghost_param(usb_mouse_close, usb_mouse_close); //@ assume(is_input_event_t_no_pointer(usb_mouse_event_dummy) == true); // HACK HACK HACK, there are no events for this driver //@ close input_event_t_ghost_param(usb_mouse_event_dummy, usb_mouse_event_dummy); //@ close input_dev_unregistered(input_dev, _, _, _, _, _, _); //@ input_ghost_register_device(input_dev, fracsize); //@ close input_open_callback_link(usb_mouse_open)(usb_mouse_close, usb_mouse_event_dummy); //@ close input_close_callback_link(usb_mouse_close)(usb_mouse_open, usb_mouse_event_dummy); //@ close input_event_callback_link(usb_mouse_event_dummy)(usb_mouse_open, usb_mouse_close); //@ assert input_dev_ghost_registered(_, _, _, _, _, _, _, _, ?input_register_result); /*@ if (input_register_result == 0){ close userdef_input_drvdata(usb_mouse_open, usb_mouse_close, usb_mouse_event_dummy)(input_dev, false, mouse, fracsize); } @*/ //@ assume( true && (void*) 0 != ((void*) mouse->phys)); //@ assert chars(mouse->phys, 64, ?phys_text); //@ close maybe_chars(1, mouse->phys, 64, phys_text); error = input_register_device(mouse->dev); if (error != 0) { //@ open maybe_chars(1, _, _, _); //@ open input_open_callback_link(usb_mouse_open)(usb_mouse_close, usb_mouse_event_dummy); //@ open input_close_callback_link(usb_mouse_close)(usb_mouse_open, usb_mouse_event_dummy); //@ open input_event_callback_link(usb_mouse_event_dummy)(usb_mouse_open, usb_mouse_close); //@ open input_open_t_ghost_param(usb_mouse_open, usb_mouse_open); //@ open input_close_t_ghost_param(usb_mouse_close, usb_mouse_close); //@ open input_event_t_ghost_param(usb_mouse_event_dummy, usb_mouse_event_dummy); goto fail3; } //@ close usb_interface_descriptor(&interface->desc, 1, _); //@ close usb_host_endpoint(interface->endpoint); //@ close [f2]usb_host_interface(interface); //@ close usb_interface(usb_mouse_probe, usb_mouse_disconnect, intf, dev, originalData, false, fracsize); //@ close userdef_usb_interface_data(usb_mouse_probe, usb_mouse_disconnect)(intf, dev, mouse, fracsize); usb_set_intfdata(intf, mouse); return 0; fail3: //@ close urb_struct_maybe(true, irq, _, _, _, _, _, _, _, _); usb_free_urb(mouse->irq); fail2: usb_free_coherent(dev, 8, mouse->data, mouse->data_dma); //@ open_struct(mouse); //@ chars_to_uchars(mouse); fail1: input_free_device(input_dev); kfree(mouse); //@ close [f3]usb_interface_descriptor(&interface->desc, bNumEndpoints, bInterfaceNumber); //@ close usb_host_endpoint(interface->endpoint); //@ close [f2]usb_host_interface(interface); //@ close usb_interface(usb_mouse_probe, disconnect_cb, intf, _, originalData, false, fracsize); return error; }
static ssize_t iowarrior_write(struct file *file, const char __user *user_buffer, size_t count, loff_t *ppos) { struct iowarrior *dev; int retval = 0; char *buf = NULL; /* */ struct urb *int_out_urb = NULL; dev = file->private_data; mutex_lock(&dev->mutex); /* */ if (!dev->present) { retval = -ENODEV; goto exit; } dbg("%s - minor %d, count = %zd", __func__, dev->minor, count); /* */ if (count == 0) { retval = 0; goto exit; } /* */ if (count != dev->report_size) { retval = -EINVAL; goto exit; } switch (dev->product_id) { case USB_DEVICE_ID_CODEMERCS_IOW24: case USB_DEVICE_ID_CODEMERCS_IOWPV1: case USB_DEVICE_ID_CODEMERCS_IOWPV2: case USB_DEVICE_ID_CODEMERCS_IOW40: /* */ buf = kmalloc(count, GFP_KERNEL); if (!buf) { retval = -ENOMEM; goto exit; } if (copy_from_user(buf, user_buffer, count)) { retval = -EFAULT; kfree(buf); goto exit; } retval = usb_set_report(dev->interface, 2, 0, buf, count); kfree(buf); goto exit; break; case USB_DEVICE_ID_CODEMERCS_IOW56: /* */ if (atomic_read(&dev->write_busy) == MAX_WRITES_IN_FLIGHT) { /* */ if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto exit; } else { retval = wait_event_interruptible(dev->write_wait, (!dev->present || (atomic_read (&dev-> write_busy) < MAX_WRITES_IN_FLIGHT))); if (retval) { /* */ retval = -ERESTART; goto exit; } if (!dev->present) { /* */ retval = -ENODEV; goto exit; } if (!dev->opened) { /* */ retval = -ENODEV; goto exit; } } } atomic_inc(&dev->write_busy); int_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!int_out_urb) { retval = -ENOMEM; dbg("%s Unable to allocate urb ", __func__); goto error_no_urb; } buf = usb_alloc_coherent(dev->udev, dev->report_size, GFP_KERNEL, &int_out_urb->transfer_dma); if (!buf) { retval = -ENOMEM; dbg("%s Unable to allocate buffer ", __func__); goto error_no_buffer; } usb_fill_int_urb(int_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->int_out_endpoint->bEndpointAddress), buf, dev->report_size, iowarrior_write_callback, dev, dev->int_out_endpoint->bInterval); int_out_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; if (copy_from_user(buf, user_buffer, count)) { retval = -EFAULT; goto error; } retval = usb_submit_urb(int_out_urb, GFP_KERNEL); if (retval) { dbg("%s submit error %d for urb nr.%d", __func__, retval, atomic_read(&dev->write_busy)); goto error; } /* */ retval = count; usb_free_urb(int_out_urb); goto exit; break; default: /* */ dev_err(&dev->interface->dev, "%s - not supported for product=0x%x\n", __func__, dev->product_id); retval = -EFAULT; goto exit; break; } error: usb_free_coherent(dev->udev, dev->report_size, buf, int_out_urb->transfer_dma); error_no_buffer: usb_free_urb(int_out_urb); error_no_urb: atomic_dec(&dev->write_busy); wake_up_interruptible(&dev->write_wait); exit: mutex_unlock(&dev->mutex); return retval; }
static int igorplugusb_remote_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = NULL; struct usb_host_interface *idesc = NULL; struct usb_endpoint_descriptor *ep; struct igorplug *ir = NULL; struct lirc_driver *driver = NULL; int devnum, pipe, maxp; int minor = 0; char buf[63], name[128] = ""; int mem_failure = 0; int ret; dprintk(DRIVER_NAME ": usb probe called.\n"); dev = interface_to_usbdev(intf); idesc = intf->cur_altsetting; if (idesc->desc.bNumEndpoints != 1) return -ENODEV; ep = &idesc->endpoint->desc; if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN) || (ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_CONTROL) return -ENODEV; pipe = usb_rcvctrlpipe(dev, ep->bEndpointAddress); devnum = dev->devnum; maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); dprintk(DRIVER_NAME "[%d]: bytes_in_key=%zu maxp=%d\n", devnum, CODE_LENGTH, maxp); mem_failure = 0; ir = kzalloc(sizeof(struct igorplug), GFP_KERNEL); if (!ir) { mem_failure = 1; goto mem_failure_switch; } driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL); if (!driver) { mem_failure = 2; goto mem_failure_switch; } ir->buf_in = usb_alloc_coherent(dev, DEVICE_BUFLEN + DEVICE_HEADERLEN, GFP_ATOMIC, &ir->dma_in); if (!ir->buf_in) { mem_failure = 3; goto mem_failure_switch; } strcpy(driver->name, DRIVER_NAME " "); driver->minor = -1; driver->code_length = CODE_LENGTH * 8; /* in bits */ driver->features = LIRC_CAN_REC_MODE2; driver->data = ir; driver->chunk_size = CODE_LENGTH; driver->buffer_size = DEVICE_BUFLEN + ADDITIONAL_LIRC_BYTES; driver->set_use_inc = &set_use_inc; driver->set_use_dec = &set_use_dec; driver->sample_rate = sample_rate; /* per second */ driver->add_to_buf = &igorplugusb_remote_poll; driver->dev = &intf->dev; driver->owner = THIS_MODULE; minor = lirc_register_driver(driver); if (minor < 0) mem_failure = 9; mem_failure_switch: switch (mem_failure) { case 9: usb_free_coherent(dev, DEVICE_BUFLEN + DEVICE_HEADERLEN, ir->buf_in, ir->dma_in); case 3: kfree(driver); case 2: kfree(ir); case 1: printk(DRIVER_NAME "[%d]: out of memory (code=%d)\n", devnum, mem_failure); return -ENOMEM; } driver->minor = minor; ir->d = driver; ir->devnum = devnum; ir->usbdev = dev; ir->len_in = DEVICE_BUFLEN + DEVICE_HEADERLEN; ir->in_space = 1; /* First mode2 event is a space. */ do_gettimeofday(&ir->last_time); if (dev->descriptor.iManufacturer && usb_string(dev, dev->descriptor.iManufacturer, buf, sizeof(buf)) > 0) strlcpy(name, buf, sizeof(name)); if (dev->descriptor.iProduct && usb_string(dev, dev->descriptor.iProduct, buf, sizeof(buf)) > 0) snprintf(name + strlen(name), sizeof(name) - strlen(name), " %s", buf); printk(DRIVER_NAME "[%d]: %s on usb%d:%d\n", devnum, name, dev->bus->busnum, devnum); /* clear device buffer */ ret = usb_control_msg(ir->usbdev, usb_rcvctrlpipe(ir->usbdev, 0), SET_INFRABUFFER_EMPTY, USB_TYPE_VENDOR|USB_DIR_IN, /*unused*/0, /*unused*/0, /*dummy*/ir->buf_in, /*dummy*/ir->len_in, /*timeout*/HZ * USB_CTRL_GET_TIMEOUT); if (ret < 0) printk(DRIVER_NAME "[%d]: SET_INFRABUFFER_EMPTY: error %d\n", devnum, ret); usb_set_intfdata(intf, ir); return 0; }
static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); struct usb_host_interface *interface; struct usb_endpoint_descriptor *endpoint; struct usb_mouse *mouse; struct input_dev *input_dev; int pipe, maxp; int error = -ENOMEM; interface = intf->cur_altsetting; if (interface->desc.bNumEndpoints != 1) return -ENODEV; endpoint = &interface->endpoint[0].desc; if (!usb_endpoint_is_int_in(endpoint)) return -ENODEV; pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress); maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe)); mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL); input_dev = input_allocate_device(); if (!mouse || !input_dev) goto fail1; mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma); if (!mouse->data) goto fail1; mouse->irq = usb_alloc_urb(0, GFP_KERNEL); if (!mouse->irq) goto fail2; mouse->usbdev = dev; mouse->dev = input_dev; if (dev->manufacturer) strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name)); if (dev->product) { if (dev->manufacturer) strlcat(mouse->name, " ", sizeof(mouse->name)); strlcat(mouse->name, dev->product, sizeof(mouse->name)); } if (!strlen(mouse->name)) snprintf(mouse->name, sizeof(mouse->name), "USB HIDBP Mouse %04x:%04x", le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); usb_make_path(dev, mouse->phys, sizeof(mouse->phys)); strlcat(mouse->phys, "/input0", sizeof(mouse->phys)); input_dev->name = mouse->name; input_dev->phys = mouse->phys; usb_to_input_id(dev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE); input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) | BIT_MASK(BTN_EXTRA); input_dev->relbit[0] |= BIT_MASK(REL_WHEEL); input_set_drvdata(input_dev, mouse); input_dev->open = usb_mouse_open; input_dev->close = usb_mouse_close; usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data, (maxp > 8 ? 8 : maxp), usb_mouse_irq, mouse, endpoint->bInterval); mouse->irq->transfer_dma = mouse->data_dma; mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; error = input_register_device(mouse->dev); if (error) goto fail3; usb_set_intfdata(intf, mouse); return 0; fail3: usb_free_urb(mouse->irq); fail2: usb_free_coherent(dev, 8, mouse->data, mouse->data_dma); fail1: input_free_device(input_dev); kfree(mouse); return error; }
static void xpad_deinit_output(struct usb_xpad *xpad) { usb_free_urb(xpad->irq_out); usb_free_coherent(xpad->udev, XPAD_PKT_LEN, xpad->odata, xpad->odata_dma); }
static int xpad_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_xpad *xpad; struct input_dev *input_dev; struct usb_endpoint_descriptor *ep_irq_in; int i; int error = -ENOMEM; for (i = 0; xpad_device[i].idVendor; i++) { if ((le16_to_cpu(udev->descriptor.idVendor) == xpad_device[i].idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == xpad_device[i].idProduct)) break; } xpad = kzalloc(sizeof(struct usb_xpad), GFP_KERNEL); input_dev = input_allocate_device(); if (!xpad || !input_dev) goto fail1; xpad->idata = usb_alloc_coherent(udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->idata_dma); if (!xpad->idata) goto fail1; xpad->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_in) goto fail2; xpad->udev = udev; xpad->mapping = xpad_device[i].mapping; xpad->xtype = xpad_device[i].xtype; if (xpad->xtype == XTYPE_UNKNOWN) { if (intf->cur_altsetting->desc.bInterfaceClass == USB_CLASS_VENDOR_SPEC) { if (intf->cur_altsetting->desc.bInterfaceProtocol == 129) xpad->xtype = XTYPE_XBOX360W; else xpad->xtype = XTYPE_XBOX360; } else xpad->xtype = XTYPE_XBOX; if (dpad_to_buttons) xpad->mapping |= MAP_DPAD_TO_BUTTONS; if (triggers_to_buttons) xpad->mapping |= MAP_TRIGGERS_TO_BUTTONS; } xpad->dev = input_dev; usb_make_path(udev, xpad->phys, sizeof(xpad->phys)); strlcat(xpad->phys, "/input0", sizeof(xpad->phys)); input_dev->name = xpad_device[i].name; input_dev->phys = xpad->phys; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, xpad); input_dev->open = xpad_open; input_dev->close = xpad_close; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); /* set up standard buttons and axes */ for (i = 0; xpad_common_btn[i] >= 0; i++) __set_bit(xpad_common_btn[i], input_dev->keybit); for (i = 0; xpad_abs[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs[i]); /* Now set up model-specific ones */ if (xpad->xtype == XTYPE_XBOX360 || xpad->xtype == XTYPE_XBOX360W) { for (i = 0; xpad360_btn[i] >= 0; i++) __set_bit(xpad360_btn[i], input_dev->keybit); } else { for (i = 0; xpad_btn[i] >= 0; i++) __set_bit(xpad_btn[i], input_dev->keybit); } if (xpad->mapping & MAP_DPAD_TO_BUTTONS) { for (i = 0; xpad_btn_pad[i] >= 0; i++) __set_bit(xpad_btn_pad[i], input_dev->keybit); } else { for (i = 0; xpad_abs_pad[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_pad[i]); } if (xpad->mapping & MAP_TRIGGERS_TO_BUTTONS) { for (i = 0; xpad_btn_triggers[i] >= 0; i++) __set_bit(xpad_btn_triggers[i], input_dev->keybit); } else { for (i = 0; xpad_abs_triggers[i] >= 0; i++) xpad_set_up_abs(input_dev, xpad_abs_triggers[i]); } error = xpad_init_output(intf, xpad); if (error) goto fail2; error = xpad_init_ff(xpad); if (error) goto fail3; error = xpad_led_probe(xpad); if (error) goto fail3; ep_irq_in = &intf->cur_altsetting->endpoint[0].desc; usb_fill_int_urb(xpad->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xpad->idata, XPAD_PKT_LEN, xpad_irq_in, xpad, ep_irq_in->bInterval); xpad->irq_in->transfer_dma = xpad->idata_dma; xpad->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; INIT_WORK(&xpad->submit_urb, xpad_do_submit_urb); error = input_register_device(xpad->dev); if (error) goto fail4; usb_set_intfdata(intf, xpad); xpad->interface_number = intf->cur_altsetting->desc.bInterfaceNumber; /* * Submit the int URB immediatly rather than waiting for open * because we get status messages from the device whether * or not any controllers are attached. In fact, it's * exactly the message that a controller has arrived that * we're waiting for. */ if (xpad->xtype == XTYPE_XBOX360W) { xpad->irq_in->dev = xpad->udev; error = usb_submit_urb(xpad->irq_in, GFP_KERNEL); if (error) goto fail4; } return 0; fail4: cancel_work_sync(&xpad->submit_urb); usb_free_urb(xpad->irq_in); fail3: xpad_deinit_output(xpad); fail2: usb_free_coherent(udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); fail1: input_free_device(input_dev); kfree(xpad); return error; }
static int kbtab_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *dev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *endpoint; struct kbtab *kbtab; struct input_dev *input_dev; int error = -ENOMEM; kbtab = kzalloc(sizeof(struct kbtab), GFP_KERNEL); input_dev = input_allocate_device(); if (!kbtab || !input_dev) goto fail1; kbtab->data = usb_alloc_coherent(dev, 8, GFP_KERNEL, &kbtab->data_dma); if (!kbtab->data) goto fail1; kbtab->irq = usb_alloc_urb(0, GFP_KERNEL); if (!kbtab->irq) goto fail2; kbtab->intf = intf; kbtab->dev = input_dev; usb_make_path(dev, kbtab->phys, sizeof(kbtab->phys)); strlcat(kbtab->phys, "/input0", sizeof(kbtab->phys)); input_dev->name = "KB Gear Tablet"; input_dev->phys = kbtab->phys; usb_to_input_id(dev, &input_dev->id); input_dev->dev.parent = &intf->dev; input_set_drvdata(input_dev, kbtab); input_dev->open = kbtab_open; input_dev->close = kbtab_close; input_dev->evbit[0] |= BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); input_dev->keybit[BIT_WORD(BTN_LEFT)] |= BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT); input_dev->keybit[BIT_WORD(BTN_DIGI)] |= BIT_MASK(BTN_TOOL_PEN) | BIT_MASK(BTN_TOUCH); input_set_abs_params(input_dev, ABS_X, 0, 0x2000, 4, 0); input_set_abs_params(input_dev, ABS_Y, 0, 0x1750, 4, 0); input_set_abs_params(input_dev, ABS_PRESSURE, 0, 0xff, 0, 0); endpoint = &intf->cur_altsetting->endpoint[0].desc; usb_fill_int_urb(kbtab->irq, dev, usb_rcvintpipe(dev, endpoint->bEndpointAddress), kbtab->data, 8, kbtab_irq, kbtab, endpoint->bInterval); kbtab->irq->transfer_dma = kbtab->data_dma; kbtab->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; error = input_register_device(kbtab->dev); if (error) goto fail3; usb_set_intfdata(intf, kbtab); return 0; fail3: usb_free_urb(kbtab->irq); fail2: usb_free_coherent(dev, 8, kbtab->data, kbtab->data_dma); fail1: input_free_device(input_dev); kfree(kbtab); return error; }
/* * Start interface */ static int ems_usb_start(struct ems_usb *dev) { struct net_device *netdev = dev->netdev; int err, i; dev->intr_in_buffer[0] = 0; dev->free_slots = 50; /* initial size */ for (i = 0; i < MAX_RX_URBS; i++) { struct urb *urb = NULL; u8 *buf = NULL; /* create a URB, and a buffer for it */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { netdev_err(netdev, "No memory left for URBs\n"); err = -ENOMEM; break; } buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL, &urb->transfer_dma); if (!buf) { netdev_err(netdev, "No memory left for USB buffer\n"); usb_free_urb(urb); err = -ENOMEM; break; } usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2), buf, RX_BUFFER_SIZE, ems_usb_read_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) { usb_unanchor_urb(urb); usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf, urb->transfer_dma); usb_free_urb(urb); break; } /* Drop reference, USB core will take care of freeing it */ usb_free_urb(urb); } /* Did we submit any URBs */ if (i == 0) { netdev_warn(netdev, "couldn't setup read URBs\n"); return err; } /* Warn if we've couldn't transmit all the URBs */ if (i < MAX_RX_URBS) netdev_warn(netdev, "rx performance may be slow\n"); /* Setup and start interrupt URB */ usb_fill_int_urb(dev->intr_urb, dev->udev, usb_rcvintpipe(dev->udev, 1), dev->intr_in_buffer, INTR_IN_BUFFER_SIZE, ems_usb_read_interrupt_callback, dev, 1); err = usb_submit_urb(dev->intr_urb, GFP_KERNEL); if (err) { netdev_warn(netdev, "intr URB submit failed: %d\n", err); return err; } /* CPC-USB will transfer received message to host */ err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON); if (err) goto failed; /* CPC-USB will transfer CAN state changes to host */ err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON); if (err) goto failed; /* CPC-USB will transfer bus errors to host */ err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON); if (err) goto failed; err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL); if (err) goto failed; dev->can.state = CAN_STATE_ERROR_ACTIVE; return 0; failed: netdev_warn(netdev, "couldn't submit control: %d\n", err); return err; }
static int xpad_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_xpad *xpad; struct usb_endpoint_descriptor *ep_irq_in; int ep_irq_in_idx; int i, error; for (i = 0; xpad_device[i].idVendor; i++) { if ((le16_to_cpu(udev->descriptor.idVendor) == xpad_device[i].idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == xpad_device[i].idProduct)) break; } if (xpad_device[i].xtype == XTYPE_XBOXONE && intf->cur_altsetting->desc.bInterfaceNumber != 0) { /* * The Xbox One controller lists three interfaces all with the * same interface class, subclass and protocol. Differentiate by * interface number. */ return -ENODEV; } xpad = kzalloc(sizeof(struct usb_xpad), GFP_KERNEL); if (!xpad) { error = -ENOMEM; goto fail1; } usb_make_path(udev, xpad->phys, sizeof(xpad->phys)); strlcat(xpad->phys, "/input0", sizeof(xpad->phys)); xpad->idata = usb_alloc_coherent(udev, XPAD_PKT_LEN, GFP_KERNEL, &xpad->idata_dma); if (!xpad->idata) { error = -ENOMEM; goto fail1; } xpad->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xpad->irq_in) { error = -ENOMEM; goto fail2; } xpad->udev = udev; xpad->intf = intf; xpad->mapping = xpad_device[i].mapping; xpad->xtype = xpad_device[i].xtype; xpad->name = xpad_device[i].name; INIT_WORK(&xpad->work, presence_work_function); if (xpad->xtype == XTYPE_UNKNOWN) { if (intf->cur_altsetting->desc.bInterfaceClass == USB_CLASS_VENDOR_SPEC) { if (intf->cur_altsetting->desc.bInterfaceProtocol == 129) xpad->xtype = XTYPE_XBOX360W; else xpad->xtype = XTYPE_XBOX360; } else xpad->xtype = XTYPE_XBOX; if (dpad_to_buttons) xpad->mapping |= MAP_DPAD_TO_BUTTONS; if (triggers_to_buttons) xpad->mapping |= MAP_TRIGGERS_TO_BUTTONS; if (sticks_to_null) xpad->mapping |= MAP_STICKS_TO_NULL; } error = xpad_init_output(intf, xpad); if (error) goto fail3; /* Xbox One controller has in/out endpoints swapped. */ ep_irq_in_idx = xpad->xtype == XTYPE_XBOXONE ? 1 : 0; ep_irq_in = &intf->cur_altsetting->endpoint[ep_irq_in_idx].desc; usb_fill_int_urb(xpad->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xpad->idata, XPAD_PKT_LEN, xpad_irq_in, xpad, ep_irq_in->bInterval); xpad->irq_in->transfer_dma = xpad->idata_dma; xpad->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_set_intfdata(intf, xpad); if (xpad->xtype == XTYPE_XBOX360W) { /* * Submit the int URB immediately rather than waiting for open * because we get status messages from the device whether * or not any controllers are attached. In fact, it's * exactly the message that a controller has arrived that * we're waiting for. */ xpad->irq_in->dev = xpad->udev; error = usb_submit_urb(xpad->irq_in, GFP_KERNEL); if (error) { usb_kill_urb(xpad->irq_in); goto fail4; } /* * send presence packet * This will force the controller to resend connection packets. * This is useful in the case we activate the module after the * adapter has been plugged in, as it won't automatically * send us info about the controllers. */ mutex_lock(&xpad->odata_mutex); xpad->odata[0] = 0x08; xpad->odata[1] = 0x00; xpad->odata[2] = 0x0F; xpad->odata[3] = 0xC0; xpad->odata[4] = 0x00; xpad->odata[5] = 0x00; xpad->odata[6] = 0x00; xpad->odata[7] = 0x00; xpad->odata[8] = 0x00; xpad->odata[9] = 0x00; xpad->odata[10] = 0x00; xpad->odata[11] = 0x00; xpad->irq_out->transfer_buffer_length = 12; if (!xpad->irq_out_active) { usb_submit_urb(xpad->irq_out, GFP_KERNEL); xpad->irq_out_active = 1; } else dev_dbg(&xpad->dev->dev, "%s - dropped, irq_out is active\n", __func__); mutex_unlock(&xpad->odata_mutex); } else { xpad->pad_present = 1; error = xpad_init_input(xpad); if (error) goto fail4; } return 0; fail4: xpad_deinit_output(xpad); fail3: usb_free_urb(xpad->irq_in); fail2: usb_free_coherent(udev, XPAD_PKT_LEN, xpad->idata, xpad->idata_dma); fail1: kfree(xpad); return error; }
static ssize_t skel_write(struct file *file, const char *user_buffer, size_t count, loff_t *ppos) { struct usb_skel *dev; int retval = 0; struct urb *urb = NULL; char *buf = NULL; size_t writesize = min(count, (size_t)MAX_TRANSFER); dev = file->private_data; if (count == 0) goto exit; if (!(file->f_flags & O_NONBLOCK)) { if (down_interruptible(&dev->limit_sem)) { retval = -ERESTARTSYS; goto exit; } } else { if (down_trylock(&dev->limit_sem)) { retval = -EAGAIN; goto exit; } } spin_lock_irq(&dev->err_lock); retval = dev->errors; if (retval < 0) { dev->errors = 0; retval = (retval == -EPIPE) ? retval : -EIO; } spin_unlock_irq(&dev->err_lock); if (retval < 0) goto error; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } buf = usb_alloc_coherent(dev->udev, writesize, GFP_KERNEL, &urb->transfer_dma); if (!buf) { retval = -ENOMEM; goto error; } if (copy_from_user(buf, user_buffer, writesize)) { retval = -EFAULT; goto error; } mutex_lock(&dev->io_mutex); if (!dev->interface) { mutex_unlock(&dev->io_mutex); retval = -ENODEV; goto error; } usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr), buf, writesize, skel_write_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->submitted); retval = usb_submit_urb(urb, GFP_KERNEL); mutex_unlock(&dev->io_mutex); if (retval) { err("%s - failed submitting write urb, error %d", __func__, retval); goto error_unanchor; } usb_free_urb(urb); return writesize; error_unanchor: usb_unanchor_urb(urb); error: if (urb) { usb_free_coherent(dev->udev, writesize, buf, urb->transfer_dma); usb_free_urb(urb); } up(&dev->limit_sem); exit: return retval; }
int zd_usb_enable_int(struct zd_usb *usb) { int r; struct usb_device *udev = zd_usb_to_usbdev(usb); struct zd_usb_interrupt *intr = &usb->intr; struct urb *urb; dev_dbg_f(zd_usb_dev(usb), "\n"); urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { r = -ENOMEM; goto out; } ZD_ASSERT(!irqs_disabled()); spin_lock_irq(&intr->lock); if (intr->urb) { spin_unlock_irq(&intr->lock); r = 0; goto error_free_urb; } intr->urb = urb; spin_unlock_irq(&intr->lock); r = -ENOMEM; intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER, GFP_KERNEL, &intr->buffer_dma); if (!intr->buffer) { dev_dbg_f(zd_usb_dev(usb), "couldn't allocate transfer_buffer\n"); goto error_set_urb_null; } usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN), intr->buffer, USB_MAX_EP_INT_BUFFER, int_urb_complete, usb, intr->interval); urb->transfer_dma = intr->buffer_dma; urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb); r = usb_submit_urb(urb, GFP_KERNEL); if (r) { dev_dbg_f(zd_usb_dev(usb), "Couldn't submit urb. Error number %d\n", r); goto error; } return 0; error: usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, intr->buffer, intr->buffer_dma); error_set_urb_null: spin_lock_irq(&intr->lock); intr->urb = NULL; spin_unlock_irq(&intr->lock); error_free_urb: usb_free_urb(urb); out: return r; }
static int __devinit iguanair_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct iguanair *ir; struct rc_dev *rc; int ret, pipein, pipeout; struct usb_host_interface *idesc; ir = kzalloc(sizeof(*ir), GFP_KERNEL); rc = rc_allocate_device(); if (!ir || !rc) { ret = -ENOMEM; goto out; } ir->buf_in = usb_alloc_coherent(udev, MAX_IN_PACKET, GFP_KERNEL, &ir->dma_in); ir->packet = usb_alloc_coherent(udev, MAX_OUT_PACKET, GFP_KERNEL, &ir->dma_out); ir->urb_in = usb_alloc_urb(0, GFP_KERNEL); ir->urb_out = usb_alloc_urb(0, GFP_KERNEL); if (!ir->buf_in || !ir->packet || !ir->urb_in || !ir->urb_out) { ret = -ENOMEM; goto out; } idesc = intf->altsetting; if (idesc->desc.bNumEndpoints < 2) { ret = -ENODEV; goto out; } ir->rc = rc; ir->dev = &intf->dev; ir->udev = udev; mutex_init(&ir->lock); init_completion(&ir->completion); pipeout = usb_sndintpipe(udev, idesc->endpoint[1].desc.bEndpointAddress); usb_fill_int_urb(ir->urb_out, udev, pipeout, ir->packet, MAX_OUT_PACKET, iguanair_irq_out, ir, 1); ir->urb_out->transfer_dma = ir->dma_out; ir->urb_out->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; pipein = usb_rcvintpipe(udev, idesc->endpoint[0].desc.bEndpointAddress); usb_fill_int_urb(ir->urb_in, udev, pipein, ir->buf_in, MAX_IN_PACKET, iguanair_rx, ir, 1); ir->urb_in->transfer_dma = ir->dma_in; ir->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; ret = usb_submit_urb(ir->urb_in, GFP_KERNEL); if (ret) { dev_warn(&intf->dev, "failed to submit urb: %d\n", ret); goto out; } ret = iguanair_get_features(ir); if (ret) goto out2; snprintf(ir->name, sizeof(ir->name), "IguanaWorks USB IR Transceiver version 0x%04x", ir->version); usb_make_path(ir->udev, ir->phys, sizeof(ir->phys)); rc->input_name = ir->name; rc->input_phys = ir->phys; usb_to_input_id(ir->udev, &rc->input_id); rc->dev.parent = &intf->dev; rc->driver_type = RC_DRIVER_IR_RAW; rc->allowed_protos = RC_BIT_ALL; rc->priv = ir; rc->open = iguanair_open; rc->close = iguanair_close; rc->s_tx_mask = iguanair_set_tx_mask; rc->s_tx_carrier = iguanair_set_tx_carrier; rc->tx_ir = iguanair_tx; rc->driver_name = DRIVER_NAME; rc->map_name = RC_MAP_RC6_MCE; rc->timeout = MS_TO_NS(100); rc->rx_resolution = RX_RESOLUTION; iguanair_set_tx_carrier(rc, 38000); ret = rc_register_device(rc); if (ret < 0) { dev_err(&intf->dev, "failed to register rc device %d", ret); goto out2; } usb_set_intfdata(intf, ir); return 0; out2: usb_kill_urb(ir->urb_in); usb_kill_urb(ir->urb_out); out: if (ir) { usb_free_urb(ir->urb_in); usb_free_urb(ir->urb_out); usb_free_coherent(udev, MAX_IN_PACKET, ir->buf_in, ir->dma_in); usb_free_coherent(udev, MAX_OUT_PACKET, ir->packet, ir->dma_out); } rc_free_device(rc); kfree(ir); return ret; }
static int appledisplay_probe(struct usb_interface *iface, const struct usb_device_id *id) { struct backlight_properties props; struct appledisplay *pdata; struct usb_device *udev = interface_to_usbdev(iface); struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int int_in_endpointAddr = 0; int i, retval = -ENOMEM, brightness; char bl_name[20]; iface_desc = iface->cur_altsetting; for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) { endpoint = &iface_desc->endpoint[i].desc; if (!int_in_endpointAddr && usb_endpoint_is_int_in(endpoint)) { int_in_endpointAddr = endpoint->bEndpointAddress; break; } } if (!int_in_endpointAddr) { dev_err(&iface->dev, "Could not find int-in endpoint\n"); return -EIO; } pdata = kzalloc(sizeof(struct appledisplay), GFP_KERNEL); if (!pdata) { retval = -ENOMEM; dev_err(&iface->dev, "Out of memory\n"); goto error; } pdata->udev = udev; spin_lock_init(&pdata->lock); INIT_DELAYED_WORK(&pdata->work, appledisplay_work); pdata->msgdata = kmalloc(ACD_MSG_BUFFER_LEN, GFP_KERNEL); if (!pdata->msgdata) { retval = -ENOMEM; dev_err(&iface->dev, "Allocating buffer for control messages failed\n"); goto error; } pdata->urb = usb_alloc_urb(0, GFP_KERNEL); if (!pdata->urb) { retval = -ENOMEM; dev_err(&iface->dev, "Allocating URB failed\n"); goto error; } pdata->urbdata = usb_alloc_coherent(pdata->udev, ACD_URB_BUFFER_LEN, GFP_KERNEL, &pdata->urb->transfer_dma); if (!pdata->urbdata) { retval = -ENOMEM; dev_err(&iface->dev, "Allocating URB buffer failed\n"); goto error; } usb_fill_int_urb(pdata->urb, udev, usb_rcvintpipe(udev, int_in_endpointAddr), pdata->urbdata, ACD_URB_BUFFER_LEN, appledisplay_complete, pdata, 1); if (usb_submit_urb(pdata->urb, GFP_KERNEL)) { retval = -EIO; dev_err(&iface->dev, "Submitting URB failed\n"); goto error; } snprintf(bl_name, sizeof(bl_name), "appledisplay%d", atomic_inc_return(&count_displays) - 1); memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_RAW; props.max_brightness = 0xff; pdata->bd = backlight_device_register(bl_name, NULL, pdata, &appledisplay_bl_data, &props); if (IS_ERR(pdata->bd)) { dev_err(&iface->dev, "Backlight registration failed\n"); retval = PTR_ERR(pdata->bd); goto error; } brightness = appledisplay_bl_get_brightness(pdata->bd); if (brightness < 0) { retval = brightness; dev_err(&iface->dev, "Error while getting initial brightness: %d\n", retval); goto error; } pdata->bd->props.brightness = brightness; usb_set_intfdata(iface, pdata); printk(KERN_INFO "appledisplay: Apple Cinema Display connected\n"); return 0; error: if (pdata) { if (pdata->urb) { usb_kill_urb(pdata->urb); if (pdata->urbdata) usb_free_coherent(pdata->udev, ACD_URB_BUFFER_LEN, pdata->urbdata, pdata->urb->transfer_dma); usb_free_urb(pdata->urb); } if (pdata->bd && !IS_ERR(pdata->bd)) backlight_device_unregister(pdata->bd); kfree(pdata->msgdata); } usb_set_intfdata(iface, NULL); kfree(pdata); return retval; }
static int pixcir_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_host_interface *interface = intf->cur_altsetting; struct usb_device *dev = interface_to_usbdev(intf); struct input_dev *input_dev1; int n = 0, insize = TOUCH_PACKAGE_LEN; int err; const char *path; int len; char input_buf[10]; struct pixcir_mt_usb *psmt = kzalloc(sizeof(struct pixcir_mt_usb), GFP_KERNEL); kref_init(&psmt->kref); mutex_init(&psmt->io_mutex); printk("%s\n", __FUNCTION__); psmt->type = &type; psmt->udev = dev; if (dev->manufacturer) strlcpy(psmt->name, dev->manufacturer, sizeof(psmt->name)); if (dev->product) { if (dev->manufacturer) strlcat(psmt->name, " ", sizeof(psmt->name)); strlcat(psmt->name, dev->product, sizeof(psmt->name)); } if (!strlen(psmt->name)) snprintf(psmt->name, sizeof(psmt->name), "USB Touchscreen %04x:%04x", le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); if (!psmt->type->process_pkt) { printk("process_pkt is null\n"); psmt->type->process_pkt = usbtouch_process_pkt; } usb_set_intfdata(intf, psmt); err = usb_register_dev(intf,&pixcir_class_driver); if(err){ printk("Not able to get minor for this device."); } dev_info(&intf->dev,"now attach to USB-%d",intf->minor); input_dev1 = input_allocate_device(); input_dev1->name = "pixcir_usb_ts"; usb_to_input_id(dev, &input_dev1->id); psmt->input_dev = input_dev1; if(!psmt|| !input_dev1) { printk("Memory is not enough\n"); goto fail1; } input_dev1->dev.parent = &intf->dev; input_set_drvdata(input_dev1, psmt); set_bit(EV_SYN, input_dev1->evbit); set_bit(EV_KEY, input_dev1->evbit); set_bit(EV_ABS, input_dev1->evbit); set_bit(BTN_TOUCH, input_dev1->keybit); input_set_abs_params(input_dev1, ABS_X, psmt->type->min_xc, psmt->type->max_xc, 0, 0); input_set_abs_params(input_dev1, ABS_Y, psmt->type->min_yc, psmt->type->max_yc, 0, 0); input_set_abs_params(input_dev1, ABS_MT_POSITION_X, psmt->type->min_xc, psmt->type->max_xc, 0, 0); input_set_abs_params(input_dev1, ABS_MT_POSITION_Y, psmt->type->min_yc, psmt->type->max_yc, 0, 0); input_set_abs_params(input_dev1, ABS_MT_TOUCH_MAJOR, 0, 255, 0, 0); input_set_abs_params(input_dev1, ABS_MT_WIDTH_MAJOR, 0, 25, 0, 0); psmt->data = usb_alloc_coherent(dev, insize, GFP_KERNEL, &psmt->data_dma); if(!psmt->data) { printk("psmt->data allocating fail"); goto fail; } for (n = 0; n < interface->desc.bNumEndpoints; n++) { struct usb_endpoint_descriptor *endpoint; int pipe; int interval; endpoint = &interface->endpoint[n].desc; /*find a int endpoint*/ if (!usb_endpoint_xfer_int(endpoint)) continue; interval = endpoint->bInterval; if (usb_endpoint_dir_in(endpoint)) { if (psmt->urb) continue; if (!(psmt->urb = usb_alloc_urb(0, GFP_KERNEL))) goto fail; pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress); usb_fill_int_urb(psmt->urb, dev, pipe, psmt->data, insize, pixcir_mt_irq, psmt, interval); psmt->urb->transfer_dma = psmt->data_dma; psmt->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; } } if (usb_submit_urb(psmt->urb, GFP_ATOMIC)) { printk("usb submit urb error\n"); return -EIO; } err = input_register_device(psmt->input_dev); if(err) { printk("pixcir_probe: Could not register input device(touchscreen)!\n"); return -EIO; } path = kobject_get_path(&psmt->input_dev->dev.kobj, GFP_KERNEL); len=strlen(path); if(len>10){ if(path[len-2]=='t'){ memset(input_buf,'\0',9); strncpy(input_buf,&path[len-6],6); }else if(path[len-3]=='t'){ memset(input_buf,'\0',9); strncpy(input_buf,&path[len-7],7); }else{ goto fail; } }else{ goto fail; } usb_make_path(dev, psmt->phys0, sizeof(psmt->phys0)); strlcat(psmt->phys0,input_buf, sizeof(psmt->phys0)); return 0; fail: usb_free_urb(psmt->urb); psmt->urb = NULL; usb_free_coherent(dev, insize, psmt->data, psmt->data_dma); fail1: input_free_device(input_dev1); kfree(psmt); return 1; }
static ssize_t proto_write_periodic(unsigned long data) { //Size of buffer for dummy data int count = 5; struct usb_skel *dev; int retval = 0; struct urb *urb = NULL; char *buf = NULL; dev = (struct usb_skel *) data; printk("Inside Timer Routine count-> %d\n",step++); printk("Inside Timer idProduct %02X, idVendor %02X\n",dev->udev->descriptor.idProduct, dev->udev->descriptor.idVendor); struct sysinfo kk; si_meminfo(&kk); //sys_sysinfo(&kk); kk.uptime=jiffies/HZ; int days=kk.uptime/86400; int hours=kk.uptime/3600 - days*24; int mins=(kk.uptime/60) - (days*1440) - (hours*60); printk(KERN_INFO "Days since boot: %d\n", (days)); printk(KERN_INFO "Hours since boot: %d\n", (hours)); printk(KERN_INFO "Mins since boot: %d\n", (mins)); printk(KERN_INFO "Seconds since boot: %d\n", (kk.uptime)); printk(KERN_INFO "CPU load: %d\n", (kk.loads[0])); printk(KERN_INFO "CPU load: %d\n", (avenrun[0] << (SI_LOAD_SHIFT - FSHIFT))); printk(KERN_INFO "CPU load: %d\n", (avenrun[1] << (SI_LOAD_SHIFT - FSHIFT))); printk(KERN_INFO "CPU load: %d\n", (avenrun[2] << (SI_LOAD_SHIFT - FSHIFT))); int a, b, c; a = avenrun[0] + (FIXED_1/200); b = avenrun[1] + (FIXED_1/200); c = avenrun[2] + (FIXED_1/200); printk(KERN_INFO "%d.%02d %d.%02d %d.%02d\n", LOAD_INT(a), LOAD_FRAC(a), LOAD_INT(b), LOAD_FRAC(b), LOAD_INT(c), LOAD_FRAC(c)); printk(KERN_INFO "Total usable main memory size: %lu\n", (kk.totalram)*(unsigned long long)kk.mem_unit/1048576); printk(KERN_INFO "Available memory size: %lu\n", (kk.freeram)*(unsigned long long)kk.mem_unit/1048576); printk(KERN_INFO "Number of current processes: %u\n", (kk.procs)); /* verify that we actually have some data to write */ if (count == 0) goto exit; /* create a urb, and a buffer for it, and copy the data to the urb */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { retval = -ENOMEM; goto error; } buf = usb_alloc_coherent(dev->udev, count, GFP_KERNEL, &urb->transfer_dma); if (!buf) { retval = -ENOMEM; goto error; } //Dummy data printk("load %d\n",LOAD_INT(a)*100+LOAD_FRAC(a)); //(kk.totalram)*((unsigned long long)kk.mem_unit/1048576) printk("mem %d\n",((kk.totalram)*(unsigned long long)kk.mem_unit/1048576)); printk("mem %d\n",(100-((kk.freeram)*(unsigned long long)kk.mem_unit/1048576)*100/((kk.totalram)*(unsigned long long)kk.mem_unit/1048576))); buf[0]='R'; buf[1]='a';//(int16_t)(avenrun[0] << (SI_LOAD_SHIFT - FSHIFT)*100); buf[2]=(char)(LOAD_INT(a)*100+LOAD_FRAC(a)); buf[3]=(char)(100-((kk.freeram)*(unsigned long long)kk.mem_unit/1048576)*100/((kk.totalram)*(unsigned long long)kk.mem_unit/1048576));//hours; buf[4]='l'; printk("WRITE LOKA: buffer:\n"); int i; for (i= 0; i < 5; ++i) { printk("%d - %c (%d)\n",buf[i],buf[i],i); } /* initialize the urb properly */ usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr), buf, count, proto_write_bulk_callback, dev); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* send the data out the bulk port */ retval = usb_submit_urb(urb, GFP_KERNEL); if (retval) { pr_err("%s - failed submitting write urb, error %d", __FUNCTION__, retval); goto error; } /* release our reference to this urb, the USB core will eventually free it entirely */ usb_free_urb(urb); exit: mod_timer(&timer_write_periodic, jiffies + HZ); /* restarting timer */ return count; error: usb_free_coherent(dev->udev, count, buf, urb->transfer_dma); usb_free_urb(urb); kfree(buf); mod_timer(&timer_write_periodic, jiffies + HZ); /* restarting timer */ return retval; }
static int bcm5974_probe(struct usb_interface *iface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(iface); const struct bcm5974_config *cfg; struct bcm5974 *dev; struct input_dev *input_dev; int error = -ENOMEM; /* find the product index */ cfg = bcm5974_get_config(udev); /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct bcm5974), GFP_KERNEL); input_dev = input_allocate_device(); if (!dev || !input_dev) { dev_err(&iface->dev, "out of memory\n"); goto err_free_devs; } dev->udev = udev; dev->intf = iface; dev->input = input_dev; dev->cfg = *cfg; mutex_init(&dev->pm_mutex); /* setup urbs */ if (cfg->tp_type == TYPE1) { dev->bt_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->bt_urb) goto err_free_devs; } dev->tp_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->tp_urb) goto err_free_bt_urb; if (dev->bt_urb) { dev->bt_data = usb_alloc_coherent(dev->udev, dev->cfg.bt_datalen, GFP_KERNEL, &dev->bt_urb->transfer_dma); if (!dev->bt_data) goto err_free_urb; } dev->tp_data = usb_alloc_coherent(dev->udev, dev->cfg.tp_datalen, GFP_KERNEL, &dev->tp_urb->transfer_dma); if (!dev->tp_data) goto err_free_bt_buffer; if (dev->bt_urb) usb_fill_int_urb(dev->bt_urb, udev, usb_rcvintpipe(udev, cfg->bt_ep), dev->bt_data, dev->cfg.bt_datalen, bcm5974_irq_button, dev, 1); usb_fill_int_urb(dev->tp_urb, udev, usb_rcvintpipe(udev, cfg->tp_ep), dev->tp_data, dev->cfg.tp_datalen, bcm5974_irq_trackpad, dev, 1); /* create bcm5974 device */ usb_make_path(udev, dev->phys, sizeof(dev->phys)); strlcat(dev->phys, "/input0", sizeof(dev->phys)); input_dev->name = "bcm5974"; input_dev->phys = dev->phys; usb_to_input_id(dev->udev, &input_dev->id); /* report driver capabilities via the version field */ input_dev->id.version = cfg->caps; input_dev->dev.parent = &iface->dev; input_set_drvdata(input_dev, dev); input_dev->open = bcm5974_open; input_dev->close = bcm5974_close; setup_events_to_report(input_dev, cfg); error = input_register_device(dev->input); if (error) goto err_free_buffer; /* save our data pointer in this interface device */ usb_set_intfdata(iface, dev); return 0; err_free_buffer: usb_free_coherent(dev->udev, dev->cfg.tp_datalen, dev->tp_data, dev->tp_urb->transfer_dma); err_free_bt_buffer: if (dev->bt_urb) usb_free_coherent(dev->udev, dev->cfg.bt_datalen, dev->bt_data, dev->bt_urb->transfer_dma); err_free_urb: usb_free_urb(dev->tp_urb); err_free_bt_urb: usb_free_urb(dev->bt_urb); err_free_devs: usb_set_intfdata(iface, NULL); input_free_device(input_dev); kfree(dev); return error; }
static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct gs_can *dev = netdev_priv(netdev); struct net_device_stats *stats = &dev->netdev->stats; struct urb *urb; struct gs_host_frame *hf; struct can_frame *cf; int rc; unsigned int idx; struct gs_tx_context *txc; if (can_dropped_invalid_skb(netdev, skb)) return NETDEV_TX_OK; /* find an empty context to keep track of transmission */ txc = gs_alloc_tx_context(dev); if (!txc) return NETDEV_TX_BUSY; /* create a URB, and a buffer for it */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) goto nomem_urb; hf = usb_alloc_coherent(dev->udev, sizeof(*hf), GFP_ATOMIC, &urb->transfer_dma); if (!hf) { netdev_err(netdev, "No memory left for USB buffer\n"); goto nomem_hf; } idx = txc->echo_id; if (idx >= GS_MAX_TX_URBS) { netdev_err(netdev, "Invalid tx context %d\n", idx); goto badidx; } hf->echo_id = idx; hf->channel = dev->channel; cf = (struct can_frame *)skb->data; hf->can_id = cf->can_id; hf->can_dlc = cf->can_dlc; memcpy(hf->data, cf->data, cf->can_dlc); usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, GSUSB_ENDPOINT_OUT), hf, sizeof(*hf), gs_usb_xmit_callback, txc); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(urb, &dev->tx_submitted); can_put_echo_skb(skb, netdev, idx); atomic_inc(&dev->active_tx_urbs); rc = usb_submit_urb(urb, GFP_ATOMIC); if (unlikely(rc)) { /* usb send failed */ atomic_dec(&dev->active_tx_urbs); can_free_echo_skb(netdev, idx); gs_free_tx_context(txc); usb_unanchor_urb(urb); usb_free_coherent(dev->udev, sizeof(*hf), hf, urb->transfer_dma); if (rc == -ENODEV) { netif_device_detach(netdev); } else { netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); stats->tx_dropped++; } } else { /* Slow down tx path */ if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS) netif_stop_queue(netdev); } /* let usb core take care of this urb */ usb_free_urb(urb); return NETDEV_TX_OK; badidx: usb_free_coherent(dev->udev, sizeof(*hf), hf, urb->transfer_dma); nomem_hf: usb_free_urb(urb); nomem_urb: gs_free_tx_context(txc); dev_kfree_skb(skb); stats->tx_dropped++; return NETDEV_TX_OK; }
static void _rtl_usb_rx_process_agg(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 *rxdesc = skb->data; struct ieee80211_hdr *hdr; bool unicast = false; __le16 fc; struct ieee80211_rx_status rx_status = {0}; struct rtl_stats stats = { .signal = 0, .noise = -98, .rate = 0, }; skb_pull(skb, RTL_RX_DESC_SIZE); rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, rxdesc, skb); skb_pull(skb, (stats.rx_drvinfo_size + stats.rx_bufshift)); hdr = (struct ieee80211_hdr *)(skb->data); fc = hdr->frame_control; if (!stats.crc) { memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) { /*TODO*/; } else if (is_multicast_ether_addr(hdr->addr1)) { /*TODO*/ } else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } rtl_is_special_data(hw, skb, false); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info.num_rx_inperiod++; } } } static void _rtl_usb_rx_process_noagg(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 *rxdesc = skb->data; struct ieee80211_hdr *hdr; bool unicast = false; __le16 fc; struct ieee80211_rx_status rx_status = {0}; struct rtl_stats stats = { .signal = 0, .noise = -98, .rate = 0, }; skb_pull(skb, RTL_RX_DESC_SIZE); rtlpriv->cfg->ops->query_rx_desc(hw, &stats, &rx_status, rxdesc, skb); skb_pull(skb, (stats.rx_drvinfo_size + stats.rx_bufshift)); hdr = (struct ieee80211_hdr *)(skb->data); fc = hdr->frame_control; if (!stats.crc) { memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); if (is_broadcast_ether_addr(hdr->addr1)) { /*TODO*/; } else if (is_multicast_ether_addr(hdr->addr1)) { /*TODO*/ } else { unicast = true; rtlpriv->stats.rxbytesunicast += skb->len; } rtl_is_special_data(hw, skb, false); if (ieee80211_is_data(fc)) { rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX); if (unicast) rtlpriv->link_info.num_rx_inperiod++; } /* static bcn for roaming */ rtl_beacon_statistic(hw, skb); if (likely(rtl_action_proc(hw, skb, false))) ieee80211_rx(hw, skb); else dev_kfree_skb_any(skb); } } static void _rtl_rx_pre_process(struct ieee80211_hw *hw, struct sk_buff *skb) { struct sk_buff *_skb; struct sk_buff_head rx_queue; struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); skb_queue_head_init(&rx_queue); if (rtlusb->usb_rx_segregate_hdl) rtlusb->usb_rx_segregate_hdl(hw, skb, &rx_queue); WARN_ON(skb_queue_empty(&rx_queue)); while (!skb_queue_empty(&rx_queue)) { _skb = skb_dequeue(&rx_queue); _rtl_usb_rx_process_agg(hw, _skb); ieee80211_rx(hw, _skb); } } #define __RX_SKB_MAX_QUEUED 32 static void _rtl_rx_work(unsigned long param) { struct rtl_usb *rtlusb = (struct rtl_usb *)param; struct ieee80211_hw *hw = usb_get_intfdata(rtlusb->intf); struct sk_buff *skb; while ((skb = skb_dequeue(&rtlusb->rx_queue))) { if (unlikely(IS_USB_STOP(rtlusb))) { dev_kfree_skb_any(skb); continue; } if (likely(!rtlusb->usb_rx_segregate_hdl)) { _rtl_usb_rx_process_noagg(hw, skb); } else { /* TO DO */ _rtl_rx_pre_process(hw, skb); pr_err("rx agg not supported\n"); } } } static unsigned int _rtl_rx_get_padding(struct ieee80211_hdr *hdr, unsigned int len) { unsigned int padding = 0; /* make function no-op when possible */ if (NET_IP_ALIGN == 0 || len < sizeof(*hdr)) return 0; /* alignment calculation as in lbtf_rx() / carl9170_rx_copy_data() */ /* TODO: deduplicate common code, define helper function instead? */ if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); padding ^= NET_IP_ALIGN; /* Input might be invalid, avoid accessing memory outside * the buffer. */ if ((unsigned long)qc - (unsigned long)hdr < len && *qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) padding ^= NET_IP_ALIGN; } if (ieee80211_has_a4(hdr->frame_control)) padding ^= NET_IP_ALIGN; return padding; } #define __RADIO_TAP_SIZE_RSV 32 static void _rtl_rx_completed(struct urb *_urb) { struct rtl_usb *rtlusb = (struct rtl_usb *)_urb->context; struct ieee80211_hw *hw = usb_get_intfdata(rtlusb->intf); struct rtl_priv *rtlpriv = rtl_priv(hw); int err = 0; if (unlikely(IS_USB_STOP(rtlusb))) goto free; if (likely(0 == _urb->status)) { unsigned int padding; struct sk_buff *skb; unsigned int qlen; unsigned int size = _urb->actual_length; struct ieee80211_hdr *hdr; if (size < RTL_RX_DESC_SIZE + sizeof(struct ieee80211_hdr)) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, "Too short packet from bulk IN! (len: %d)\n", size); goto resubmit; } qlen = skb_queue_len(&rtlusb->rx_queue); if (qlen >= __RX_SKB_MAX_QUEUED) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, "Pending RX skbuff queue full! (qlen: %d)\n", qlen); goto resubmit; } hdr = (void *)(_urb->transfer_buffer + RTL_RX_DESC_SIZE); padding = _rtl_rx_get_padding(hdr, size - RTL_RX_DESC_SIZE); skb = dev_alloc_skb(size + __RADIO_TAP_SIZE_RSV + padding); if (!skb) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, "Can't allocate skb for bulk IN!\n"); goto resubmit; } _rtl_install_trx_info(rtlusb, skb, rtlusb->in_ep); /* Make sure the payload data is 4 byte aligned. */ skb_reserve(skb, padding); /* reserve some space for mac80211's radiotap */ skb_reserve(skb, __RADIO_TAP_SIZE_RSV); memcpy(skb_put(skb, size), _urb->transfer_buffer, size); skb_queue_tail(&rtlusb->rx_queue, skb); tasklet_schedule(&rtlusb->rx_work_tasklet); goto resubmit; } switch (_urb->status) { /* disconnect */ case -ENOENT: case -ECONNRESET: case -ENODEV: case -ESHUTDOWN: goto free; default: break; } resubmit: usb_anchor_urb(_urb, &rtlusb->rx_submitted); err = usb_submit_urb(_urb, GFP_ATOMIC); if (unlikely(err)) { usb_unanchor_urb(_urb); goto free; } return; free: /* On some architectures, usb_free_coherent must not be called from * hardirq context. Queue urb to cleanup list. */ usb_anchor_urb(_urb, &rtlusb->rx_cleanup_urbs); } #undef __RADIO_TAP_SIZE_RSV static void _rtl_usb_cleanup_rx(struct ieee80211_hw *hw) { struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); struct urb *urb; usb_kill_anchored_urbs(&rtlusb->rx_submitted); tasklet_kill(&rtlusb->rx_work_tasklet); skb_queue_purge(&rtlusb->rx_queue); while ((urb = usb_get_from_anchor(&rtlusb->rx_cleanup_urbs))) { usb_free_coherent(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); } } static int _rtl_usb_receive(struct ieee80211_hw *hw) { struct urb *urb; int err; int i; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); WARN_ON(0 == rtlusb->rx_urb_num); /* 1600 == 1514 + max WLAN header + rtk info */ WARN_ON(rtlusb->rx_max_size < 1600); for (i = 0; i < rtlusb->rx_urb_num; i++) { err = -ENOMEM; urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, "Failed to alloc URB!!\n"); goto err_out; } err = _rtl_prep_rx_urb(hw, rtlusb, urb, GFP_KERNEL); if (err < 0) { RT_TRACE(rtlpriv, COMP_USB, DBG_EMERG, "Failed to prep_rx_urb!!\n"); usb_free_urb(urb); goto err_out; } usb_anchor_urb(urb, &rtlusb->rx_submitted); err = usb_submit_urb(urb, GFP_KERNEL); if (err) goto err_out; usb_free_urb(urb); } return 0; err_out: usb_kill_anchored_urbs(&rtlusb->rx_submitted); _rtl_usb_cleanup_rx(hw); return err; } static int rtl_usb_start(struct ieee80211_hw *hw) { int err; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); err = rtlpriv->cfg->ops->hw_init(hw); if (!err) { rtl_init_rx_config(hw); /* Enable software */ SET_USB_START(rtlusb); /* should after adapter start and interrupt enable. */ set_hal_start(rtlhal); /* Start bulk IN */ err = _rtl_usb_receive(hw); } return err; }
static int __devinit iguanair_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct iguanair *ir; struct rc_dev *rc; int ret; struct usb_host_interface *idesc; ir = kzalloc(sizeof(*ir), GFP_KERNEL); rc = rc_allocate_device(); if (!ir || !rc) { ret = ENOMEM; goto out; } ir->buf_in = usb_alloc_coherent(udev, MAX_PACKET_SIZE, GFP_ATOMIC, &ir->dma_in); ir->urb_in = usb_alloc_urb(0, GFP_KERNEL); if (!ir->buf_in || !ir->urb_in) { ret = ENOMEM; goto out; } idesc = intf->altsetting; if (idesc->desc.bNumEndpoints < 2) { ret = -ENODEV; goto out; } ir->rc = rc; ir->dev = &intf->dev; ir->udev = udev; ir->pipe_in = usb_rcvintpipe(udev, idesc->endpoint[0].desc.bEndpointAddress); ir->pipe_out = usb_sndintpipe(udev, idesc->endpoint[1].desc.bEndpointAddress); mutex_init(&ir->lock); init_completion(&ir->completion); ret = iguanair_get_features(ir); if (ret) { dev_warn(&intf->dev, "failed to get device features"); goto out; } usb_fill_int_urb(ir->urb_in, ir->udev, ir->pipe_in, ir->buf_in, MAX_PACKET_SIZE, iguanair_rx, ir, idesc->endpoint[0].desc.bInterval); ir->urb_in->transfer_dma = ir->dma_in; ir->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; snprintf(ir->name, sizeof(ir->name), "IguanaWorks USB IR Transceiver version %d.%d", ir->version[0], ir->version[1]); usb_make_path(ir->udev, ir->phys, sizeof(ir->phys)); rc->input_name = ir->name; rc->input_phys = ir->phys; usb_to_input_id(ir->udev, &rc->input_id); rc->dev.parent = &intf->dev; rc->driver_type = RC_DRIVER_IR_RAW; rc->allowed_protos = RC_TYPE_ALL; rc->priv = ir; rc->open = iguanair_open; rc->close = iguanair_close; rc->s_tx_mask = iguanair_set_tx_mask; rc->s_tx_carrier = iguanair_set_tx_carrier; rc->tx_ir = iguanair_tx; rc->driver_name = DRIVER_NAME; rc->map_name = RC_MAP_EMPTY; iguanair_set_tx_carrier(rc, 38000); ret = rc_register_device(rc); if (ret < 0) { dev_err(&intf->dev, "failed to register rc device %d", ret); goto out; } usb_set_intfdata(intf, ir); dev_info(&intf->dev, "Registered %s", ir->name); return 0; out: if (ir) { usb_free_urb(ir->urb_in); usb_free_coherent(udev, MAX_PACKET_SIZE, ir->buf_in, ir->dma_in); } rc_free_device(rc); kfree(ir); return ret; }
static int acm_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_cdc_union_desc *union_header = NULL; struct usb_cdc_country_functional_desc *cfd = NULL; unsigned char *buffer = intf->altsetting->extra; int buflen = intf->altsetting->extralen; struct usb_interface *control_interface; struct usb_interface *data_interface; struct usb_endpoint_descriptor *epctrl = NULL; struct usb_endpoint_descriptor *epread = NULL; struct usb_endpoint_descriptor *epwrite = NULL; struct usb_device *usb_dev = interface_to_usbdev(intf); struct acm *acm; int minor; int ctrlsize, readsize; u8 *buf; u8 ac_management_function = 0; u8 call_management_function = 0; int call_interface_num = -1; int data_interface_num = -1; unsigned long quirks; int num_rx_buf; int i; int combined_interfaces = 0; /* normal quirks */ quirks = (unsigned long)id->driver_info; num_rx_buf = (quirks == SINGLE_RX_URB) ? 1 : ACM_NR; /* not a real CDC ACM device */ if (quirks & NOT_REAL_ACM) return -ENODEV; /* handle quirks deadly to normal probing*/ if (quirks & NO_UNION_NORMAL) { data_interface = usb_ifnum_to_if(usb_dev, 1); control_interface = usb_ifnum_to_if(usb_dev, 0); goto skip_normal_probe; } /* normal probing*/ if (!buffer) { dev_err(&intf->dev, "Weird descriptor references\n"); return -EINVAL; } if (!buflen) { if (intf->cur_altsetting->endpoint && intf->cur_altsetting->endpoint->extralen && intf->cur_altsetting->endpoint->extra) { dev_dbg(&intf->dev, "Seeking extra descriptors on endpoint\n"); buflen = intf->cur_altsetting->endpoint->extralen; buffer = intf->cur_altsetting->endpoint->extra; } else { dev_err(&intf->dev, "Zero length descriptor references\n"); return -EINVAL; } } while (buflen > 0) { if (buffer[1] != USB_DT_CS_INTERFACE) { dev_err(&intf->dev, "skipping garbage\n"); goto next_desc; } switch (buffer[2]) { case USB_CDC_UNION_TYPE: /* we've found it */ if (union_header) { dev_err(&intf->dev, "More than one " "union descriptor, skipping ...\n"); goto next_desc; } union_header = (struct usb_cdc_union_desc *)buffer; break; case USB_CDC_COUNTRY_TYPE: /* export through sysfs*/ cfd = (struct usb_cdc_country_functional_desc *)buffer; break; case USB_CDC_HEADER_TYPE: /* maybe check version */ break; /* for now we ignore it */ case USB_CDC_ACM_TYPE: ac_management_function = buffer[3]; break; case USB_CDC_CALL_MANAGEMENT_TYPE: call_management_function = buffer[3]; call_interface_num = buffer[4]; if ( (quirks & NOT_A_MODEM) == 0 && (call_management_function & 3) != 3) dev_err(&intf->dev, "This device cannot do calls on its own. It is not a modem.\n"); break; default: /* there are LOTS more CDC descriptors that * could legitimately be found here. */ dev_dbg(&intf->dev, "Ignoring descriptor: " "type %02x, length %d\n", buffer[2], buffer[0]); break; } next_desc: buflen -= buffer[0]; buffer += buffer[0]; } if (!union_header) { if (call_interface_num > 0) { dev_dbg(&intf->dev, "No union descriptor, using call management descriptor\n"); /* quirks for Droids MuIn LCD */ if (quirks & NO_DATA_INTERFACE) data_interface = usb_ifnum_to_if(usb_dev, 0); else data_interface = usb_ifnum_to_if(usb_dev, (data_interface_num = call_interface_num)); control_interface = intf; } else { if (intf->cur_altsetting->desc.bNumEndpoints != 3) { dev_dbg(&intf->dev,"No union descriptor, giving up\n"); return -ENODEV; } else { dev_warn(&intf->dev,"No union descriptor, testing for castrated device\n"); combined_interfaces = 1; control_interface = data_interface = intf; goto look_for_collapsed_interface; } } } else { control_interface = usb_ifnum_to_if(usb_dev, union_header->bMasterInterface0); data_interface = usb_ifnum_to_if(usb_dev, (data_interface_num = union_header->bSlaveInterface0)); if (!control_interface || !data_interface) { dev_dbg(&intf->dev, "no interfaces\n"); return -ENODEV; } } if (data_interface_num != call_interface_num) dev_dbg(&intf->dev, "Separate call control interface. That is not fully supported.\n"); if (control_interface == data_interface) { /* some broken devices designed for windows work this way */ dev_warn(&intf->dev,"Control and data interfaces are not separated!\n"); combined_interfaces = 1; /* a popular other OS doesn't use it */ quirks |= NO_CAP_LINE; if (data_interface->cur_altsetting->desc.bNumEndpoints != 3) { dev_err(&intf->dev, "This needs exactly 3 endpoints\n"); return -EINVAL; } look_for_collapsed_interface: for (i = 0; i < 3; i++) { struct usb_endpoint_descriptor *ep; ep = &data_interface->cur_altsetting->endpoint[i].desc; if (usb_endpoint_is_int_in(ep)) epctrl = ep; else if (usb_endpoint_is_bulk_out(ep)) epwrite = ep; else if (usb_endpoint_is_bulk_in(ep)) epread = ep; else return -EINVAL; } if (!epctrl || !epread || !epwrite) return -ENODEV; else goto made_compressed_probe; } skip_normal_probe: /*workaround for switched interfaces */ if (data_interface->cur_altsetting->desc.bInterfaceClass != CDC_DATA_INTERFACE_TYPE) { if (control_interface->cur_altsetting->desc.bInterfaceClass == CDC_DATA_INTERFACE_TYPE) { struct usb_interface *t; dev_dbg(&intf->dev, "Your device has switched interfaces.\n"); t = control_interface; control_interface = data_interface; data_interface = t; } else { return -EINVAL; } } /* Accept probe requests only for the control interface */ if (!combined_interfaces && intf != control_interface) return -ENODEV; if (!combined_interfaces && usb_interface_claimed(data_interface)) { /* valid in this context */ dev_dbg(&intf->dev, "The data interface isn't available\n"); return -EBUSY; } if (data_interface->cur_altsetting->desc.bNumEndpoints < 2) return -EINVAL; epctrl = &control_interface->cur_altsetting->endpoint[0].desc; epread = &data_interface->cur_altsetting->endpoint[0].desc; epwrite = &data_interface->cur_altsetting->endpoint[1].desc; /* workaround for switched endpoints */ if (!usb_endpoint_dir_in(epread)) { /* descriptors are swapped */ struct usb_endpoint_descriptor *t; dev_dbg(&intf->dev, "The data interface has switched endpoints\n"); t = epread; epread = epwrite; epwrite = t; } made_compressed_probe: dbg("interfaces are valid"); for (minor = 0; minor < ACM_TTY_MINORS && acm_table[minor]; minor++); if (minor == ACM_TTY_MINORS) { dev_err(&intf->dev, "no more free acm devices\n"); return -ENODEV; } acm = kzalloc(sizeof(struct acm), GFP_KERNEL); if (acm == NULL) { dev_dbg(&intf->dev, "out of memory (acm kzalloc)\n"); goto alloc_fail; } ctrlsize = le16_to_cpu(epctrl->wMaxPacketSize); readsize = le16_to_cpu(epread->wMaxPacketSize) * (quirks == SINGLE_RX_URB ? 1 : 2); acm->combined_interfaces = combined_interfaces; acm->writesize = le16_to_cpu(epwrite->wMaxPacketSize) * 20; acm->control = control_interface; acm->data = data_interface; acm->minor = minor; acm->dev = usb_dev; acm->ctrl_caps = ac_management_function; if (quirks & NO_CAP_LINE) acm->ctrl_caps &= ~USB_CDC_CAP_LINE; acm->ctrlsize = ctrlsize; acm->readsize = readsize; acm->rx_buflimit = num_rx_buf; acm->urb_task.func = acm_rx_tasklet; acm->urb_task.data = (unsigned long) acm; INIT_WORK(&acm->work, acm_softint); init_usb_anchor(&acm->deferred); init_waitqueue_head(&acm->drain_wait); spin_lock_init(&acm->throttle_lock); spin_lock_init(&acm->write_lock); spin_lock_init(&acm->read_lock); mutex_init(&acm->mutex); acm->rx_endpoint = usb_rcvbulkpipe(usb_dev, epread->bEndpointAddress); acm->is_int_ep = usb_endpoint_xfer_int(epread); if (acm->is_int_ep) acm->bInterval = epread->bInterval; if (quirks & NO_HANGUP_IN_RESET_RESUME) acm->no_hangup_in_reset_resume = 1; tty_port_init(&acm->port); acm->port.ops = &acm_port_ops; buf = usb_alloc_coherent(usb_dev, ctrlsize, GFP_KERNEL, &acm->ctrl_dma); if (!buf) { dev_dbg(&intf->dev, "out of memory (ctrl buffer alloc)\n"); goto alloc_fail2; } acm->ctrl_buffer = buf; if (acm_write_buffers_alloc(acm) < 0) { dev_dbg(&intf->dev, "out of memory (write buffer alloc)\n"); goto alloc_fail4; } acm->ctrlurb = usb_alloc_urb(0, GFP_KERNEL); if (!acm->ctrlurb) { dev_dbg(&intf->dev, "out of memory (ctrlurb kmalloc)\n"); goto alloc_fail5; } for (i = 0; i < num_rx_buf; i++) { struct acm_ru *rcv = &(acm->ru[i]); rcv->urb = usb_alloc_urb(0, GFP_KERNEL); if (rcv->urb == NULL) { dev_dbg(&intf->dev, "out of memory (read urbs usb_alloc_urb)\n"); goto alloc_fail6; } rcv->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; rcv->instance = acm; } for (i = 0; i < num_rx_buf; i++) { struct acm_rb *rb = &(acm->rb[i]); rb->base = usb_alloc_coherent(acm->dev, readsize, GFP_KERNEL, &rb->dma); if (!rb->base) { dev_dbg(&intf->dev, "out of memory (read bufs usb_alloc_coherent)\n"); goto alloc_fail7; } } for (i = 0; i < ACM_NW; i++) { struct acm_wb *snd = &(acm->wb[i]); snd->urb = usb_alloc_urb(0, GFP_KERNEL); if (snd->urb == NULL) { dev_dbg(&intf->dev, "out of memory (write urbs usb_alloc_urb)"); goto alloc_fail8; } if (usb_endpoint_xfer_int(epwrite)) usb_fill_int_urb(snd->urb, usb_dev, usb_sndbulkpipe(usb_dev, epwrite->bEndpointAddress), NULL, acm->writesize, acm_write_bulk, snd, epwrite->bInterval); else usb_fill_bulk_urb(snd->urb, usb_dev, usb_sndbulkpipe(usb_dev, epwrite->bEndpointAddress), NULL, acm->writesize, acm_write_bulk, snd); snd->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; snd->instance = acm; } usb_set_intfdata(intf, acm); i = device_create_file(&intf->dev, &dev_attr_bmCapabilities); if (i < 0) goto alloc_fail8; if (cfd) { /* export the country data */ acm->country_codes = kmalloc(cfd->bLength - 4, GFP_KERNEL); if (!acm->country_codes) goto skip_countries; acm->country_code_size = cfd->bLength - 4; memcpy(acm->country_codes, (u8 *)&cfd->wCountyCode0, cfd->bLength - 4); acm->country_rel_date = cfd->iCountryCodeRelDate; i = device_create_file(&intf->dev, &dev_attr_wCountryCodes); if (i < 0) { kfree(acm->country_codes); goto skip_countries; } i = device_create_file(&intf->dev, &dev_attr_iCountryCodeRelDate); if (i < 0) { device_remove_file(&intf->dev, &dev_attr_wCountryCodes); kfree(acm->country_codes); goto skip_countries; } } skip_countries: usb_fill_int_urb(acm->ctrlurb, usb_dev, usb_rcvintpipe(usb_dev, epctrl->bEndpointAddress), acm->ctrl_buffer, ctrlsize, acm_ctrl_irq, acm, /* works around buggy devices */ epctrl->bInterval ? epctrl->bInterval : 0xff); acm->ctrlurb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; acm->ctrlurb->transfer_dma = acm->ctrl_dma; dev_info(&intf->dev, "ttyACM%d: USB ACM device\n", minor); acm_set_control(acm, acm->ctrlout); acm->line.dwDTERate = cpu_to_le32(9600); acm->line.bDataBits = 8; acm_set_line(acm, &acm->line); usb_driver_claim_interface(&acm_driver, data_interface, acm); usb_set_intfdata(data_interface, acm); usb_get_intf(control_interface); tty_register_device(acm_tty_driver, minor, &control_interface->dev); acm_table[minor] = acm; return 0; alloc_fail8: for (i = 0; i < ACM_NW; i++) usb_free_urb(acm->wb[i].urb); alloc_fail7: acm_read_buffers_free(acm); alloc_fail6: for (i = 0; i < num_rx_buf; i++) usb_free_urb(acm->ru[i].urb); usb_free_urb(acm->ctrlurb); alloc_fail5: acm_write_buffers_free(acm); alloc_fail4: usb_free_coherent(usb_dev, ctrlsize, acm->ctrl_buffer, acm->ctrl_dma); alloc_fail2: kfree(acm); alloc_fail: return -ENOMEM; }
static int xbox360bb_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct xbox360bb *xbox360bb; struct input_dev *input_dev; struct usb_endpoint_descriptor *ep_irq_in; const struct xbox360bb_dev_options *dev_options = NULL; int options_i; int controller_i; int btn_i, abs_i; int error = -ENOMEM; pr_info("xbox360bb_usb_probe vendor=0x%x, product=0x%x\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct)); /* Find the xbox360bb_device entry for this one. (FIXME: Should we get rid of this? We only have one, presently, and no options we need to look up in here anyway.) */ for (options_i = 0; xbox360bb_dev_options[options_i].idVendor; options_i++) { dev_options = &xbox360bb_dev_options[options_i]; if ((le16_to_cpu(udev->descriptor.idVendor) == dev_options->idVendor) && (le16_to_cpu(udev->descriptor.idProduct) == dev_options->idProduct)) break; } xbox360bb = kzalloc(sizeof(struct xbox360bb), GFP_KERNEL); if (!xbox360bb) goto fail1; /* Init the USB stuff */ xbox360bb->udev = udev; xbox360bb->raw_data = usb_alloc_coherent(udev, XBOX360BB_PKT_LEN, GFP_KERNEL, &xbox360bb->idata_dma); if (!xbox360bb->raw_data) goto fail2; xbox360bb->irq_in = usb_alloc_urb(0, GFP_KERNEL); if (!xbox360bb->irq_in) goto fail3; ep_irq_in = &intf->cur_altsetting->endpoint[0].desc; usb_fill_int_urb(xbox360bb->irq_in, udev, usb_rcvintpipe(udev, ep_irq_in->bEndpointAddress), xbox360bb->raw_data, XBOX360BB_PKT_LEN, xbox360bb_usb_irq_in, xbox360bb, ep_irq_in->bInterval); xbox360bb->irq_in->transfer_dma = xbox360bb->idata_dma; xbox360bb->irq_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; xbox360bb->irq_in->dev = xbox360bb->udev; usb_set_intfdata(intf, xbox360bb); /* Init the input stuff */ for (controller_i = 0; controller_i < 4; controller_i++) { int name_size; /* input_dev name/phys are const char *, so we need * to warn all over, or use a temporary. */ char *name; char *phys; struct xbox360bb_controller *controller = &(xbox360bb->controller[controller_i]); pr_info("making input dev %d\n", controller_i); controller->controller_number = controller_i; controller->receiver = xbox360bb; setup_timer(&(controller->timer_keyup), xbox360bb_keyup, (unsigned long)controller); input_dev = input_allocate_device(); if (!input_dev) goto fail4; controller->idev = input_dev; name_size = strlen(dev_options->name) + strlen(xbox360bb_controller_colors[controller_i]) + 1; name = kzalloc(name_size, GFP_KERNEL); if (!name) goto fail4; /* Don't bother checking returns, we explicitly sized * input_dev->name so it will fit, and the worst that * will happen with str*l*(cpy|cat) is truncation. */ strlcpy(name, dev_options->name, name_size); strlcat(name, xbox360bb_controller_colors[controller_i], name_size); pr_info("... name='%s'\n", name); input_dev->name = name; /* Right, now need to do the same with phys, more or less. */ /* 64 is taken from xpad.c. I hope it's long enough. */ phys = kzalloc(64, GFP_KERNEL); if (!phys) goto fail4; usb_make_path(udev, phys, 64); snprintf(phys, 64, "%s/input%d", phys, controller_i); pr_info("... phys='%s'\n", phys); input_dev->phys = phys; /* Static data */ input_dev->dev.parent = &intf->dev; pr_info("... input_set_drvdata\n"); input_set_drvdata(input_dev, controller); /* Set the input device vendor/product/version from the usb ones. */ usb_to_input_id(udev, &input_dev->id); input_dev->open = xbox360bb_input_open; input_dev->close = xbox360bb_input_close; /* This is probably horribly inefficent, but it's one-time init code. Keep it easy to read, until profiling says it's *actually* a problem. */ input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); for (btn_i = 0; xbox360bb_btn[btn_i] >= 0; btn_i++) set_bit(xbox360bb_btn[btn_i], input_dev->keybit); for (abs_i = 0; xbox360bb_abs[abs_i] >= 0; abs_i++) { set_bit(xbox360bb_abs[abs_i], input_dev->absbit); input_set_abs_params(input_dev, xbox360bb_abs[abs_i], -1, 1, 0, 0); } pr_info("... input_register_device\n"); error = input_register_device(input_dev); pr_info("returned from input_register_device, error=%d\n", error); if (error) goto fail4; } return 0; /* FIXME: We currently leak in failure cases numbered above * fail3. */ fail4: pr_warn("Aaargh, hit fail4!\n"); /* need to check which bits of the input stuff have been * allocated, because it's all loopy. */ fail3: usb_free_urb(xbox360bb->irq_in); fail2: usb_free_coherent(udev, XBOX360BB_PKT_LEN, xbox360bb->raw_data, xbox360bb->idata_dma); fail1: return error; }