void siftDesctor::covdet_keypoints_and_descriptors(cv::Mat &img, std::vector<std::vector<float>> &frames, std::vector<std::vector<float>> &desctor, bool rootSIFT, bool verbose){ bool display_image = 0; vl_size numCols, numRows; numCols = img.cols; //61 numRows = img.rows; //74 img = (cv::Mat_<float>)img/255.0; // This is for debugging, checking the image was correctly loaded. if (display_image) { std::string window_name = "Image"; namedWindow(window_name, cv::WINDOW_AUTOSIZE );// Create a window for display. imshow(window_name, img); // Show our image inside it. cv::waitKey(0); // Wait for a keystroke in the window } cv::Mat imageTest(img.rows, img.cols, CV_32FC1); cv::Mat imgT(img.cols, img.rows, CV_32FC1); img.copyTo(imageTest); imgT = img.t(); imgT = imgT.reshape(1,1); //std::cout << imgT << std::endl; float *image = new float[(int)imgT.cols]; for(int i = 0; i < imgT.cols; i++){ image[i] = (float)imgT.at<float>(i); //std::cout << image[i] << " "; } typedef enum _VlCovDetDescriptorType{ VL_COVDET_DESC_SIFT } VlCovDetDescriporType; VlCovDetMethod method = VL_COVDET_METHOD_DOG; //vl_bool estimateAffineShape = VL_FALSE; //vl_bool estimateOrientation = VL_FALSE; vl_bool doubleImage = VL_TRUE; vl_index octaveResolution = -1; double edgeThreshold = 10; double peakThreshold = 0.01; double lapPeakThreshold = -1; int descriptorType = -1; vl_index patchResolution = -1; double patchRelativeExtent = -1; double patchRelativeSmoothing = -1; double boundaryMargin = 2.0; if (descriptorType < 0) descriptorType = VL_COVDET_DESC_SIFT; switch (descriptorType){ case VL_COVDET_DESC_SIFT: if (patchResolution < 0) patchResolution = 15; if (patchRelativeExtent < 0) patchRelativeExtent = 10; if (patchRelativeSmoothing <0) patchRelativeSmoothing = 1; if (verbose){ printf("vl_covdet: VL_COVDET_DESC_SIFT: patchResolution=%lld, patchRelativeExtent=%g, patchRelativeSmoothing=%g\n", patchResolution, patchRelativeExtent, patchRelativeSmoothing); } } if (1) { //clock_t t_start = clock(); // create a detector object: VL_COVDET_METHOD_HESSIAN VlCovDet * covdet = vl_covdet_new(method); // set various parameters (optional) vl_covdet_set_transposed(covdet, VL_TRUE); vl_covdet_set_first_octave(covdet, doubleImage? -1 : 0); if (octaveResolution >= 0) vl_covdet_set_octave_resolution(covdet, octaveResolution); if (peakThreshold >= 0) vl_covdet_set_peak_threshold(covdet, peakThreshold); if (edgeThreshold >= 0) vl_covdet_set_edge_threshold(covdet, edgeThreshold); if (lapPeakThreshold >= 0) vl_covdet_set_laplacian_peak_threshold(covdet, lapPeakThreshold); //vl_covdet_set_target_num_features(covdet, target_num_features); //vl_covdet_set_use_adaptive_suppression(covdet, use_adaptive_suppression); if(verbose){ VL_PRINTF("vl_covdet: doubling image: %s, image size: numRows = %d, numCols = %d\n", VL_YESNO(vl_covdet_get_first_octave(covdet) < 0), numCols, numRows); } // process the image and run the detector, im.shape(1) is column, im.shape(0) is row //see http://www.vlfeat.org/api/covdet_8h.html#affcedda1fdc7ed72d223e0aab003024e for detail vl_covdet_put_image(covdet, image, numRows, numCols); if (verbose) { VL_PRINTF("vl_covdet: detector: %s\n", vl_enumeration_get_by_value(vlCovdetMethods, method)->name); VL_PRINTF("vl_covdet: peak threshold: %g, edge threshold: %g\n", vl_covdet_get_peak_threshold(covdet),vl_covdet_get_edge_threshold(covdet)); } vl_covdet_detect(covdet); if (verbose) { vl_size numFeatures = vl_covdet_get_num_features(covdet) ; VL_PRINTF("vl_covdet: %d features suppressed as duplicate (threshold: %g)\n", vl_covdet_get_num_non_extrema_suppressed(covdet), vl_covdet_get_non_extrema_suppression_threshold(covdet)); VL_PRINTF("vl_covdet: detected %d features", numFeatures); } //drop feature on the margin(optimal) if(boundaryMargin > 0){ vl_covdet_drop_features_outside(covdet, boundaryMargin); if(verbose){ vl_size numFeatures = vl_covdet_get_num_features(covdet); VL_PRINTF("vl_covdet: kept %d inside the boundary margin (%g)\n", numFeatures, boundaryMargin); } } /* affine adaptation if needed */ bool estimateAffineShape = true; if (estimateAffineShape) { if (verbose) { vl_size numFeaturesBefore = vl_covdet_get_num_features(covdet) ; VL_PRINTF("vl_covdet: estimating affine shape for %d features", numFeaturesBefore); } vl_covdet_extract_affine_shape(covdet) ; if (verbose) { vl_size numFeaturesAfter = vl_covdet_get_num_features(covdet) ; VL_PRINTF("vl_covdet: %d features passed affine adaptation\n", numFeaturesAfter); } } // compute the orientation of the features (optional) //vl_covdet_extract_orientations(covdet); // get feature descriptors vl_size numFeatures = vl_covdet_get_num_features(covdet); VlCovDetFeature const * feature = (VlCovDetFeature const *)vl_covdet_get_features(covdet); VlSiftFilt * sift = vl_sift_new(16, 16, 1, 3, 0); vl_size patchSide = 2 * patchResolution + 1; double patchStep = (double)patchRelativeExtent / patchResolution; float tempDesc[128]; //float * desc; if (verbose) { VL_PRINTF("vl_covdet: descriptors: type = sift, resolution = %d, extent = %g, smoothing = %g\n", patchResolution,patchRelativeExtent, patchRelativeSmoothing); } //std::vector<float> points(6 * numFeatures); //std::vector<float> desc(dimension * numFeatures); std::vector<float> desc(128); std::vector<float> frame(6); //std::vector<float> patch(patchSide * patchSide); //std::vector<float> patchXY(2 * patchSide * patchSide); float *patch = (float*)malloc(sizeof(float)*patchSide*patchSide); float *patchXY = (float*)malloc(2*sizeof(float)*patchSide*patchSide); vl_sift_set_magnif(sift, 3.0); for (vl_index i = 0; i < (signed)numFeatures; i++) { frame.clear(); frame.push_back(feature[i].frame.y); frame.push_back(feature[i].frame.x); frame.push_back(feature[i].frame.a22); frame.push_back(feature[i].frame.a12); frame.push_back(feature[i].frame.a21); frame.push_back(feature[i].frame.a11); frames.push_back(frame); //std::cout << std::setiosflags(std::ios::fixed); //std::cout << std::setprecision(6) << feature[i].frame.y << ", " << feature[i].frame.x << ", " << feature[i].frame.a22 << ", "<< feature[i].frame.a12 << ", "<< feature[i].frame.a21 << ", " << feature[i].frame.a11 << ", "<< std::endl; vl_covdet_extract_patch_for_frame(covdet, patch, patchResolution, patchRelativeExtent, patchRelativeSmoothing, feature[i].frame); vl_imgradient_polar_f(patchXY, patchXY+1, 2, 2 * patchSide, patch, patchSide, patchSide, patchSide); vl_sift_calc_raw_descriptor(sift, patchXY, tempDesc, (int)patchSide, (int)patchSide, (double)(patchSide - 1) / 2, (double)(patchSide - 1) / 2, (double)patchRelativeExtent / (3.0 * (4 + 1) / 2) / patchStep, VL_PI / 2); flip_descriptor(desc, tempDesc); // sift or rootsift if(rootSIFT == true){ std::vector<float> rootdesc = rootsift(desc); desctor.push_back(rootdesc); }else{ desctor.push_back(desc); } /*std::cout << std::setiosflags(std::ios::fixed); for(vl_index j = 0; j < 128; j++){ std::cout << std::setprecision(6) << desc[j] << " "; } std::cout << "\n" << std::endl;*/ } vl_sift_delete(sift); vl_covdet_delete(covdet); //delete covdet; delete patch; delete patchXY; } }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_I = 0, IN_END} ; enum {OUT_FRAMES=0, OUT_DESCRIPTORS, OUT_INFO, OUT_END} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlEnumerator *pair ; float const *image ; vl_size numCols, numRows ; VlCovDetMethod method = VL_COVDET_METHOD_DOG; vl_bool estimateAffineShape = VL_FALSE ; vl_bool estimateOrientation = VL_FALSE ; vl_bool doubleImage = VL_TRUE ; vl_index octaveResolution = -1 ; double edgeThreshold = -1 ; double peakThreshold = -1 ; double lapPeakThreshold = -1 ; int descriptorType = -1 ; vl_index patchResolution = -1 ; double patchRelativeExtent = -1 ; double patchRelativeSmoothing = -1 ; float *patch = NULL ; float *patchXY = NULL ; vl_int liopNumSpatialBins = 6; vl_int liopNumNeighbours = 4; float liopRadius = 6.0; float liopIntensityThreshold = VL_NAN_F ; double boundaryMargin = 2.0 ; double * userFrames = NULL ; vl_size userFrameDimension = 0 ; vl_size numUserFrames = 0 ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < IN_END) { vlmxError(vlmxErrNotEnoughInputArguments, 0) ; } else if (nout > OUT_END) { vlmxError(vlmxErrTooManyOutputArguments, 0) ; } if (mxGetNumberOfDimensions(IN(I)) != 2 || mxGetClassID(IN(I)) != mxSINGLE_CLASS){ vlmxError(vlmxErrInvalidArgument, "I must be a matrix of class SINGLE.") ; } image = (float*) mxGetData(IN(I)) ; numRows = mxGetM(IN(I)) ; numCols = mxGetN(IN(I)) ; while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_verbose : ++ verbose ; break ; case opt_method: pair = vlmxDecodeEnumeration(optarg, vlCovdetMethods, VL_TRUE) ; if (pair == NULL) { vlmxError(vlmxErrInvalidArgument, "METHOD is not a supported detection method.") ; } method = (VlCovDetMethod)pair->value ; break; case opt_descriptor: pair = vlmxDecodeEnumeration(optarg, vlCovDetDescriptorTypes, VL_TRUE) ; if (pair == NULL) { vlmxError(vlmxErrInvalidArgument, "DESCRIPTOR is not a supported descriptor.") ; } descriptorType = (VlCovDetDescriptorType)pair->value ; break; case opt_estimate_affine_shape: if (!mxIsLogicalScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "ESTIMATEAFFINESHAPE must be a logical scalar value.") ; } else { estimateAffineShape = *mxGetLogicals(optarg) ; } break ; case opt_estimate_orientation: if (!mxIsLogicalScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "ESTIMATEORIENTATION must be a logical scalar value.") ; } else { estimateOrientation = *mxGetLogicals(optarg); } break ; case opt_double_image: if (!mxIsLogicalScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "DOUBLEIMAGE must be a logical scalar value.") ; } else { doubleImage = *mxGetLogicals(optarg); } break ; case opt_octave_resolution : if (!vlmxIsPlainScalar(optarg) || (octaveResolution = (vl_index)*mxGetPr(optarg)) < 1) { vlmxError(vlmxErrInvalidArgument, "OCTAVERESOLUTION must be an integer not smaller than 1.") ; } break ; case opt_edge_threshold : if (!vlmxIsPlainScalar(optarg) || (edgeThreshold = *mxGetPr(optarg)) < 1) { vlmxError(vlmxErrInvalidArgument, "EDGETHRESHOLD must be a real not smaller than 1.") ; } break ; case opt_peak_threshold : if (!vlmxIsPlainScalar(optarg) || (peakThreshold = *mxGetPr(optarg)) < 0) { vlmxError(vlmxErrInvalidArgument, "PEAKTHRESHOLD must be a non-negative real.") ; } break ; case opt_laplacian_peak_threshold : if (!vlmxIsPlainScalar(optarg) || (lapPeakThreshold = *mxGetPr(optarg)) < 0) { vlmxError(vlmxErrInvalidArgument, "LAPLACIANPEAKTHRESHOLD must be a non-negative real.") ; } break ; case opt_patch_relative_smoothing : if (!vlmxIsPlainScalar(optarg) || (patchRelativeSmoothing = *mxGetPr(optarg)) < 0) { vlmxError(vlmxErrInvalidArgument, "PATCHRELATIVESMOOTHING must be a non-negative real.") ; } break ; case opt_patch_relative_extent : if (!vlmxIsPlainScalar(optarg) || (patchRelativeExtent = *mxGetPr(optarg)) <= 0) { vlmxError(vlmxErrInvalidArgument, "PATCHRELATIVEEXTENT must be a posiive real.") ; } break ; case opt_patch_resolution : if (!vlmxIsPlainScalar(optarg) || (patchResolution = (vl_index)*mxGetPr(optarg)) <= 0) { vlmxError(vlmxErrInvalidArgument, "PATCHRESOLUTION must be a positive integer.") ; } break ; case opt_liop_bins : if (!vlmxIsPlainScalar(optarg) || (liopNumSpatialBins = (vl_int)*mxGetPr(optarg)) <= 0) { vlmxError(vlmxErrInvalidArgument, "number of LIOPNUMSPATIALBINS is not a positive scalar.") ; } break ; case opt_liop_neighbours : if (!vlmxIsPlainScalar(optarg) || (liopNumNeighbours = (vl_int)*mxGetPr(optarg)) <= 0) { vlmxError(vlmxErrInvalidArgument, "number of LIOPNUMNEIGHBOURS is not a positive scalar.") ; } break ; case opt_liop_radius : if (!vlmxIsPlainScalar(optarg) || (liopRadius = (float)*mxGetPr(optarg)) <= 0) { vlmxError(vlmxErrInvalidArgument, "LIOPRADIUS must is not a positive scalar.") ; } break ; case opt_liop_threshold : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "LIOPINTENSITYTHRESHOLD is not a scalar.") ; } liopIntensityThreshold = *mxGetPr(optarg) ; break ; case opt_frames: if (!vlmxIsPlainMatrix(optarg,-1,-1)) { vlmxError(vlmxErrInvalidArgument, "FRAMES must be a palin matrix.") ; } numUserFrames = mxGetN (optarg) ; userFrameDimension = mxGetM (optarg) ; userFrames = mxGetPr (optarg) ; switch (userFrameDimension) { case 2: case 3: case 4: case 5: case 6: /* ok */ break ; default: vlmxError(vlmxErrInvalidArgument, "FRAMES of dimensions %d are not recognised", userFrameDimension); ; } break ; default : abort() ; } } if (descriptorType < 0) descriptorType = VL_COVDET_DESC_SIFT ; switch (descriptorType) { case VL_COVDET_DESC_NONE : break ; case VL_COVDET_DESC_PATCH : if (patchResolution < 0) patchResolution = 20 ; if (patchRelativeExtent < 0) patchRelativeExtent = 6 ; if (patchRelativeSmoothing < 0) patchRelativeSmoothing = 1 ; break ; case VL_COVDET_DESC_SIFT : /* the patch parameters are selected to match the SIFT descriptor geometry */ if (patchResolution < 0) patchResolution = 15 ; if (patchRelativeExtent < 0) patchRelativeExtent = 7.5 ; if (patchRelativeSmoothing < 0) patchRelativeSmoothing = 1 ; break ; case VL_COVDET_DESC_LIOP : if (patchResolution < 0) patchResolution = 20 ; if (patchRelativeExtent < 0) patchRelativeExtent = 4 ; if (patchRelativeSmoothing < 0) patchRelativeSmoothing = 0.5 ; break ; } if (patchResolution > 0) { vl_size w = 2*patchResolution + 1 ; patch = mxMalloc(sizeof(float) * w * w); patchXY = mxMalloc(2 * sizeof(float) * w * w); } if (descriptorType == VL_COVDET_DESC_LIOP && liopRadius > patchResolution) { vlmxError(vlmxErrInconsistentData, "LIOPRADIUS is larger than PATCHRESOLUTION.") ; } /* ----------------------------------------------------------------- * Detector * -------------------------------------------------------------- */ { VlCovDet * covdet = vl_covdet_new(method) ; /* set covdet parameters */ vl_covdet_set_transposed(covdet, VL_TRUE) ; vl_covdet_set_first_octave(covdet, doubleImage ? -1 : 0) ; if (octaveResolution >= 0) vl_covdet_set_octave_resolution(covdet, octaveResolution) ; if (peakThreshold >= 0) vl_covdet_set_peak_threshold(covdet, peakThreshold) ; if (edgeThreshold >= 0) vl_covdet_set_edge_threshold(covdet, edgeThreshold) ; if (lapPeakThreshold >= 0) vl_covdet_set_laplacian_peak_threshold(covdet, lapPeakThreshold) ; if (verbose) { VL_PRINTF("vl_covdet: doubling image: %s\n", VL_YESNO(vl_covdet_get_first_octave(covdet) < 0)) ; } /* process the image */ vl_covdet_put_image(covdet, image, numRows, numCols) ; /* fill with frames: eitehr run the detector of poure them in */ if (numUserFrames > 0) { vl_index k ; if (verbose) { mexPrintf("vl_covdet: sourcing %d frames\n", numUserFrames) ; } for (k = 0 ; k < (signed)numUserFrames ; ++k) { double const * uframe = userFrames + userFrameDimension * k ; double a11, a21, a12, a22 ; VlCovDetFeature feature ; feature.peakScore = VL_INFINITY_F ; feature.edgeScore = 1.0 ; feature.frame.x = (float)uframe[1] - 1 ; feature.frame.y = (float)uframe[0] - 1 ; switch (userFrameDimension) { case 2: a11 = 1.0 ; a21 = 0.0 ; a12 = 0.0 ; a22 = 1.0 ; break ; case 3: a11 = uframe[2] ; a21 = 0.0 ; a12 = 0.0 ; a22 = uframe[2] ; break ; case 4: { double sigma = uframe[2] ; double c = cos(uframe[3]) ; double s = sin(uframe[3]) ; a11 = sigma * c ; a21 = sigma * s ; a12 = sigma * (-s) ; a22 = sigma * c ; break ; } case 5: { double d2 ; if (uframe[2] < 0) { vlmxError(vlmxErrInvalidArgument, "FRAMES(:,%d) does not have a PSD covariance.", k+1) ; } a11 = sqrt(uframe[2]) ; a21 = uframe[3] / VL_MAX(a11, 1e-10) ; a12 = 0.0 ; d2 = uframe[4] - a21*a21 ; if (d2 < 0) { vlmxError(vlmxErrInvalidArgument, "FRAMES(:,%d) does not have a PSD covariance.", k+1) ; } a22 = sqrt(d2) ; break ; } case 6: { a11 = uframe[2] ; a21 = uframe[3] ; a12 = uframe[4] ; a22 = uframe[5] ; break ; } default: a11 = 0 ; a21 = 0 ; a12 = 0 ; a22 = 0 ; assert(0) ; } feature.frame.a11 = (float)a22 ; feature.frame.a21 = (float)a12 ; feature.frame.a12 = (float)a21 ; feature.frame.a22 = (float)a11 ; vl_covdet_append_feature(covdet, &feature) ; } } else { if (verbose) { mexPrintf("vl_covdet: detector: %s\n", vl_enumeration_get_by_value(vlCovdetMethods, method)->name) ; mexPrintf("vl_covdet: peak threshold: %g, edge threshold: %g\n", vl_covdet_get_peak_threshold(covdet), vl_covdet_get_edge_threshold(covdet)) ; } vl_covdet_detect(covdet) ; if (verbose) { vl_index i ; vl_size numFeatures = vl_covdet_get_num_features(covdet) ; mexPrintf("vl_covdet: %d features suppressed as duplicate (threshold: %g)\n", vl_covdet_get_num_non_extrema_suppressed(covdet), vl_covdet_get_non_extrema_suppression_threshold(covdet)) ; switch (method) { case VL_COVDET_METHOD_HARRIS_LAPLACE: case VL_COVDET_METHOD_HESSIAN_LAPLACE: { vl_size numScales ; vl_size const * numFeaturesPerScale ; numFeaturesPerScale = vl_covdet_get_laplacian_scales_statistics (covdet, &numScales) ; mexPrintf("vl_covdet: Laplacian scales:") ; for (i = 0 ; i <= (signed)numScales ; ++i) { mexPrintf("%d with %d scales;", numFeaturesPerScale[i], i) ; } mexPrintf("\n") ; } break ; default: break ; } mexPrintf("vl_covdet: detected %d features\n", numFeatures) ; } if (boundaryMargin > 0) { vl_covdet_drop_features_outside (covdet, boundaryMargin) ; if (verbose) { vl_size numFeatures = vl_covdet_get_num_features(covdet) ; mexPrintf("vl_covdet: kept %d inside the boundary margin (%g)\n", numFeatures, boundaryMargin) ; } } } /* affine adaptation if needed */ if (estimateAffineShape) { if (verbose) { vl_size numFeaturesBefore = vl_covdet_get_num_features(covdet) ; mexPrintf("vl_covdet: estimating affine shape for %d features\n", numFeaturesBefore) ; } vl_covdet_extract_affine_shape(covdet) ; if (verbose) { vl_size numFeaturesAfter = vl_covdet_get_num_features(covdet) ; mexPrintf("vl_covdet: %d features passed affine adaptation\n", numFeaturesAfter) ; } } /* orientation estimation if needed */ if (estimateOrientation) { vl_size numFeaturesBefore = vl_covdet_get_num_features(covdet) ; vl_size numFeaturesAfter ; vl_covdet_extract_orientations(covdet) ; numFeaturesAfter = vl_covdet_get_num_features(covdet) ; if (verbose && numFeaturesAfter > numFeaturesBefore) { mexPrintf("vl_covdet: %d duplicate features were crated due to ambiguous " "orientation detection (%d total)\n", numFeaturesAfter - numFeaturesBefore, numFeaturesAfter) ; } } /* store results back */ { vl_index i ; vl_size numFeatures = vl_covdet_get_num_features(covdet) ; VlCovDetFeature const * feature = vl_covdet_get_features(covdet); double * pt ; OUT(FRAMES) = mxCreateDoubleMatrix (6, numFeatures, mxREAL) ; pt = mxGetPr(OUT(FRAMES)) ; for (i = 0 ; i < (signed)numFeatures ; ++i) { /* save the transposed frame, adjust origin to MATLAB's*/ *pt++ = feature[i].frame.y + 1 ; *pt++ = feature[i].frame.x + 1 ; *pt++ = feature[i].frame.a22 ; *pt++ = feature[i].frame.a12 ; *pt++ = feature[i].frame.a21 ; *pt++ = feature[i].frame.a11 ; } } if (nout >= 2) { switch (descriptorType) { case VL_COVDET_DESC_NONE: OUT(DESCRIPTORS) = mxCreateDoubleMatrix(0,0,mxREAL); break ; case VL_COVDET_DESC_PATCH: { vl_size numFeatures ; VlCovDetFeature const * feature ; vl_index i ; vl_size w = 2*patchResolution + 1 ; float * desc ; if (verbose) { mexPrintf("vl_covdet: descriptors: type=patch, " "resolution=%d, extent=%g, smoothing=%g\n", patchResolution, patchRelativeExtent, patchRelativeSmoothing); } numFeatures = vl_covdet_get_num_features(covdet) ; feature = vl_covdet_get_features(covdet); OUT(DESCRIPTORS) = mxCreateNumericMatrix(w*w, numFeatures, mxSINGLE_CLASS, mxREAL) ; desc = mxGetData(OUT(DESCRIPTORS)) ; for (i = 0 ; i < (signed)numFeatures ; ++i) { vl_covdet_extract_patch_for_frame(covdet, desc, patchResolution, patchRelativeExtent, patchRelativeSmoothing, feature[i].frame) ; desc += w*w ; } break ; } case VL_COVDET_DESC_SIFT: { vl_size numFeatures = vl_covdet_get_num_features(covdet) ; VlCovDetFeature const * feature = vl_covdet_get_features(covdet); VlSiftFilt * sift = vl_sift_new(16, 16, 1, 3, 0) ; vl_index i ; vl_size dimension = 128 ; vl_size patchSide = 2 * patchResolution + 1 ; double patchStep = (double)patchRelativeExtent / patchResolution ; float tempDesc [128] ; float * desc ; if (verbose) { mexPrintf("vl_covdet: descriptors: type=sift, " "resolution=%d, extent=%g, smoothing=%g\n", patchResolution, patchRelativeExtent, patchRelativeSmoothing); } OUT(DESCRIPTORS) = mxCreateNumericMatrix(dimension, numFeatures, mxSINGLE_CLASS, mxREAL) ; desc = mxGetData(OUT(DESCRIPTORS)) ; vl_sift_set_magnif(sift, 3.0) ; for (i = 0 ; i < (signed)numFeatures ; ++i) { vl_covdet_extract_patch_for_frame(covdet, patch, patchResolution, patchRelativeExtent, patchRelativeSmoothing, feature[i].frame) ; vl_imgradient_polar_f (patchXY, patchXY +1, 2, 2 * patchSide, patch, patchSide, patchSide, patchSide) ; /* Note: the patch is transposed, so that x and y are swapped. However, if NBO is not divisible by 4, then the configuration of the SIFT orientations is not symmetric by rotations of pi/2. Hence the only option is to rotate the descriptor further by an angle we need to compute the descriptor rotaed by an additional pi/2 angle. In this manner, x concides and y is flipped. */ vl_sift_calc_raw_descriptor (sift, patchXY, tempDesc, (int)patchSide, (int)patchSide, (double)(patchSide-1) / 2, (double)(patchSide-1) / 2, (double)patchRelativeExtent / (3.0 * (4 + 1) / 2) / patchStep, VL_PI / 2) ; flip_descriptor (desc, tempDesc) ; desc += dimension ; } vl_sift_delete(sift) ; break ; } case VL_COVDET_DESC_LIOP : { /* TODO: get parameters form input */ vl_size numFeatures = vl_covdet_get_num_features(covdet) ; vl_size dimension ; VlCovDetFeature const * feature = vl_covdet_get_features(covdet); vl_index i ; vl_size patchSide = 2 * patchResolution + 1 ; float * desc ; VlLiopDesc * liop = vl_liopdesc_new(liopNumNeighbours, liopNumSpatialBins, liopRadius, (vl_size)patchSide) ; if (!vl_is_nan_f(liopIntensityThreshold)) { vl_liopdesc_set_intensity_threshold(liop, liopIntensityThreshold) ; } dimension = vl_liopdesc_get_dimension(liop) ; if (verbose) { mexPrintf("vl_covdet: descriptors: type=liop, " "resolution=%d, extent=%g, smoothing=%g\n", patchResolution, patchRelativeExtent, patchRelativeSmoothing); } OUT(DESCRIPTORS) = mxCreateNumericMatrix(dimension, numFeatures, mxSINGLE_CLASS, mxREAL); desc = mxGetData(OUT(DESCRIPTORS)) ; vl_tic(); for(i = 0; i < (signed)numFeatures; i++){ vl_covdet_extract_patch_for_frame(covdet, patch, patchResolution, patchRelativeExtent, patchRelativeSmoothing, feature[i].frame); vl_liopdesc_process(liop, desc, patch); desc += dimension; } mexPrintf("time: %f\n",vl_toc()); mexPrintf("threshold: %f\n",liop->intensityThreshold); break; } default: assert(0) ; /* descriptor type */ } } if (nout >= 3) { vl_index i ; vl_size numFeatures = vl_covdet_get_num_features(covdet) ; VlCovDetFeature const * feature = vl_covdet_get_features(covdet); const char* names[] = { "gss", "css", "peakScores", "edgeScores", "orientationScore", "laplacianScaleScore" }; mxArray * gss_array = _createArrayFromScaleSpace(vl_covdet_get_gss(covdet)) ; mxArray * css_array = _createArrayFromScaleSpace(vl_covdet_get_css(covdet)) ; mxArray * peak_array = mxCreateNumericMatrix(1,numFeatures,mxSINGLE_CLASS,mxREAL) ; mxArray * edge_array = mxCreateNumericMatrix(1,numFeatures,mxSINGLE_CLASS,mxREAL) ; mxArray * orientation_array = mxCreateNumericMatrix(1,numFeatures,mxSINGLE_CLASS,mxREAL) ; mxArray * laplacian_array = mxCreateNumericMatrix(1,numFeatures,mxSINGLE_CLASS,mxREAL) ; float * peak = mxGetData(peak_array) ; float * edge = mxGetData(edge_array) ; float * orientation = mxGetData(orientation_array) ; float * laplacian = mxGetData(laplacian_array) ; for (i = 0 ; i < (signed)numFeatures ; ++i) { peak[i] = feature[i].peakScore ; edge[i] = feature[i].edgeScore ; orientation[i] = feature[i].orientationScore ; laplacian[i] = feature[i].laplacianScaleScore ; } OUT(INFO) = mxCreateStructMatrix(1, 1, 6, names) ; mxSetFieldByNumber(OUT(INFO), 0, 0, gss_array) ; mxSetFieldByNumber(OUT(INFO), 0, 1, css_array) ; mxSetFieldByNumber(OUT(INFO), 0, 2, peak_array) ; mxSetFieldByNumber(OUT(INFO), 0, 3, edge_array) ; mxSetFieldByNumber(OUT(INFO), 0, 4, orientation_array) ; mxSetFieldByNumber(OUT(INFO), 0, 5, laplacian_array) ; } /* cleanup */ vl_covdet_delete (covdet) ; } if (patchXY) mxFree(patchXY) ; if (patch) mxFree(patch) ; }