コード例 #1
0
ファイル: aec_rdft_neon.c プロジェクト: dreaflove/webrtc-lib
static void cft1st_128_neon(float* a) {
  const float32x4_t vec_swap_sign = vld1q_f32((float32_t*)k_swap_sign);
  int j, k2;

  for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
    float32x4_t a00v = vld1q_f32(&a[j + 0]);
    float32x4_t a04v = vld1q_f32(&a[j + 4]);
    float32x4_t a08v = vld1q_f32(&a[j + 8]);
    float32x4_t a12v = vld1q_f32(&a[j + 12]);
    float32x4_t a01v = vcombine_f32(vget_low_f32(a00v), vget_low_f32(a08v));
    float32x4_t a23v = vcombine_f32(vget_high_f32(a00v), vget_high_f32(a08v));
    float32x4_t a45v = vcombine_f32(vget_low_f32(a04v), vget_low_f32(a12v));
    float32x4_t a67v = vcombine_f32(vget_high_f32(a04v), vget_high_f32(a12v));
    const float32x4_t wk1rv = vld1q_f32(&rdft_wk1r[k2]);
    const float32x4_t wk1iv = vld1q_f32(&rdft_wk1i[k2]);
    const float32x4_t wk2rv = vld1q_f32(&rdft_wk2r[k2]);
    const float32x4_t wk2iv = vld1q_f32(&rdft_wk2i[k2]);
    const float32x4_t wk3rv = vld1q_f32(&rdft_wk3r[k2]);
    const float32x4_t wk3iv = vld1q_f32(&rdft_wk3i[k2]);
    float32x4_t x0v = vaddq_f32(a01v, a23v);
    const float32x4_t x1v = vsubq_f32(a01v, a23v);
    const float32x4_t x2v = vaddq_f32(a45v, a67v);
    const float32x4_t x3v = vsubq_f32(a45v, a67v);
    const float32x4_t x3w = vrev64q_f32(x3v);
    float32x4_t x0w;
    a01v = vaddq_f32(x0v, x2v);
    x0v = vsubq_f32(x0v, x2v);
    x0w = vrev64q_f32(x0v);
    a45v = vmulq_f32(wk2rv, x0v);
    a45v = vmlaq_f32(a45v, wk2iv, x0w);
    x0v = vmlaq_f32(x1v, x3w, vec_swap_sign);
    x0w = vrev64q_f32(x0v);
    a23v = vmulq_f32(wk1rv, x0v);
    a23v = vmlaq_f32(a23v, wk1iv, x0w);
    x0v = vmlsq_f32(x1v, x3w, vec_swap_sign);
    x0w = vrev64q_f32(x0v);
    a67v = vmulq_f32(wk3rv, x0v);
    a67v = vmlaq_f32(a67v, wk3iv, x0w);
    a00v = vcombine_f32(vget_low_f32(a01v), vget_low_f32(a23v));
    a04v = vcombine_f32(vget_low_f32(a45v), vget_low_f32(a67v));
    a08v = vcombine_f32(vget_high_f32(a01v), vget_high_f32(a23v));
    a12v = vcombine_f32(vget_high_f32(a45v), vget_high_f32(a67v));
    vst1q_f32(&a[j + 0], a00v);
    vst1q_f32(&a[j + 4], a04v);
    vst1q_f32(&a[j + 8], a08v);
    vst1q_f32(&a[j + 12], a12v);
  }
}
コード例 #2
0
void test_vrev64Qf32 (void)
{
  float32x4_t out_float32x4_t;
  float32x4_t arg0_float32x4_t;

  out_float32x4_t = vrev64q_f32 (arg0_float32x4_t);
}
コード例 #3
0
// Window time domain data to be used by the fft.
static void WindowDataNEON(float* x_windowed, const float* x) {
  int i;
  for (i = 0; i < PART_LEN; i += 4) {
    const float32x4_t vec_Buf1 = vld1q_f32(&x[i]);
    const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]);
    const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]);
    // A B C D
    float32x4_t vec_sqrtHanning_rev =
        vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
    // B A D C
    vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev);
    // D C B A
    vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev),
                                       vget_low_f32(vec_sqrtHanning_rev));
    vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning));
    vst1q_f32(&x_windowed[PART_LEN + i],
            vmulq_f32(vec_Buf2, vec_sqrtHanning_rev));
  }
}
コード例 #4
0
ファイル: aec_rdft_neon.c プロジェクト: dreaflove/webrtc-lib
static void cftmdl_128_neon(float* a) {
  int j;
  const int l = 8;
  const float32x4_t vec_swap_sign = vld1q_f32((float32_t*)k_swap_sign);
  float32x4_t wk1rv = vld1q_f32(cftmdl_wk1r);

  for (j = 0; j < l; j += 2) {
    const float32x2_t a_00 = vld1_f32(&a[j + 0]);
    const float32x2_t a_08 = vld1_f32(&a[j + 8]);
    const float32x2_t a_32 = vld1_f32(&a[j + 32]);
    const float32x2_t a_40 = vld1_f32(&a[j + 40]);
    const float32x4_t a_00_32 = vcombine_f32(a_00, a_32);
    const float32x4_t a_08_40 = vcombine_f32(a_08, a_40);
    const float32x4_t x0r0_0i0_0r1_x0i1 = vaddq_f32(a_00_32, a_08_40);
    const float32x4_t x1r0_1i0_1r1_x1i1 = vsubq_f32(a_00_32, a_08_40);
    const float32x2_t a_16 = vld1_f32(&a[j + 16]);
    const float32x2_t a_24 = vld1_f32(&a[j + 24]);
    const float32x2_t a_48 = vld1_f32(&a[j + 48]);
    const float32x2_t a_56 = vld1_f32(&a[j + 56]);
    const float32x4_t a_16_48 = vcombine_f32(a_16, a_48);
    const float32x4_t a_24_56 = vcombine_f32(a_24, a_56);
    const float32x4_t x2r0_2i0_2r1_x2i1 = vaddq_f32(a_16_48, a_24_56);
    const float32x4_t x3r0_3i0_3r1_x3i1 = vsubq_f32(a_16_48, a_24_56);
    const float32x4_t xx0 = vaddq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
    const float32x4_t xx1 = vsubq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
    const float32x4_t x3i0_3r0_3i1_x3r1 = vrev64q_f32(x3r0_3i0_3r1_x3i1);
    const float32x4_t x1_x3_add =
        vmlaq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
    const float32x4_t x1_x3_sub =
        vmlsq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
    const float32x2_t yy0_a = vdup_lane_f32(vget_high_f32(x1_x3_add), 0);
    const float32x2_t yy0_s = vdup_lane_f32(vget_high_f32(x1_x3_sub), 0);
    const float32x4_t yy0_as = vcombine_f32(yy0_a, yy0_s);
    const float32x2_t yy1_a = vdup_lane_f32(vget_high_f32(x1_x3_add), 1);
    const float32x2_t yy1_s = vdup_lane_f32(vget_high_f32(x1_x3_sub), 1);
    const float32x4_t yy1_as = vcombine_f32(yy1_a, yy1_s);
    const float32x4_t yy0 = vmlaq_f32(yy0_as, vec_swap_sign, yy1_as);
    const float32x4_t yy4 = vmulq_f32(wk1rv, yy0);
    const float32x4_t xx1_rev = vrev64q_f32(xx1);
    const float32x4_t yy4_rev = vrev64q_f32(yy4);

    vst1_f32(&a[j + 0], vget_low_f32(xx0));
    vst1_f32(&a[j + 32], vget_high_f32(xx0));
    vst1_f32(&a[j + 16], vget_low_f32(xx1));
    vst1_f32(&a[j + 48], vget_high_f32(xx1_rev));

    a[j + 48] = -a[j + 48];

    vst1_f32(&a[j + 8], vget_low_f32(x1_x3_add));
    vst1_f32(&a[j + 24], vget_low_f32(x1_x3_sub));
    vst1_f32(&a[j + 40], vget_low_f32(yy4));
    vst1_f32(&a[j + 56], vget_high_f32(yy4_rev));
  }

  {
    const int k = 64;
    const int k1 = 2;
    const int k2 = 2 * k1;
    const float32x4_t wk2rv = vld1q_f32(&rdft_wk2r[k2 + 0]);
    const float32x4_t wk2iv = vld1q_f32(&rdft_wk2i[k2 + 0]);
    const float32x4_t wk1iv = vld1q_f32(&rdft_wk1i[k2 + 0]);
    const float32x4_t wk3rv = vld1q_f32(&rdft_wk3r[k2 + 0]);
    const float32x4_t wk3iv = vld1q_f32(&rdft_wk3i[k2 + 0]);
    wk1rv = vld1q_f32(&rdft_wk1r[k2 + 0]);
    for (j = k; j < l + k; j += 2) {
      const float32x2_t a_00 = vld1_f32(&a[j + 0]);
      const float32x2_t a_08 = vld1_f32(&a[j + 8]);
      const float32x2_t a_32 = vld1_f32(&a[j + 32]);
      const float32x2_t a_40 = vld1_f32(&a[j + 40]);
      const float32x4_t a_00_32 = vcombine_f32(a_00, a_32);
      const float32x4_t a_08_40 = vcombine_f32(a_08, a_40);
      const float32x4_t x0r0_0i0_0r1_x0i1 = vaddq_f32(a_00_32, a_08_40);
      const float32x4_t x1r0_1i0_1r1_x1i1 = vsubq_f32(a_00_32, a_08_40);
      const float32x2_t a_16 = vld1_f32(&a[j + 16]);
      const float32x2_t a_24 = vld1_f32(&a[j + 24]);
      const float32x2_t a_48 = vld1_f32(&a[j + 48]);
      const float32x2_t a_56 = vld1_f32(&a[j + 56]);
      const float32x4_t a_16_48 = vcombine_f32(a_16, a_48);
      const float32x4_t a_24_56 = vcombine_f32(a_24, a_56);
      const float32x4_t x2r0_2i0_2r1_x2i1 = vaddq_f32(a_16_48, a_24_56);
      const float32x4_t x3r0_3i0_3r1_x3i1 = vsubq_f32(a_16_48, a_24_56);
      const float32x4_t xx = vaddq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
      const float32x4_t xx1 = vsubq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
      const float32x4_t x3i0_3r0_3i1_x3r1 = vrev64q_f32(x3r0_3i0_3r1_x3i1);
      const float32x4_t x1_x3_add =
          vmlaq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
      const float32x4_t x1_x3_sub =
          vmlsq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
      float32x4_t xx4 = vmulq_f32(wk2rv, xx1);
      float32x4_t xx12 = vmulq_f32(wk1rv, x1_x3_add);
      float32x4_t xx22 = vmulq_f32(wk3rv, x1_x3_sub);
      xx4 = vmlaq_f32(xx4, wk2iv, vrev64q_f32(xx1));
      xx12 = vmlaq_f32(xx12, wk1iv, vrev64q_f32(x1_x3_add));
      xx22 = vmlaq_f32(xx22, wk3iv, vrev64q_f32(x1_x3_sub));

      vst1_f32(&a[j + 0], vget_low_f32(xx));
      vst1_f32(&a[j + 32], vget_high_f32(xx));
      vst1_f32(&a[j + 16], vget_low_f32(xx4));
      vst1_f32(&a[j + 48], vget_high_f32(xx4));
      vst1_f32(&a[j + 8], vget_low_f32(xx12));
      vst1_f32(&a[j + 40], vget_high_f32(xx12));
      vst1_f32(&a[j + 24], vget_low_f32(xx22));
      vst1_f32(&a[j + 56], vget_high_f32(xx22));
    }
  }
}
コード例 #5
0
ファイル: aec_rdft_neon.c プロジェクト: dreaflove/webrtc-lib
static void rftbsub_128_neon(float* a) {
  const float* c = rdft_w + 32;
  int j1, j2;
  const float32x4_t mm_half = vdupq_n_f32(0.5f);

  a[1] = -a[1];
  // Vectorized code (four at once).
  //    Note: commented number are indexes for the first iteration of the loop.
  for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
    // Load 'wk'.
    const float32x4_t c_j1 = vld1q_f32(&c[j1]);         //  1,  2,  3,  4,
    const float32x4_t c_k1 = vld1q_f32(&c[29 - j1]);    // 28, 29, 30, 31,
    const float32x4_t wkrt = vsubq_f32(mm_half, c_k1);  // 28, 29, 30, 31,
    const float32x4_t wkr_ = reverse_order_f32x4(wkrt); // 31, 30, 29, 28,
    const float32x4_t wki_ = c_j1;                      //  1,  2,  3,  4,
    // Load and shuffle 'a'.
    //   2,   4,   6,   8,   3,   5,   7,   9
    float32x4x2_t a_j2_p = vld2q_f32(&a[0 + j2]);
    // 120, 122, 124, 126, 121, 123, 125, 127,
    const float32x4x2_t k2_0_4 = vld2q_f32(&a[122 - j2]);
    // 126, 124, 122, 120
    const float32x4_t a_k2_p0 = reverse_order_f32x4(k2_0_4.val[0]);
    // 127, 125, 123, 121
    const float32x4_t a_k2_p1 = reverse_order_f32x4(k2_0_4.val[1]);
    // Calculate 'x'.
    const float32x4_t xr_ = vsubq_f32(a_j2_p.val[0], a_k2_p0);
    // 2-126, 4-124, 6-122, 8-120,
    const float32x4_t xi_ = vaddq_f32(a_j2_p.val[1], a_k2_p1);
    // 3-127, 5-125, 7-123, 9-121,
    // Calculate product into 'y'.
    //    yr = wkr * xr - wki * xi;
    //    yi = wkr * xi + wki * xr;
    const float32x4_t a_ = vmulq_f32(wkr_, xr_);
    const float32x4_t b_ = vmulq_f32(wki_, xi_);
    const float32x4_t c_ = vmulq_f32(wkr_, xi_);
    const float32x4_t d_ = vmulq_f32(wki_, xr_);
    const float32x4_t yr_ = vaddq_f32(a_, b_);  // 2-126, 4-124, 6-122, 8-120,
    const float32x4_t yi_ = vsubq_f32(c_, d_);  // 3-127, 5-125, 7-123, 9-121,
                                                // Update 'a'.
                                                //    a[j2 + 0] -= yr;
                                                //    a[j2 + 1] -= yi;
                                                //    a[k2 + 0] += yr;
                                                //    a[k2 + 1] -= yi;
    // 126, 124, 122, 120,
    const float32x4_t a_k2_p0n = vaddq_f32(a_k2_p0, yr_);
    // 127, 125, 123, 121,
    const float32x4_t a_k2_p1n = vsubq_f32(yi_, a_k2_p1);
    // Shuffle in right order and store.
    //   2,   3,   4,   5,   6,   7,   8,   9,
    const float32x4_t a_k2_p0nr = vrev64q_f32(a_k2_p0n);
    const float32x4_t a_k2_p1nr = vrev64q_f32(a_k2_p1n);
    // 124, 125, 126, 127, 120, 121, 122, 123
    const float32x4x2_t a_k2_n = vzipq_f32(a_k2_p0nr, a_k2_p1nr);
    //   2,   4,   6,   8,
    a_j2_p.val[0] = vsubq_f32(a_j2_p.val[0], yr_);
    //   3,   5,   7,   9,
    a_j2_p.val[1] = vsubq_f32(yi_, a_j2_p.val[1]);
    //   2,   3,   4,   5,   6,   7,   8,   9,
    vst2q_f32(&a[0 + j2], a_j2_p);

    vst1q_f32(&a[122 - j2], a_k2_n.val[1]);
    vst1q_f32(&a[126 - j2], a_k2_n.val[0]);
  }

  // Scalar code for the remaining items.
  for (; j2 < 64; j1 += 1, j2 += 2) {
    const int k2 = 128 - j2;
    const int k1 = 32 - j1;
    const float wkr = 0.5f - c[k1];
    const float wki = c[j1];
    const float xr = a[j2 + 0] - a[k2 + 0];
    const float xi = a[j2 + 1] + a[k2 + 1];
    const float yr = wkr * xr + wki * xi;
    const float yi = wkr * xi - wki * xr;
    a[j2 + 0] = a[j2 + 0] - yr;
    a[j2 + 1] = yi - a[j2 + 1];
    a[k2 + 0] = yr + a[k2 + 0];
    a[k2 + 1] = yi - a[k2 + 1];
  }
  a[65] = -a[65];
}
コード例 #6
0
ファイル: aec_rdft_neon.c プロジェクト: dreaflove/webrtc-lib
__inline static float32x4_t reverse_order_f32x4(float32x4_t in) {
  // A B C D -> C D A B
  const float32x4_t rev = vcombine_f32(vget_high_f32(in), vget_low_f32(in));
  // C D A B -> D C B A
  return vrev64q_f32(rev);
}
コード例 #7
0
void fft_real_neon(
        CkFftContext* context, 
        const float* input, 
        CkFftComplex* output, 
        int count)
{
    int countDiv2 = count/2;

    fft_neon(context, (const CkFftComplex*) input, output, countDiv2, false, 1, context->fwdExpTable, context->maxCount / countDiv2);

    output[countDiv2] = output[0];

    int expTableStride = context->maxCount/count;
    const CkFftComplex* exp0 = context->fwdExpTable;
    const CkFftComplex* exp1 = context->fwdExpTable + countDiv2 * expTableStride;

    CkFftComplex* p0 = output;
    CkFftComplex* p1 = output + countDiv2 - 3;
    const CkFftComplex* pEnd = p0 + count/4;
    while (p0 < pEnd)
    {
        float32x4x2_t z0_v = vld2q_f32((const float32_t*) p0);
        float32x4x2_t z1_v = vld2q_f32((const float32_t*) p1);

        float32x2_t hi, lo;

        // reverse z1 real
        z1_v.val[0] = vrev64q_f32(z1_v.val[0]);
        hi = vget_high_f32(z1_v.val[0]);
        lo = vget_low_f32(z1_v.val[0]);
        z1_v.val[0] = vcombine_f32(hi, lo);

        // reverse z1 imaginary
        z1_v.val[1] = vrev64q_f32(z1_v.val[1]);
        hi = vget_high_f32(z1_v.val[1]);
        lo = vget_low_f32(z1_v.val[1]);
        z1_v.val[1] = vcombine_f32(hi, lo);

        float32x4x2_t sum_v;
        sum_v.val[0] = vaddq_f32(z0_v.val[0], z1_v.val[0]);
        sum_v.val[1] = vsubq_f32(z0_v.val[1], z1_v.val[1]);

        float32x4x2_t diff_v;
        diff_v.val[0] = vsubq_f32(z0_v.val[0], z1_v.val[0]);
        diff_v.val[1] = vaddq_f32(z0_v.val[1], z1_v.val[1]);

        float32x4x2_t exp_v;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 0);
        exp0 += expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 1);
        exp0 += expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 2);
        exp0 += expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 3);
        exp0 += expTableStride;

        float32x4x2_t f_v;
        f_v.val[0] = vnegq_f32(exp_v.val[1]);
        f_v.val[1] = exp_v.val[0];

        float32x4x2_t c_v;
        multiply(f_v, diff_v, c_v);
        subtract(sum_v, c_v, z0_v);
        vst2q_f32((float32_t*) p0, z0_v);

        diff_v.val[0] = vnegq_f32(diff_v.val[0]);
        sum_v.val[1] = vnegq_f32(sum_v.val[1]);

        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 0);
        exp1 -= expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 1);
        exp1 -= expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 2);
        exp1 -= expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 3);
        exp1 -= expTableStride;

        f_v.val[0] = vnegq_f32(exp_v.val[1]);
        f_v.val[1] = exp_v.val[0];

        multiply(f_v, diff_v, c_v);
        subtract(sum_v, c_v, z1_v);

        // reverse z1 real
        z1_v.val[0] = vrev64q_f32(z1_v.val[0]);
        hi = vget_high_f32(z1_v.val[0]);
        lo = vget_low_f32(z1_v.val[0]);
        z1_v.val[0] = vcombine_f32(hi, lo);

        // reverse z1 imaginary
        z1_v.val[1] = vrev64q_f32(z1_v.val[1]);
        hi = vget_high_f32(z1_v.val[1]);
        lo = vget_low_f32(z1_v.val[1]);
        z1_v.val[1] = vcombine_f32(hi, lo);

        vst2q_f32((float32_t*) p1, z1_v);

        p0 += 4;
        p1 -= 4;
    }

    if (count > 8)
    {
        // middle:
        p0->real = p0->real * 2.0f;
        p0->imag = -p0->imag * 2.0f;
    }
}
コード例 #8
0
void fft_real_inverse_neon(
        CkFftContext* context, 
        const CkFftComplex* input, 
        float* output, 
        int count,
        CkFftComplex* tmpBuf)
{
    int countDiv2 = count/2;

    int expTableStride = context->maxCount/count;
    const CkFftComplex* exp0 = context->invExpTable;
    const CkFftComplex* exp1 = context->invExpTable + countDiv2 * expTableStride;

    const CkFftComplex* p0 = input;
    const CkFftComplex* p1 = input + countDiv2 - 3;
    CkFftComplex* tmp0 = tmpBuf;
    CkFftComplex* tmp1 = tmpBuf + countDiv2 - 3;
    const CkFftComplex* pEnd = p0 + count/4;
    while (p0 < pEnd)
    {
        float32x4x2_t z0_v = vld2q_f32((const float32_t*) p0);
        float32x4x2_t z1_v = vld2q_f32((const float32_t*) p1);

        float32x2_t hi, lo;

        // reverse z1 real
        z1_v.val[0] = vrev64q_f32(z1_v.val[0]);
        hi = vget_high_f32(z1_v.val[0]);
        lo = vget_low_f32(z1_v.val[0]);
        z1_v.val[0] = vcombine_f32(hi, lo);

        // reverse z1 imaginary
        z1_v.val[1] = vrev64q_f32(z1_v.val[1]);
        hi = vget_high_f32(z1_v.val[1]);
        lo = vget_low_f32(z1_v.val[1]);
        z1_v.val[1] = vcombine_f32(hi, lo);

        float32x4x2_t sum_v;
        sum_v.val[0] = vaddq_f32(z0_v.val[0], z1_v.val[0]);
        sum_v.val[1] = vsubq_f32(z0_v.val[1], z1_v.val[1]);

        float32x4x2_t diff_v;
        diff_v.val[0] = vsubq_f32(z0_v.val[0], z1_v.val[0]);
        diff_v.val[1] = vaddq_f32(z0_v.val[1], z1_v.val[1]);

        float32x4x2_t exp_v;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 0);
        exp0 += expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 1);
        exp0 += expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 2);
        exp0 += expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp0, exp_v, 3);
        exp0 += expTableStride;

        float32x4x2_t f_v;
        f_v.val[0] = vnegq_f32(exp_v.val[1]);
        f_v.val[1] = exp_v.val[0];

        float32x4x2_t c_v;
        multiply(f_v, diff_v, c_v);
        add(sum_v, c_v, z0_v);
        vst2q_f32((float32_t*) tmp0, z0_v);

        diff_v.val[0] = vnegq_f32(diff_v.val[0]);
        sum_v.val[1] = vnegq_f32(sum_v.val[1]);

        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 0);
        exp1 -= expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 1);
        exp1 -= expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 2);
        exp1 -= expTableStride;
        exp_v = vld2q_lane_f32((const float32_t*) exp1, exp_v, 3);
        exp1 -= expTableStride;

        f_v.val[0] = vnegq_f32(exp_v.val[1]);
        f_v.val[1] = exp_v.val[0];

        multiply(f_v, diff_v, c_v);
        add(sum_v, c_v, z1_v);

        // reverse z1 real
        z1_v.val[0] = vrev64q_f32(z1_v.val[0]);
        hi = vget_high_f32(z1_v.val[0]);
        lo = vget_low_f32(z1_v.val[0]);
        z1_v.val[0] = vcombine_f32(hi, lo);

        // reverse z1 imaginary
        z1_v.val[1] = vrev64q_f32(z1_v.val[1]);
        hi = vget_high_f32(z1_v.val[1]);
        lo = vget_low_f32(z1_v.val[1]);
        z1_v.val[1] = vcombine_f32(hi, lo);

        vst2q_f32((float32_t*) tmp1, z1_v);

        p0 += 4;
        tmp0 += 4;
        p1 -= 4;
        tmp1 -= 4;
    }

    // middle:
    tmp0->real = p0->real * 2.0f;
    tmp0->imag = -p0->imag * 2.0f;

    fft_neon(context, tmpBuf, (CkFftComplex*) output, countDiv2, true, 1, context->invExpTable, context->maxCount / countDiv2);
}
コード例 #9
0
ファイル: vtransform.hpp プロジェクト: 007Indian/opencv
inline float32x4_t vrev64q(const float32x4_t & v) { return vrev64q_f32(v); }
コード例 #10
0
static void ne10_fft_split_c2r_1d_float32_neon (ne10_fft_cpx_float32_t *dst,
        const ne10_fft_cpx_float32_t *src,
        ne10_fft_cpx_float32_t *twiddles,
        ne10_int32_t ncfft)
{

    ne10_int32_t k;
    ne10_int32_t count = ncfft / 2;
    ne10_fft_cpx_float32_t fk, fnkc, fek, fok, tmp;
    float32x4x2_t q2_fk, q2_fnkc, q2_tw, q2_dst, q2_dst2;
    float32x4_t q_fnkc_r, q_fnkc_i;
    float32x4_t q_fek_r, q_fek_i, q_fok_r, q_fok_i;
    float32x4_t q_tmp0, q_tmp1, q_tmp2, q_tmp3, q_val;
    float32x4_t q_dst2_r, q_dst2_i;
    float32_t *p_src, *p_src2, *p_dst, *p_dst2, *p_twiddles;

    dst[0].r = (src[0].r + src[ncfft].r) * 0.5f;
    dst[0].i = (src[0].r - src[ncfft].r) * 0.5f;

    if (count >= 4)
    {
        for (k = 1; k <= count ; k += 4)
        {
            p_src  = (float32_t*) (& (src[k]));
            p_src2  = (float32_t*) (& (src[ncfft - k - 3]));
            p_twiddles  = (float32_t*) (& (twiddles[k - 1]));
            p_dst  = (float32_t*) (& (dst[k]));
            p_dst2  = (float32_t*) (& (dst[ncfft - k - 3]));

            q2_fk  = vld2q_f32 (p_src);
            q2_fnkc = vld2q_f32 (p_src2);
            q2_tw = vld2q_f32 (p_twiddles);
            q2_fnkc.val[0] = vrev64q_f32 (q2_fnkc.val[0]);
            q2_fnkc.val[1] = vrev64q_f32 (q2_fnkc.val[1]);
            q_fnkc_r = vcombine_f32 (vget_high_f32 (q2_fnkc.val[0]), vget_low_f32 (q2_fnkc.val[0]));
            q_fnkc_i = vcombine_f32 (vget_high_f32 (q2_fnkc.val[1]), vget_low_f32 (q2_fnkc.val[1]));
            q_fnkc_i = vnegq_f32 (q_fnkc_i);

            q_fek_r = vaddq_f32 (q2_fk.val[0], q_fnkc_r);
            q_fek_i = vaddq_f32 (q2_fk.val[1], q_fnkc_i);

            q_tmp0 = vsubq_f32 (q2_fk.val[0], q_fnkc_r);
            q_tmp1 = vsubq_f32 (q2_fk.val[1], q_fnkc_i);

            q_fok_r = vmulq_f32 (q_tmp0, q2_tw.val[0]);
            q_fok_i = vmulq_f32 (q_tmp1, q2_tw.val[0]);
            q_tmp2 = vmulq_f32 (q_tmp1, q2_tw.val[1]);
            q_tmp3 = vmulq_f32 (q_tmp0, q2_tw.val[1]);
            q_fok_r = vaddq_f32 (q_fok_r, q_tmp2);
            q_fok_i = vsubq_f32 (q_fok_i, q_tmp3);

            q_val = vdupq_n_f32 (0.5f);
            q_dst2_r = vsubq_f32 (q_fek_r, q_fok_r);
            q_dst2_i = vsubq_f32 (q_fok_i, q_fek_i);
            q2_dst.val[0] = vaddq_f32 (q_fek_r, q_fok_r);
            q2_dst.val[1] = vaddq_f32 (q_fek_i, q_fok_i);
            q_dst2_r = vmulq_f32 (q_dst2_r, q_val);
            q_dst2_i = vmulq_f32 (q_dst2_i, q_val);
            q2_dst.val[0] = vmulq_f32 (q2_dst.val[0], q_val);
            q2_dst.val[1] = vmulq_f32 (q2_dst.val[1], q_val);
            q_dst2_r = vrev64q_f32 (q_dst2_r);
            q_dst2_i = vrev64q_f32 (q_dst2_i);
            q2_dst2.val[0] = vcombine_f32 (vget_high_f32 (q_dst2_r), vget_low_f32 (q_dst2_r));
            q2_dst2.val[1] = vcombine_f32 (vget_high_f32 (q_dst2_i), vget_low_f32 (q_dst2_i));
            vst2q_f32 (p_dst, q2_dst);
            vst2q_f32 (p_dst2, q2_dst2);

        }
    }
    else
    {
        for (k = 1; k <= count ; k++)
        {
            fk = src[k];
            fnkc.r = src[ncfft - k].r;
            fnkc.i = -src[ncfft - k].i;

            fek.r = fk.r + fnkc.r;
            fek.i = fk.i + fnkc.i;

            tmp.r = fk.r - fnkc.r;
            tmp.i = fk.i - fnkc.i;

            fok.r = tmp.r * twiddles[k - 1].r + tmp.i * twiddles[k - 1].i;
            fok.i = tmp.i * twiddles[k - 1].r - tmp.r * twiddles[k - 1].i;

            dst[k].r = (fek.r + fok.r) * 0.5f;
            dst[k].i = (fek.i + fok.i) * 0.5f;

            dst[ncfft - k].r = (fek.r - fok.r) * 0.5f;
            dst[ncfft - k].i = (fok.i - fek.i) * 0.5f;
        }
    }
}
コード例 #11
0
static void ne10_fft_split_r2c_1d_float32_neon (ne10_fft_cpx_float32_t *dst,
        const ne10_fft_cpx_float32_t *src,
        ne10_fft_cpx_float32_t *twiddles,
        ne10_int32_t ncfft)
{
    ne10_int32_t k;
    ne10_int32_t count = ncfft / 2;
    ne10_fft_cpx_float32_t fpnk, fpk, f1k, f2k, tw, tdc;
    float32x4x2_t q2_fpk, q2_fpnk, q2_tw, q2_dst, q2_dst2;
    float32x4_t q_fpnk_r, q_fpnk_i;
    float32x4_t q_f1k_r, q_f1k_i, q_f2k_r, q_f2k_i;
    float32x4_t q_tw_r, q_tw_i;
    float32x4_t q_tmp0, q_tmp1, q_tmp2, q_tmp3, q_val;
    float32x4_t q_dst_r, q_dst_i, q_dst2_r, q_dst2_i;
    float32_t *p_src, *p_src2, *p_dst, *p_dst2, *p_twiddles;

    tdc.r = src[0].r;
    tdc.i = src[0].i;

    dst[0].r = tdc.r + tdc.i;
    dst[ncfft].r = tdc.r - tdc.i;
    dst[ncfft].i = dst[0].i = 0;

    if (count >= 4)
    {
        for (k = 1; k <= count ; k += 4)
        {
            p_src  = (float32_t*) (& (src[k]));
            p_src2  = (float32_t*) (& (src[ncfft - k - 3]));
            p_twiddles  = (float32_t*) (& (twiddles[k - 1]));
            p_dst  = (float32_t*) (& (dst[k]));
            p_dst2  = (float32_t*) (& (dst[ncfft - k - 3]));

            q2_fpk  = vld2q_f32 (p_src);
            q2_fpnk = vld2q_f32 (p_src2);
            q2_tw = vld2q_f32 (p_twiddles);
            q2_fpnk.val[0] = vrev64q_f32 (q2_fpnk.val[0]);
            q2_fpnk.val[1] = vrev64q_f32 (q2_fpnk.val[1]);
            q_fpnk_r = vcombine_f32 (vget_high_f32 (q2_fpnk.val[0]), vget_low_f32 (q2_fpnk.val[0]));
            q_fpnk_i = vcombine_f32 (vget_high_f32 (q2_fpnk.val[1]), vget_low_f32 (q2_fpnk.val[1]));
            q_fpnk_i = vnegq_f32 (q_fpnk_i);

            q_f1k_r = vaddq_f32 (q2_fpk.val[0], q_fpnk_r);
            q_f1k_i = vaddq_f32 (q2_fpk.val[1], q_fpnk_i);

            q_f2k_r = vsubq_f32 (q2_fpk.val[0], q_fpnk_r);
            q_f2k_i = vsubq_f32 (q2_fpk.val[1], q_fpnk_i);

            q_tmp0 = vmulq_f32 (q_f2k_r, q2_tw.val[0]);
            q_tmp1 = vmulq_f32 (q_f2k_i, q2_tw.val[1]);
            q_tmp2 = vmulq_f32 (q_f2k_r, q2_tw.val[1]);
            q_tmp3 = vmulq_f32 (q_f2k_i, q2_tw.val[0]);
            q_tw_r = vsubq_f32 (q_tmp0, q_tmp1);
            q_tw_i = vaddq_f32 (q_tmp2, q_tmp3);

            q_val = vdupq_n_f32 (0.5f);
            q_dst2_r = vsubq_f32 (q_f1k_r, q_tw_r);
            q_dst2_i = vsubq_f32 (q_tw_i, q_f1k_i);
            q_dst_r = vaddq_f32 (q_f1k_r, q_tw_r);
            q_dst_i = vaddq_f32 (q_f1k_i, q_tw_i);
            q_dst2_r = vmulq_f32 (q_dst2_r, q_val);
            q_dst2_i = vmulq_f32 (q_dst2_i, q_val);
            q2_dst.val[0] = vmulq_f32 (q_dst_r, q_val);
            q2_dst.val[1] = vmulq_f32 (q_dst_i, q_val);
            q_dst2_r = vrev64q_f32 (q_dst2_r);
            q_dst2_i = vrev64q_f32 (q_dst2_i);
            q2_dst2.val[0] = vcombine_f32 (vget_high_f32 (q_dst2_r), vget_low_f32 (q_dst2_r));
            q2_dst2.val[1] = vcombine_f32 (vget_high_f32 (q_dst2_i), vget_low_f32 (q_dst2_i));
            vst2q_f32 (p_dst, q2_dst);
            vst2q_f32 (p_dst2, q2_dst2);

        }
    }
    else
    {
        for (k = 1; k <= count ; k++)
        {
            fpk    = src[k];
            fpnk.r =   src[ncfft - k].r;
            fpnk.i = - src[ncfft - k].i;

            f1k.r = fpk.r + fpnk.r;
            f1k.i = fpk.i + fpnk.i;

            f2k.r = fpk.r - fpnk.r;
            f2k.i = fpk.i - fpnk.i;

            tw.r = f2k.r * (twiddles[k - 1]).r - f2k.i * (twiddles[k - 1]).i;
            tw.i = f2k.r * (twiddles[k - 1]).i + f2k.i * (twiddles[k - 1]).r;

            dst[k].r = (f1k.r + tw.r) * 0.5f;
            dst[k].i = (f1k.i + tw.i) * 0.5f;
            dst[ncfft - k].r = (f1k.r - tw.r) * 0.5f;
            dst[ncfft - k].i = (tw.i - f1k.i) * 0.5f;
        }
    }
}