コード例 #1
0
ファイル: Volumetric.cpp プロジェクト: kingctan/QtKinect
// Usage: ./Volumetricd.exe ../../data/monkey.obj 256 4 2 90
int main(int argc, char **argv)
{
	if (argc < 6)
	{
		std::cerr << "Missing parameters. Abort." 
			<< std::endl
			<< "Usage:  ./Volumetricd.exe ../../data/monkey.obj 256 8 2 90"
			<< std::endl;
		return EXIT_FAILURE;
	}
	Timer timer;
	const std::string filepath = argv[1];
	const int vol_size = atoi(argv[2]);
	const int vx_size = atoi(argv[3]);
	const int cloud_count = atoi(argv[4]);
	const int rot_interval = atoi(argv[5]);

	std::pair<std::vector<double>, std::vector<double>> depth_buffer;

	//
	// Projection and Modelview Matrices
	//
	Eigen::Matrix4d K = perspective_matrix(fov_y, aspect_ratio, near_plane, far_plane);
	std::pair<Eigen::Matrix4d, Eigen::Matrix4d>	T(Eigen::Matrix4d::Identity(), Eigen::Matrix4d::Identity());


	//
	// Creating volume
	//
	Eigen::Vector3d voxel_size(vx_size, vx_size, vx_size);
	Eigen::Vector3d volume_size(vol_size, vol_size, vol_size);
	Eigen::Vector3d voxel_count(volume_size.x() / voxel_size.x(), volume_size.y() / voxel_size.y(), volume_size.z() / voxel_size.z());
	//
	Eigen::Affine3d grid_affine = Eigen::Affine3d::Identity();
	grid_affine.translate(Eigen::Vector3d(0, 0, -256));
	grid_affine.scale(Eigen::Vector3d(1, 1, -1));	// z is negative inside of screen


	Grid grid(volume_size, voxel_size, grid_affine.matrix());


	//
	// Importing .obj
	//
	timer.start();
	std::vector<Eigen::Vector3d> points3DOrig, pointsTmp;
	import_obj(filepath, points3DOrig);
	timer.print_interval("Importing monkey    : ");
	std::cout << "Monkey point count  : " << points3DOrig.size() << std::endl;

	// 
	// Translating and rotating monkey point cloud 
	std::pair<std::vector<Eigen::Vector3d>, std::vector<Eigen::Vector3d>> cloud;
	//
	Eigen::Affine3d rotate = Eigen::Affine3d::Identity();
	Eigen::Affine3d translate = Eigen::Affine3d::Identity();
	translate.translate(Eigen::Vector3d(0, 0, -256));


	// 
	// Compute first cloud
	//
	for (Eigen::Vector3d p3d : points3DOrig)
	{
		Eigen::Vector4d rot = translate.matrix() * rotate.matrix() * p3d.homogeneous();
		rot /= rot.w();
		cloud.first.push_back(rot.head<3>());
	}
	//
	// Update grid with first cloud
	//
	timer.start();
	create_depth_buffer<double>(depth_buffer.first, cloud.first, K, Eigen::Matrix4d::Identity(), far_plane);
	timer.print_interval("CPU compute depth   : ");

	timer.start();
	update_volume(grid, depth_buffer.first, K, T.first);
	timer.print_interval("CPU Update volume   : ");

	//
	// Compute next clouds
	Eigen::Matrix4d cloud_mat = Eigen::Matrix4d::Identity();
	Timer iter_timer;
	for (int i = 1; i < cloud_count; ++i)
	{
		std::cout << std::endl << i << " : " << i * rot_interval << std::endl;
		iter_timer.start();

		// Rotation matrix
		rotate = Eigen::Affine3d::Identity();
		rotate.rotate(Eigen::AngleAxisd(DegToRad(i * rot_interval), Eigen::Vector3d::UnitY()));

		cloud.second.clear();
		for (Eigen::Vector3d p3d : points3DOrig)
		{
			Eigen::Vector4d rot = translate.matrix() * rotate.matrix() * p3d.homogeneous();
			rot /= rot.w();
			cloud.second.push_back(rot.head<3>());
		}

		//export_obj("../../data/cloud_cpu_2.obj", cloud.second);

		timer.start();
		create_depth_buffer<double>(depth_buffer.second, cloud.second, K, Eigen::Matrix4d::Identity(), far_plane);
		timer.print_interval("Compute depth buffer: ");

		//export_depth_buffer("../../data/cpu_depth_buffer_2.obj", depth_buffer.second);

		timer.start();
		Eigen::Matrix4d icp_mat;
		ComputeRigidTransform(cloud.first, cloud.second, icp_mat);
		timer.print_interval("Compute rigid transf: ");

		//std::cout << std::fixed << std::endl << "icp_mat " << std::endl << icp_mat << std::endl;

		// accumulate matrix
		cloud_mat = cloud_mat * icp_mat;

		//std::cout << std::fixed << std::endl << "cloud_mat " << std::endl << cloud_mat << std::endl;

		timer.start();
		//update_volume(grid, depth_buffer.second, K, cloud_mat.inverse());
		update_volume(grid, depth_buffer.second, K, cloud_mat.inverse());
		timer.print_interval("Update volume       : ");


		// copy second point cloud to first
		cloud.first = cloud.second;
		//depth_buffer.first = depth_buffer.second;

		iter_timer.print_interval("Iteration time      : ");
	}


	//std::cout << "------- // --------" << std::endl;
	//for (int i = 0; i <  grid.data.size(); ++i)
	//{
	//	const Eigen::Vector3d& point = grid.data[i].point;

	//	std::cout << point.transpose() << "\t\t" << grid.data[i].tsdf << " " << grid.data[i].weight << std::endl;
	//}
	//std::cout << "------- // --------" << std::endl;

//	timer.start();
//	export_volume("../../data/grid_volume_cpu.obj", grid.data);
//	timer.print_interval("Exporting volume    : ");
//	return 0;


	QApplication app(argc, argv);

	//
	// setup opengl viewer
	// 
	GLModelViewer glwidget;
	glwidget.resize(640, 480);
	glwidget.setPerspective(60.0f, 0.1f, 10240.0f);
	glwidget.move(320, 0);
	glwidget.setWindowTitle("Point Cloud");
	glwidget.setWeelSpeed(0.1f);
	glwidget.setDistance(-0.5f);
	glwidget.show();

	
	Eigen::Matrix4d to_origin = Eigen::Matrix4d::Identity();
	to_origin.col(3) << -(volume_size.x() / 2.0), -(volume_size.y() / 2.0), -(volume_size.z() / 2.0), 1.0;	// set translate


	std::vector<Eigen::Vector4f> vertices, colors;

	int i = 0;
	for (int z = 0; z <= volume_size.z(); z += voxel_size.z())
	{
		for (int y = 0; y <= volume_size.y(); y += voxel_size.y())
		{
			for (int x = 0; x <= volume_size.x(); x += voxel_size.x(), i++)
			{
				const float tsdf = grid.data.at(i).tsdf;

				//Eigen::Vector4d p = grid_affine.matrix() * to_origin * Eigen::Vector4d(x, y, z, 1);
				Eigen::Vector4d p = to_origin * Eigen::Vector4d(x, y, z, 1);
				p /= p.w();

				if (tsdf > 0.1)
				{
					vertices.push_back(p.cast<float>());
					colors.push_back(Eigen::Vector4f(0, 1, 0, 1));
				}
				else if (tsdf < -0.1)
				{
					vertices.push_back(p.cast<float>());
					colors.push_back(Eigen::Vector4f(1, 0, 0, 1));
				}
			}
		}
	}




	//
	// setup model
	// 
	std::shared_ptr<GLModel> model(new GLModel);
	model->initGL();
	model->setVertices(&vertices[0][0], vertices.size(), 4);
	model->setColors(&colors[0][0], colors.size(), 4);
	glwidget.addModel(model);


	//
	// setup kinect shader program
	// 
	std::shared_ptr<GLShaderProgram> kinectShaderProgram(new GLShaderProgram);
	if (kinectShaderProgram->build("color.vert", "color.frag"))
		model->setShaderProgram(kinectShaderProgram);

	return app.exec();
}
コード例 #2
0
int volumetric_knt_cuda(int argc, char **argv)
{
	Timer timer;
	int vol_size = vx_count * vx_size;
	float half_vol_size = vol_size * 0.5f;

	Eigen::Vector3i voxel_size(vx_size, vx_size, vx_size);
	Eigen::Vector3i volume_size(vol_size, vol_size, vol_size);
	Eigen::Vector3i voxel_count(vx_count, vx_count, vx_count);
	int total_voxels = voxel_count.x() * voxel_count.y() * voxel_count.z();


	std::cout << std::fixed
		<< "Voxel Count  : " << voxel_count.transpose() << std::endl
		<< "Voxel Size   : " << voxel_size.transpose() << std::endl
		<< "Volume Size  : " << volume_size.transpose() << std::endl
		<< "Total Voxels : " << total_voxels << std::endl
		<< std::endl;

	timer.start();
	KinectFrame knt(filepath);
	timer.print_interval("Importing knt frame : ");

	Eigen::Affine3f grid_affine = Eigen::Affine3f::Identity();
	grid_affine.translate(Eigen::Vector3f(0, 0, half_vol_size));
	grid_affine.scale(Eigen::Vector3f(1, 1, -1));	// z is negative inside of screen
	Eigen::Matrix4f grid_matrix = grid_affine.matrix();

	float knt_near_plane = 0.1f;
	float knt_far_plane = 10240.0f;
	Eigen::Matrix4f projection = perspective_matrix<float>(KINECT_V2_FOVY, KINECT_V2_DEPTH_ASPECT_RATIO, knt_near_plane, knt_far_plane);
	Eigen::Matrix4f projection_inverse = projection.inverse();
	Eigen::Matrix4f view_matrix = Eigen::Matrix4f::Identity();

	std::vector<float4> vertices(knt.depth.size(), make_float4(0, 0, 0, 1));
	std::vector<float4> normals(knt.depth.size(), make_float4(0, 0, 1, 1));
	std::vector<Eigen::Vector2f> grid_voxels_params(total_voxels);

	// 
	// setup image parameters
	//
	unsigned short image_width = 2;
	unsigned short image_height = 2;
	uchar4* image_data = new uchar4[image_width * image_height];
	memset(image_data, 0, image_width * image_height * sizeof(uchar4));
	float4* debug_buffer = new float4[image_width * image_height];
	memset(debug_buffer, 0, image_width * image_height * sizeof(float4));

	knt_cuda_setup(
		vx_count, vx_size, 
		grid_matrix.data(), 
		projection.data(), 
		projection_inverse.data(),
		*grid_voxels_params.data()->data(),
		KINECT_V2_DEPTH_WIDTH, 
		KINECT_V2_DEPTH_HEIGHT,
		KINECT_V2_DEPTH_MIN,
		KINECT_V2_DEPTH_MAX,
		vertices.data()[0],
		normals.data()[0],
		image_width,
		image_height,
		*image_data,
		*debug_buffer
		);

	timer.start();
	knt_cuda_allocate();
	knt_cuda_init_grid();
	timer.print_interval("Allocating gpu      : ");

	timer.start();
	knt_cuda_copy_host_to_device();
	knt_cuda_copy_depth_buffer_to_device(knt.depth.data());
	timer.print_interval("Copy host to device : ");

	timer.start();
	knt_cuda_normal_estimation();
	timer.print_interval("Normal estimation   : ");

	timer.start();
	knt_cuda_update_grid(view_matrix.data());
	timer.print_interval("Update grid         : ");
	
	timer.start();
	knt_cuda_grid_params_copy_device_to_host();
	knt_cuda_copy_device_to_host();
	timer.print_interval("Copy device to host : ");

	timer.start();
	knt_cuda_free();
	timer.print_interval("Cleanup gpu         : ");


	timer.start();
	Eigen::Affine3f grid_affine_2 = Eigen::Affine3f::Identity();
	grid_affine_2.translate(Eigen::Vector3f(-half_vol_size, -half_vol_size, -vol_size));
		
	export_volume(
		"../../data/grid_volume_gpu_knt.obj",
		voxel_count,
		voxel_size,
		grid_voxels_params);
		//grid_affine_2.matrix());

	export_obj_with_colors("../../data/knt_grid_frame_normals.obj", vertices, normals);

	timer.print_interval("Exporting volume    : ");

	return 0;
}
コード例 #3
0
int volumetric_knt_cuda(int argc, char **argv)
{
	Timer timer;
	int vol_size = vx_count * vx_size;
	float half_vol_size = vol_size * 0.5f;

	Eigen::Vector3i voxel_size(vx_size, vx_size, vx_size);
	Eigen::Vector3i volume_size(vol_size, vol_size, vol_size);
	Eigen::Vector3i voxel_count(vx_count, vx_count, vx_count);
	int total_voxels = voxel_count.x() * voxel_count.y() * voxel_count.z();


	std::cout << std::fixed
		<< "Voxel Count  : " << voxel_count.transpose() << std::endl
		<< "Voxel Size   : " << voxel_size.transpose() << std::endl
		<< "Volume Size  : " << volume_size.transpose() << std::endl
		<< "Total Voxels : " << total_voxels << std::endl
		<< std::endl;

	timer.start();
	KinectFrame knt(filepath);
	timer.print_interval("Importing knt frame : ");

	Eigen::Affine3f grid_affine = Eigen::Affine3f::Identity();
	grid_affine.translate(Eigen::Vector3f(0, 0, half_vol_size));
	grid_affine.scale(Eigen::Vector3f(1, 1, 1));	// z is negative inside of screen
	Eigen::Matrix4f grid_matrix = grid_affine.matrix();

	float knt_near_plane = 0.1f;
	float knt_far_plane = 10240.0f;
	Eigen::Matrix4f projection = perspective_matrix<float>(KINECT_V2_FOVY, KINECT_V2_DEPTH_ASPECT_RATIO, knt_near_plane, knt_far_plane);
	Eigen::Matrix4f projection_inverse = projection.inverse();
	Eigen::Matrix4f view_matrix = Eigen::Matrix4f::Identity();

	std::vector<float4> vertices(knt.depth.size(), make_float4(0, 0, 0, 1));
	std::vector<float4> normals(knt.depth.size(), make_float4(0, 0, 1, 1));
	std::vector<Eigen::Vector2f> grid_voxels_params(total_voxels);

	// 
	// setup image parameters
	//
	unsigned short image_width = KINECT_V2_DEPTH_WIDTH;
	unsigned short image_height = image_width / aspect_ratio;
	QImage img(image_width, image_height, QImage::Format::Format_RGBA8888);
	img.fill(Qt::GlobalColor::gray);
	uchar4* image_data = (uchar4*)img.bits();
	//float4* debug_buffer = new float4[image_width * image_height];
	//memset(debug_buffer, 0, image_width * image_height * sizeof(float4));

	knt_cuda_setup(
		vx_count, vx_size,
		grid_matrix.data(),
		projection.data(),
		projection_inverse.data(),
		*grid_voxels_params.data()->data(),
		KINECT_V2_DEPTH_WIDTH,
		KINECT_V2_DEPTH_HEIGHT,
		KINECT_V2_DEPTH_MIN,
		KINECT_V2_DEPTH_MAX,
		vertices.data()[0],
		normals.data()[0],
		image_width,
		image_height
		);

	timer.start();
	knt_cuda_allocate();
	knt_cuda_init_grid();
	timer.print_interval("Allocating gpu      : ");

	timer.start();
	knt_cuda_copy_host_to_device();
	knt_cuda_copy_depth_buffer_to_device(knt.depth.data());
	timer.print_interval("Copy host to device : ");

	timer.start();
	knt_cuda_normal_estimation();
	timer.print_interval("Normal estimation   : ");

	timer.start();
	knt_cuda_update_grid(view_matrix.data());
	timer.print_interval("Update grid         : ");

	timer.start();
	knt_cuda_grid_params_copy_device_to_host();
	knt_cuda_copy_device_to_host();
	timer.print_interval("Copy device to host : ");




	//
	// setup camera parameters
	//
	timer.start();
	Eigen::Affine3f camera_to_world = Eigen::Affine3f::Identity();
	float cam_z = -half_vol_size;
	camera_to_world.scale(Eigen::Vector3f(1, 1, -1));
	camera_to_world.translate(Eigen::Vector3f(half_vol_size, half_vol_size, cam_z));

	
	Eigen::Matrix4f camera_to_world_matrix = camera_to_world.matrix();
		
	knt_cuda_raycast(KINECT_V2_FOVY, KINECT_V2_DEPTH_ASPECT_RATIO, camera_to_world_matrix.data());
	timer.print_interval("Raycast             : ");

	timer.start();
	knt_cuda_copy_image_device_to_host(*(uchar4*)img.bits());
	timer.print_interval("Copy Img to host    : ");
	
	timer.start();
	knt_cuda_free();
	timer.print_interval("Cleanup gpu         : ");

#if 0
	//memset(image_data, 0, image_width * image_height * sizeof(uchar4));
	//memset(debug_buffer, 0, image_width * image_height * sizeof(float4));

	Eigen::Vector3f camera_pos = camera_to_world_matrix.col(3).head<3>();
	float fov_scale = (float)tan(DegToRad(KINECT_V2_FOVY * 0.5f));
	float aspect_ratio = KINECT_V2_DEPTH_ASPECT_RATIO;


	//
	// for each pixel, trace a ray
	//
	timer.start();
	for (int y = 0; y < image_height; ++y)
	{
		for (int x = 0; x < image_width; ++x)
		{
			// Convert from image space (in pixels) to screen space
			// Screen Space along X axis = [-aspect ratio, aspect ratio] 
			// Screen Space along Y axis = [-1, 1]
			float x_norm = (2.f * float(x) + 0.5f) / (float)image_width;
			float y_norm = (2.f * float(y) + 0.5f) / (float)image_height;
			Eigen::Vector3f screen_coord(
				(x_norm - 1.f) * aspect_ratio * fov_scale,
				(1.f - y_norm) * fov_scale,
				1.0f);

			Eigen::Vector3f direction;
			multDirMatrix(screen_coord, camera_to_world_matrix, direction);
			direction.normalize();

			long voxels_zero_crossing[2] = { -1, -1 };

			int hit_count = raycast_tsdf_volume<float>(
				camera_pos,
				direction,
				voxel_count.cast<int>(),
				voxel_size.cast<int>(),
				grid_voxels_params,
				voxels_zero_crossing);

			if (hit_count > 0)
			{
				if (hit_count == 2)
				{
					float4 n = normals[y * image_width + x];

					//image_data[y * image_width + x].x = 0;
					//image_data[y * image_width + x].y = 128;
					//image_data[y * image_width + x].z = 128;
					//image_data[y * image_width + x].w = 255;
					
					image_data[y * image_width + x].x = uchar((n.x * 0.5f + 0.5f) * 255);
					image_data[y * image_width + x].y = uchar((n.y * 0.5f + 0.5f) * 255);
					image_data[y * image_width + x].z = uchar((n.z * 0.5f + 0.5f) * 255);
					image_data[y * image_width + x].w = 255;
				}
				else
				{
					image_data[y * image_width + x].x = 128;
					image_data[y * image_width + x].y = 128;
					image_data[y * image_width + x].z = 0;
					image_data[y * image_width + x].w = 255;
				}
			}
			else
			{
				image_data[y * image_width + x].x = 128;
				image_data[y * image_width + x].y = 0;
				image_data[y * image_width + x].z = 0;
				image_data[y * image_width + x].w = 255;
			}
		}
	}
	timer.print_interval("Raycasting to image     : ");
	//export_debug_buffer("../../data/cpu_image_data_screen_coord_f4.txt", debug_buffer, image_width, image_height);
	//export_image_buffer("../../data/cpu_image_data_screen_coord_uc.txt", image_data, image_width, image_height);
#else

	//export_debug_buffer("../../data/gpu_image_data_screen_coord_f4.txt", debug_buffer, image_width, image_height);
	//export_image_buffer("../../data/gpu_image_data_screen_coord_uc.txt", image_data, image_width, image_height);
#endif

	



	QImage image(&image_data[0].x, image_width, image_height, QImage::Format_RGBA8888);
	//image.fill(Qt::GlobalColor::black);
	QApplication app(argc, argv);
	QImageWidget widget;
	widget.resize(KINECT_V2_DEPTH_WIDTH, KINECT_V2_DEPTH_HEIGHT);
	widget.setImage(image);
	widget.show();

	return app.exec();
}