コード例 #1
0
ファイル: wfdbf.c プロジェクト: cardionetics/wfdb
/* Before using wfdbinit_, use setanninfo_ and setsiginfo_ to set the contents
   of the annotation and signal information structures. */
INTEGER wfdbinit_(char *record, INTEGER *nann, INTEGER *nsig)
{
    return (wfdbinit(fcstring(record), ainfo, (unsigned int)(*nann),
		     sinfo, (unsigned int)(*nsig)));
}
コード例 #2
0
int main(int argc, char **argv)
{
    int c;
    int inflag = 0;
    int dbg = 0;
    int sr_ds = 200;
    char * rec_name = "vfdb/427";
    char * db_path = "/opt/physiobank/database";
    size_t win_sec = 8;
    /* r stands for record with folder
     * p for path
     * i for information of record
     * s downsample sr
     * w window length default:8
     * d debug
     */
    while ((c = getopt(argc, argv, "idr:p:s:w:")) != -1)
        switch (c){
            case 'i':
                inflag = 1; 
                break;
            case 'r':
                rec_name = optarg;
                break;
            case 'p':
                db_path = optarg;
                break;
            case 's':
                sr_ds= atoi(optarg);
                break;
            case'w':
                win_sec = atoi(optarg);
                break;
            case'd':
                dbg = 1;
                break;
            default:
                abort();
        }            
    int i, j, nsig;
    WFDB_Sample *v;
    WFDB_Siginfo *s;
    WFDB_Anninfo a;
    setwfdb(db_path);
    
    nsig = isigopen(rec_name, NULL, 0);
    if (nsig < 1){
        printf("nsig:%d\n",nsig);
        exit(1);
    }
    s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo));
    if (isigopen(rec_name, s, nsig) != nsig)
        exit(1);
    v = (WFDB_Sample *)malloc(nsig * sizeof(WFDB_Sample));

    int orig_sr = sampfreq(rec_name);
    a.name = "atr"; a.stat = WFDB_READ;
    if (wfdbinit(rec_name, &a, 1, s, nsig) != nsig) exit(3);
    if(1 == inflag ){
        printf("sr:%d\n",orig_sr);
        printf("%d signals\n", nsig);
        for (i = 0; i < nsig; i++) {
            printf("Group %d, Signal %d:\n", s[i].group, i); 
            printf("File: %s\n", s[i].fname);
            printf("Description: %s\n", s[i].desc);
            printf("Gain: ");
            if (s[i].gain == 0.) 
                printf("uncalibrated; assume %g", WFDB_DEFGAIN);
            else printf("%g", s[i].gain);
            printf(" adu/%s\n", s[i].units ? s[i].units : "mV");
            printf(" Initial value: %d\n", s[i].initval);
            printf(" Storage format: %d\n", s[i].fmt);
            printf(" I/O: ");
            if (s[i].bsize == 0) printf("can be unbuffered\n");
            else printf("%d-byte blocks\n", s[i].bsize);
            printf(" ADC resolution: %d bits\n", s[i].adcres);
            printf(" ADC zero: %d\n", s[i].adczero);
            if (s[i].nsamp > 0L) {
                printf(" Length: %s (%ld sample intervals)\n",
                       timstr(s[i].nsamp), s[i].nsamp);
                printf(" Checksum: %d\n", s[i].cksum);
            }
            else printf(" Length undefined\n");
        }
    }

    fifo_t fifo_ecg;
    int fifo_ecg_buf[FIFO_SIZE];
    fifo_init(&fifo_ecg, fifo_ecg_buf, FIFO_SIZE);

    fifo_t fifo_bt;
    int fifo_bt_buf[FIFO_SIZE];
    fifo_init(&fifo_bt, fifo_bt_buf, FIFO_SIZE);

    int tmp = 0;
    int sr = 200;
    WFDB_Time begin_samp = 0;
    WFDB_Time end_samp = orig_sr*win_sec;
    WFDB_Annotation begin_ann;
    WFDB_Annotation end_ann;
    getann(0, &begin_ann);
    while(0 == getann(0, &end_ann))
         if ((end_ann.aux != NULL && *end_ann.aux > 0)
                    ||0 == strcmp(annstr(end_ann.anntyp), "[")
                    ||0 == strcmp(annstr(end_ann.anntyp), "]")
                    ||0 == strcmp(annstr(end_ann.anntyp), "~")
                ){
            break;
        }
    
    int * pBt_len = (int*)calloc(win_sec,sizeof(int));
    ResetBDAC();
    for (; ;) {
        if (getvec(v) < 0)
            break;
//        for (j = 0; j < nsig; j++){
//        }
        tmp = v[nsig-1];
        tmp = v[0];
        int vout1 = 0;
        static int bt_i = 0;
        static unsigned int samplecnt = 0;
        int idx = 0;
        if(down_sample(tmp, &vout1, orig_sr, sr)) {
                samplecnt ++;
                fifo_write(&fifo_ecg, &vout1, 1*sizeof(int));
                int beatType, beatMatch;
                long ltmp = vout1-s[0].adczero;
                ltmp *= 200; ltmp /= s[0].gain;
                int bdac_dly = BeatDetectAndClassify(ltmp, &beatType, &beatMatch);
                idx = bt_i/sr;
                if (0 != bdac_dly ) {
                    pBt_len[idx]++;
                    fifo_write(&fifo_bt, &beatType, sizeof(int));
                }
                bt_i = ++bt_i%(win_sec*sr);
        }

        double cm = 0.0;

        int size = win_sec*sr;
        if(fifo_len(&fifo_ecg)/sizeof(int) >= sr*win_sec){
            int * win_data = (int*)malloc(win_sec*sr*sizeof(int));
            int * ds_data = (int*)malloc(win_sec*sr_ds*sizeof(int));
            
            int len = fifo_len(&fifo_bt)/sizeof(int);
            int * p = (int*)calloc(len, sizeof(int));
           
            if (0 != len){
               //printf("bt_i:%d\n", bt_i);
                fifo_read_steps(&fifo_bt, p, len*sizeof(int), pBt_len[bt_i/sr]*sizeof(int));
                //for (i = 0;i< len;i++) printf("%d ", p[i]);
                //printf("\n");

            }
            pBt_len[bt_i/sr] = 0;
            
            fifo_read_steps(&fifo_ecg, win_data, size*sizeof(int), sr*sizeof(int));
            filtering(win_data, size, sr);
            int i = 0;
            int ds_size = 0;
            int vout;
            for(i = 0;i < size;i++){
               // if(down_sample(win_data[i], &vout, sr, sr_ds)) ds_data[ds_size++] = vout;
            }
            double dven = 0.0;

            if (0 != len){
                int tmp_cnt = 0;
                for(i = 0; i < len ; i++){
                    if(5 == p[i]) dven ++;
                }
                //printf("div:%d %d\n", tmp_cnt, len);
                dven /= len; 
            }
                         
            //cm = ecg_complexity_measure(win_data, size);
            //cm = ecg_complexity_measure(ds_data, ds_size);
            //cm = cpsd(ds_data, ds_size, 0.5*sr_ds);
            //cm = calc_grid(ds_data, ds_size, 0.5*sr_ds);
            cm = calc_grid(win_data, size, 0.5*sr);


        
            if (-1 == cm ) continue;
            //VT print 1;
            //VF print 2;
            
            int hr =  (int)((double)(len*60)/win_sec+0.5);
            int ret = check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(VT");
            if (1 == ret){
                printf("%d %lf %lf %d\n", 1, cm, dven, hr);
            } else if (0 == ret) {
                ret = check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(VFL");
                int ret2 = check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "[");
                if (1 == ret || 1 == ret2){
                    printf("%d %lf %lf %d\n", 2, cm, dven, hr);
                } else if (0 == ret){
//                    ret = check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(N");
//                    int ret3 = check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "N");
//                    if ((1 == ret  || 1 == ret3) && -1 != begin_ann.subtyp) printf ("%d %lf %lf %d\n", 0, cm, dven, hr); 

                    if (1 == check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(AFIB") 
                        || 1 == check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(AFL")
                        || 1 == check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(IVR")
                        || 1 == check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(SVTA")
                        || 1 == check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(SBR")
                        || 1 == check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(BII")
                       ) printf ("%d %lf %lf %d\n", 0, cm, dven, hr); 
                    
                   // int ret = check_ann(begin_samp, end_samp, &begin_ann, &end_ann, "(SVTA");
                   // if (1 == ret)  printf ("%d %lf\n", 0, cm); 
                }
            }
            //iannsettime(begin_samp);
            begin_samp += orig_sr;
            end_samp += orig_sr;
            if(end_ann.time < begin_samp){
                begin_ann = end_ann;
                
                while(1)
                    if (0 != getann(0, &end_ann)){
                        end_ann = begin_ann;
                        /*the last sample of the signal*/
                        end_ann.time = s[nsig-1].nsamp;
                        break;
                    }else if ((end_ann.aux != NULL && *end_ann.aux > 0)
                                ||0 == strcmp(annstr(end_ann.anntyp), "[")
                                ||0 == strcmp(annstr(end_ann.anntyp), "]")
                                ||0 == strcmp(annstr(end_ann.anntyp), "~")
                            ){
                        break;
                    }
                if(dbg){
                    printf("begin tm:%s type:%s ", mstimstr(begin_ann.time), annstr(begin_ann.anntyp));
                    if(begin_ann.aux != NULL)
                        printf("begin aux:%s", begin_ann.aux+1);
                    printf("\n");
                    printf("end tm:%s type:%s ", mstimstr(end_ann.time), annstr(end_ann.anntyp));
                    if (end_ann.aux != NULL)
                        printf("end aux:%s", end_ann.aux+1);
                    printf("\n");

                    printf("begin sample:%s\n", mstimstr(begin_samp));
                    printf("ann diff:%s\n", mstimstr(end_ann.time-begin_ann.time));
                }
            }
            free(p);
            free(ds_data);
            free(win_data);
        }

    }
    free(pBt_len);
    wfdbquit();
    return 0;
}
コード例 #3
0
ファイル: wabp.c プロジェクト: DanielEColi/wfdb
int main(int argc, char **argv)
{ 
    char *record = NULL;	     /* input record name */
    float sps;			     /* sampling frequency, in Hz (SR) */
    float samplingInterval;          /* sampling interval, in milliseconds */
    int i, max, min, minutes = 0, onset, timer, vflag = 0;
    int dflag = 0;		     /* if non-zero, dump raw and filtered
					samples only;  do not run detector */
    int Rflag = 0;		     /* if non-zero, resample at 125 Hz  */
    int EyeClosing;                  /* eye-closing period, related to SR */
    int ExpectPeriod;                /* if no ABP pulse is detected over this period,
					the threshold is automatically reduced
					to a minimum value;  the threshold is
					restored upon a detection */
    int Ta, T0;			     /* high and low detection thresholds */
    WFDB_Anninfo a;
    WFDB_Annotation annot;
    WFDB_Siginfo *s;
    WFDB_Time from = 0L, next_minute, spm, t, tpq, to = 0L, tt, t1;
    char *p, *prog_name();
    static int gvmode = 0;
    void help();

    pname = prog_name(argv[0]);

    for (i = 1; i < argc; i++) {
	if (*argv[i] == '-') switch (*(argv[i]+1)) {
	  case 'd':	/* dump filter data */
	    dflag = 1;
	    break;
	  case 'f':	/* starting time */
	    if (++i >= argc) {
		(void)fprintf(stderr, "%s: time must follow -f\n", pname);
		exit(1);
	    }
	    from = i;
	    break;
	  case 'h':	/* help requested */
	    help();
	    exit(0);
	    break;
	  case 'H':	/* operate in WFDB_HIGHRES mode */
	    gvmode = WFDB_HIGHRES;
	    break;
	  case 'm':	/* threshold */
	    if (++i >= argc || (Tm = atoi(argv[i])) <= 0) {
		(void)fprintf(stderr, "%s: threshold ( > 0) must follow -m\n",
			      pname);
		exit(1);
	    }
	    break;
	  case 'r':	/* record name */
	    if (++i >= argc) {
		(void)fprintf(stderr, "%s: input record name must follow -r\n",
			      pname);
		exit(1);
	    }
	    record = argv[i];
	    break;
	  case 'R':	/* resample */
	    Rflag = 1;
	    break;
	  case 's':	/* signal */
	    if (++i >= argc) {
		(void)fprintf(stderr,
			      "%s: signal number or name must follow -s\n",
			      pname);
		exit(1);
	    }
	    sig = i;	/* remember argument until record is open */
	    break;
	  case 't':	/* end time */
	    if (++i >= argc) {
		(void)fprintf(stderr, "%s: time must follow -t\n", pname);
		exit(1);
	    }
	    to = i;
	    break;
	  case 'v':	/* verbose mode */
	    vflag = 1;
	    break;
	  default:
	    (void)fprintf(stderr, "%s: unrecognized option %s\n", pname,
			  argv[i]);
	    exit(1);
	}
	else {
	    (void)fprintf(stderr, "%s: unrecognized argument %s\n", pname,
			  argv[i]);
	    exit(1);
	}
    }
    if (record == NULL) {
	help();
	exit(1);
    }

    if (gvmode == 0 && (p = getenv("WFDBGVMODE")))
	gvmode = atoi(p);
    setgvmode(gvmode|WFDB_GVPAD);

    if ((nsig = isigopen(record, NULL, 0)) < 1) exit(2);
    if ((s = (WFDB_Siginfo *)malloc(nsig * sizeof(WFDB_Siginfo))) == NULL) {
	(void)fprintf(stderr, "%s: insufficient memory\n", pname);
	exit(2);
    }
    a.name = "wabp"; a.stat = WFDB_WRITE;
    if ((nsig = wfdbinit(record, &a, 1, s, nsig)) < 1) exit(2);
    if (sig >= 0) sig = findsig(argv[sig]);
    if (sig < 0 || sig >= nsig) {
	/* Identify the lowest-numbered ABP, ART, or BP signal */
	for (i = 0; i < nsig; i++)
	    if (strcmp(trim_whitespace(s[i].desc), "ABP") == 0 ||
		strcmp(s[i].desc, "ART") == 0 ||
		strcmp(s[i].desc, "BP") == 0)
		break;
	if (i == nsig) {
	    fprintf(stderr, "%s: no ABP signal specified; use -s option\n\n",
		    pname);
	    help();
	    exit(3);
	}
	sig = i;
    }
    
    if (vflag)
	fprintf(stderr, "%s: analyzing signal %d (%s)\n",
		pname, sig, s[sig].desc);
    sps = sampfreq((char *)NULL);
    if (Rflag)
    	setifreq(sps = 125.); 
    if (from > 0L) {
	if ((from = strtim(argv[from])) < 0L)
	    from = -from;
    }
    if (to > 0L) {
	if ((to = strtim(argv[to])) < 0L)
	    to = -to;
    }

    annot.subtyp = annot.num = 0;
    annot.chan = sig;
    annot.aux = NULL;
    Tm = physadu((unsigned)sig, Tm);
    samplingInterval = 1000.0/sps;
    spm = 60 * sps;
    next_minute = from + spm;
    EyeClosing = sps * EYE_CLS;   /* set eye-closing period */
    ExpectPeriod = sps * NDP;	  /* maximum expected RR interval */
    SLPwindow = sps * SLPW;       /* slope window size */

    if (vflag) {
	printf("\n------------------------------------------------------\n");
	printf("Record Name:             %s\n", record);
	printf("Total Signals:           %d  (", nsig);
	for (i = 0; i < nsig - 1; i++)
	    printf("%d, ", i);
	printf("%d)\n", nsig - 1);
	printf("Sampling Frequency:      %.1f Hz\n", sps);
	printf("Sampling Interval:       %.3f ms\n", samplingInterval);
	printf("Signal channel used for detection:    %d\n", sig);
	printf("Eye-closing period:      %d samples (%.0f ms)\n",
	       EyeClosing, EyeClosing*samplingInterval);
	printf("Minimum threshold:       %d\n", Tm);
	printf("\n------------------------------------------------------\n\n");
	printf("Processing:\n");
    }

    (void)sample(sig, 0L);
    if (dflag) {
	for (t = from; (to == 0L || t < to) && sample_valid(); t++)
	    printf("%6d\t%6d\n", sample(sig, t), slpsamp(t));
	exit(0);
    }

    /* Average the first 8 seconds of the slope  samples
       to determine the initial thresholds Ta and T0 */
    t1 = from + strtim("8");
    for (T0 = 0, t = from; t < t1 && sample_valid(); t++)
	T0 += slpsamp(t);
    T0 /= t1 - from;
    Ta = 3 * T0;

    /* Main loop */
    for (t = from; (to == 0L || t < to) && sample_valid(); t++) {
	static int learning = 1, T1;
	
	if (learning) {
	    if (t > from + LPERIOD) {
		learning = 0;
		T1 = T0;
		t = from;	/* start over */
	    }
	    else T1 = 2*T0;
	}
	
	if (slpsamp(t) > T1) {   /* found a possible ABP pulse near t */ 
	    timer = 0; 
            /* used for counting the time after previous ABP pulse */
	    max = min = slpsamp(t);
	    for (tt = t+1; tt < t + EyeClosing/2; tt++)
		if (slpsamp(tt) > max) max = slpsamp(tt);
	    for (tt = t-1; tt > t - EyeClosing/2; tt--)
		if (slpsamp(tt) < min) min = slpsamp(tt);
	    if (max > min+10) { 
		onset = max/100 + 2;
		tpq = t - 5;
		for (tt = t; tt > t - EyeClosing/2; tt--) {
		    if (slpsamp(tt) - slpsamp(tt-1) < onset) {
		      tpq = tt;  
			break;
		    }
		}

		if (!learning) {
		    /* Check that we haven't reached the end of the record. */
		    (void)sample(sig, tpq);
		    if (sample_valid() == 0) break;
		    /* Record an annotation at the ABP pulse onset */
		    annot.time = tpq;
		    annot.anntyp = NORMAL;
		    if (putann(0, &annot) < 0) { /* write the annotation */
			wfdbquit();	/* close files if an error occurred */
			exit(1);
		    }
		}

		/* Adjust thresholds */
		Ta += (max - Ta)/10;
		T1 = Ta / 3;

		/* Lock out further detections during the eye-closing period */
		t += EyeClosing;
	    }
	}
	else if (!learning) {
	    /* Once past the learning period, decrease threshold if no pulse
	       was detected recently. */
	    if (++timer > ExpectPeriod && Ta > Tm) {
		Ta--;
		T1 = Ta / 3;
	    }
	}

	/* Keep track of progress by printing a dot for each minute analyzed */
	if (t >= next_minute) {
	    next_minute += spm;
	    (void)fprintf(stderr, ".");
	    (void)fflush(stderr);
	    if (++minutes >= 60) {
		(void)fprintf(stderr, "\n");
		minutes = 0;
	    }
	}
    }

    (void)free(lbuf);
    (void)free(ebuf);
    wfdbquit();		        /* close WFDB files */
    fprintf(stderr, "\n");
    if (vflag) {
	printf("\n\nDone! \n\nResulting annotation file:  %s.wabp\n\n\n",
	       record);
    }
    exit(0);
}