コード例 #1
0
ファイル: cstt22.c プロジェクト: zangel/uquad
/* Subroutine */ int cstt22_(integer *n, integer *m, integer *kband, real *ad,
	 real *ae, real *sd, real *se, complex *u, integer *ldu, complex *
	work, integer *ldwork, real *rwork, real *result)
{
    /* System generated locals */
    integer u_dim1, u_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4, 
	    i__5, i__6;
    real r__1, r__2, r__3, r__4, r__5;
    complex q__1, q__2;

    /* Local variables */
    static complex aukj;
    static real unfl;
    static integer i__, j, k;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *);
    static real anorm, wnorm;
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *), slamch_(char *), clansy_(char 
	    *, char *, integer *, complex *, integer *, real *);
    static real ulp;


#define work_subscr(a_1,a_2) (a_2)*work_dim1 + a_1
#define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)]
#define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1
#define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    CSTT22  checks a set of M eigenvalues and eigenvectors,   

        A U = U S   

    where A is Hermitian tridiagonal, the columns of U are unitary,   
    and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).   
    Two tests are performed:   

       RESULT(1) = | U* A U - S | / ( |A| m ulp )   

       RESULT(2) = | I - U*U | / ( m ulp )   

    Arguments   
    =========   

    N       (input) INTEGER   
            The size of the matrix.  If it is zero, CSTT22 does nothing.   
            It must be at least zero.   

    M       (input) INTEGER   
            The number of eigenpairs to check.  If it is zero, CSTT22   
            does nothing.  It must be at least zero.   

    KBAND   (input) INTEGER   
            The bandwidth of the matrix S.  It may only be zero or one.   
            If zero, then S is diagonal, and SE is not referenced.  If   
            one, then S is Hermitian tri-diagonal.   

    AD      (input) REAL array, dimension (N)   
            The diagonal of the original (unfactored) matrix A.  A is   
            assumed to be Hermitian tridiagonal.   

    AE      (input) REAL array, dimension (N)   
            The off-diagonal of the original (unfactored) matrix A.  A   
            is assumed to be Hermitian tridiagonal.  AE(1) is ignored,   
            AE(2) is the (1,2) and (2,1) element, etc.   

    SD      (input) REAL array, dimension (N)   
            The diagonal of the (Hermitian tri-) diagonal matrix S.   

    SE      (input) REAL array, dimension (N)   
            The off-diagonal of the (Hermitian tri-) diagonal matrix S.   
            Not referenced if KBSND=0.  If KBAND=1, then AE(1) is   
            ignored, SE(2) is the (1,2) and (2,1) element, etc.   

    U       (input) REAL array, dimension (LDU, N)   
            The unitary matrix in the decomposition.   

    LDU     (input) INTEGER   
            The leading dimension of U.  LDU must be at least N.   

    WORK    (workspace) COMPLEX array, dimension (LDWORK, M+1)   

    LDWORK  (input) INTEGER   
            The leading dimension of WORK.  LDWORK must be at least   
            max(1,M).   

    RWORK   (workspace) REAL array, dimension (N)   

    RESULT  (output) REAL array, dimension (2)   
            The values computed by the two tests described above.  The   
            values are currently limited to 1/ulp, to avoid overflow.   

    =====================================================================   


       Parameter adjustments */
    --ad;
    --ae;
    --sd;
    --se;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1 * 1;
    work -= work_offset;
    --rwork;
    --result;

    /* Function Body */
    result[1] = 0.f;
    result[2] = 0.f;
    if (*n <= 0 || *m <= 0) {
	return 0;
    }

    unfl = slamch_("Safe minimum");
    ulp = slamch_("Epsilon");

/*     Do Test 1   

       Compute the 1-norm of A. */

    if (*n > 1) {
	anorm = dabs(ad[1]) + dabs(ae[1]);
	i__1 = *n - 1;
	for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
	    r__4 = anorm, r__5 = (r__1 = ad[j], dabs(r__1)) + (r__2 = ae[j], 
		    dabs(r__2)) + (r__3 = ae[j - 1], dabs(r__3));
	    anorm = dmax(r__4,r__5);
/* L10: */
	}
/* Computing MAX */
	r__3 = anorm, r__4 = (r__1 = ad[*n], dabs(r__1)) + (r__2 = ae[*n - 1],
		 dabs(r__2));
	anorm = dmax(r__3,r__4);
    } else {
	anorm = dabs(ad[1]);
    }
    anorm = dmax(anorm,unfl);

/*     Norm of U*AU - S */

    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = *m;
	for (j = 1; j <= i__2; ++j) {
	    i__3 = work_subscr(i__, j);
	    work[i__3].r = 0.f, work[i__3].i = 0.f;
	    i__3 = *n;
	    for (k = 1; k <= i__3; ++k) {
		i__4 = k;
		i__5 = u_subscr(k, j);
		q__1.r = ad[i__4] * u[i__5].r, q__1.i = ad[i__4] * u[i__5].i;
		aukj.r = q__1.r, aukj.i = q__1.i;
		if (k != *n) {
		    i__4 = k;
		    i__5 = u_subscr(k + 1, j);
		    q__2.r = ae[i__4] * u[i__5].r, q__2.i = ae[i__4] * u[i__5]
			    .i;
		    q__1.r = aukj.r + q__2.r, q__1.i = aukj.i + q__2.i;
		    aukj.r = q__1.r, aukj.i = q__1.i;
		}
		if (k != 1) {
		    i__4 = k - 1;
		    i__5 = u_subscr(k - 1, j);
		    q__2.r = ae[i__4] * u[i__5].r, q__2.i = ae[i__4] * u[i__5]
			    .i;
		    q__1.r = aukj.r + q__2.r, q__1.i = aukj.i + q__2.i;
		    aukj.r = q__1.r, aukj.i = q__1.i;
		}
		i__4 = work_subscr(i__, j);
		i__5 = work_subscr(i__, j);
		i__6 = u_subscr(k, i__);
		q__2.r = u[i__6].r * aukj.r - u[i__6].i * aukj.i, q__2.i = u[
			i__6].r * aukj.i + u[i__6].i * aukj.r;
		q__1.r = work[i__5].r + q__2.r, q__1.i = work[i__5].i + 
			q__2.i;
		work[i__4].r = q__1.r, work[i__4].i = q__1.i;
/* L20: */
	    }
/* L30: */
	}
	i__2 = work_subscr(i__, i__);
	i__3 = work_subscr(i__, i__);
	i__4 = i__;
	q__1.r = work[i__3].r - sd[i__4], q__1.i = work[i__3].i;
	work[i__2].r = q__1.r, work[i__2].i = q__1.i;
	if (*kband == 1) {
	    if (i__ != 1) {
		i__2 = work_subscr(i__, i__ - 1);
		i__3 = work_subscr(i__, i__ - 1);
		i__4 = i__ - 1;
		q__1.r = work[i__3].r - se[i__4], q__1.i = work[i__3].i;
		work[i__2].r = q__1.r, work[i__2].i = q__1.i;
	    }
	    if (i__ != *n) {
		i__2 = work_subscr(i__, i__ + 1);
		i__3 = work_subscr(i__, i__ + 1);
		i__4 = i__;
		q__1.r = work[i__3].r - se[i__4], q__1.i = work[i__3].i;
		work[i__2].r = q__1.r, work[i__2].i = q__1.i;
	    }
	}
/* L40: */
    }

    wnorm = clansy_("1", "L", m, &work[work_offset], m, &rwork[1]);

    if (anorm > wnorm) {
	result[1] = wnorm / anorm / (*m * ulp);
    } else {
	if (anorm < 1.f) {
/* Computing MIN */
	    r__1 = wnorm, r__2 = *m * anorm;
	    result[1] = dmin(r__1,r__2) / anorm / (*m * ulp);
	} else {
/* Computing MIN */
	    r__1 = wnorm / anorm, r__2 = (real) (*m);
	    result[1] = dmin(r__1,r__2) / (*m * ulp);
	}
    }

/*     Do Test 2   

       Compute  U*U - I */

    cgemm_("T", "N", m, m, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, &
	    c_b1, &work[work_offset], m);

    i__1 = *m;
    for (j = 1; j <= i__1; ++j) {
	i__2 = work_subscr(j, j);
	i__3 = work_subscr(j, j);
	q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i;
	work[i__2].r = q__1.r, work[i__2].i = q__1.i;
/* L50: */
    }

/* Computing MIN */
    r__1 = (real) (*m), r__2 = clange_("1", m, m, &work[work_offset], m, &
	    rwork[1]);
    result[2] = dmin(r__1,r__2) / (*m * ulp);

    return 0;

/*     End of CSTT22 */

} /* cstt22_ */
コード例 #2
0
/* Subroutine */ int ztrsna_(char *job, char *howmny, logical *select, 
	integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl, 
	integer *ldvl, doublecomplex *vr, integer *ldvr, doublereal *s, 
	doublereal *sep, integer *mm, integer *m, doublecomplex *work, 
	integer *ldwork, doublereal *rwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZTRSNA estimates reciprocal condition numbers for specified   
    eigenvalues and/or right eigenvectors of a complex upper triangular   
    matrix T (or of any matrix Q*T*Q**H with Q unitary).   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            Specifies whether condition numbers are required for   
            eigenvalues (S) or eigenvectors (SEP):   
            = 'E': for eigenvalues only (S);   
            = 'V': for eigenvectors only (SEP);   
            = 'B': for both eigenvalues and eigenvectors (S and SEP).   

    HOWMNY  (input) CHARACTER*1   
            = 'A': compute condition numbers for all eigenpairs;   
            = 'S': compute condition numbers for selected eigenpairs   
                   specified by the array SELECT.   

    SELECT  (input) LOGICAL array, dimension (N)   
            If HOWMNY = 'S', SELECT specifies the eigenpairs for which   
            condition numbers are required. To select condition numbers   
            for the j-th eigenpair, SELECT(j) must be set to .TRUE..   
            If HOWMNY = 'A', SELECT is not referenced.   

    N       (input) INTEGER   
            The order of the matrix T. N >= 0.   

    T       (input) COMPLEX*16 array, dimension (LDT,N)   
            The upper triangular matrix T.   

    LDT     (input) INTEGER   
            The leading dimension of the array T. LDT >= max(1,N).   

    VL      (input) COMPLEX*16 array, dimension (LDVL,M)   
            If JOB = 'E' or 'B', VL must contain left eigenvectors of T   
            (or of any Q*T*Q**H with Q unitary), corresponding to the   
            eigenpairs specified by HOWMNY and SELECT. The eigenvectors   
            must be stored in consecutive columns of VL, as returned by   
            ZHSEIN or ZTREVC.   
            If JOB = 'V', VL is not referenced.   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.   
            LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.   

    VR      (input) COMPLEX*16 array, dimension (LDVR,M)   
            If JOB = 'E' or 'B', VR must contain right eigenvectors of T   
            (or of any Q*T*Q**H with Q unitary), corresponding to the   
            eigenpairs specified by HOWMNY and SELECT. The eigenvectors   
            must be stored in consecutive columns of VR, as returned by   
            ZHSEIN or ZTREVC.   
            If JOB = 'V', VR is not referenced.   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.   
            LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.   

    S       (output) DOUBLE PRECISION array, dimension (MM)   
            If JOB = 'E' or 'B', the reciprocal condition numbers of the   
            selected eigenvalues, stored in consecutive elements of the   
            array. Thus S(j), SEP(j), and the j-th columns of VL and VR   
            all correspond to the same eigenpair (but not in general the   
            j-th eigenpair, unless all eigenpairs are selected).   
            If JOB = 'V', S is not referenced.   

    SEP     (output) DOUBLE PRECISION array, dimension (MM)   
            If JOB = 'V' or 'B', the estimated reciprocal condition   
            numbers of the selected eigenvectors, stored in consecutive   
            elements of the array.   
            If JOB = 'E', SEP is not referenced.   

    MM      (input) INTEGER   
            The number of elements in the arrays S (if JOB = 'E' or 'B')   
             and/or SEP (if JOB = 'V' or 'B'). MM >= M.   

    M       (output) INTEGER   
            The number of elements of the arrays S and/or SEP actually   
            used to store the estimated condition numbers.   
            If HOWMNY = 'A', M is set to N.   

    WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N+1)   
            If JOB = 'E', WORK is not referenced.   

    LDWORK  (input) INTEGER   
            The leading dimension of the array WORK.   
            LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   
            If JOB = 'E', RWORK is not referenced.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The reciprocal of the condition number of an eigenvalue lambda is   
    defined as   

            S(lambda) = |v'*u| / (norm(u)*norm(v))   

    where u and v are the right and left eigenvectors of T corresponding   
    to lambda; v' denotes the conjugate transpose of v, and norm(u)   
    denotes the Euclidean norm. These reciprocal condition numbers always   
    lie between zero (very badly conditioned) and one (very well   
    conditioned). If n = 1, S(lambda) is defined to be 1.   

    An approximate error bound for a computed eigenvalue W(i) is given by   

                        EPS * norm(T) / S(i)   

    where EPS is the machine precision.   

    The reciprocal of the condition number of the right eigenvector u   
    corresponding to lambda is defined as follows. Suppose   

                T = ( lambda  c  )   
                    (   0    T22 )   

    Then the reciprocal condition number is   

            SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )   

    where sigma-min denotes the smallest singular value. We approximate   
    the smallest singular value by the reciprocal of an estimate of the   
    one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is   
    defined to be abs(T(1,1)).   

    An approximate error bound for a computed right eigenvector VR(i)   
    is given by   

                        EPS * norm(T) / SEP(i)   

    =====================================================================   


       Decode and test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 
	    work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2;
    doublecomplex z__1;
    /* Builtin functions */
    double z_abs(doublecomplex *), d_imag(doublecomplex *);
    /* Local variables */
    static integer kase, ierr;
    static doublecomplex prod;
    static doublereal lnrm, rnrm;
    static integer i__, j, k;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublecomplex dummy[1];
    static logical wants;
    static doublereal xnorm;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
	    char *);
    static integer ks, ix;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static doublereal bignum;
    static logical wantbh;
    extern /* Subroutine */ int zlacon_(integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *);
    extern integer izamax_(integer *, doublecomplex *, integer *);
    static logical somcon;
    extern /* Subroutine */ int zdrscl_(integer *, doublereal *, 
	    doublecomplex *, integer *);
    static char normin[1];
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal smlnum;
    static logical wantsp;
    extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, integer *), ztrexc_(char *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, integer *);
    static doublereal eps, est;
#define work_subscr(a_1,a_2) (a_2)*work_dim1 + a_1
#define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)]
#define t_subscr(a_1,a_2) (a_2)*t_dim1 + a_1
#define t_ref(a_1,a_2) t[t_subscr(a_1,a_2)]
#define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1
#define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)]
#define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1
#define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)]


    --select;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1 * 1;
    t -= t_offset;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    --s;
    --sep;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1 * 1;
    work -= work_offset;
    --rwork;

    /* Function Body */
    wantbh = lsame_(job, "B");
    wants = lsame_(job, "E") || wantbh;
    wantsp = lsame_(job, "V") || wantbh;

    somcon = lsame_(howmny, "S");

/*     Set M to the number of eigenpairs for which condition numbers are   
       to be computed. */

    if (somcon) {
	*m = 0;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (select[j]) {
		++(*m);
	    }
/* L10: */
	}
    } else {
	*m = *n;
    }

    *info = 0;
    if (! wants && ! wantsp) {
	*info = -1;
    } else if (! lsame_(howmny, "A") && ! somcon) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldt < max(1,*n)) {
	*info = -6;
    } else if (*ldvl < 1 || wants && *ldvl < *n) {
	*info = -8;
    } else if (*ldvr < 1 || wants && *ldvr < *n) {
	*info = -10;
    } else if (*mm < *m) {
	*info = -13;
    } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
	*info = -16;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZTRSNA", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (somcon) {
	    if (! select[1]) {
		return 0;
	    }
	}
	if (wants) {
	    s[1] = 1.;
	}
	if (wantsp) {
	    sep[1] = z_abs(&t_ref(1, 1));
	}
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S") / eps;
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

    ks = 1;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {

	if (somcon) {
	    if (! select[k]) {
		goto L50;
	    }
	}

	if (wants) {

/*           Compute the reciprocal condition number of the k-th   
             eigenvalue. */

	    zdotc_(&z__1, n, &vr_ref(1, ks), &c__1, &vl_ref(1, ks), &c__1);
	    prod.r = z__1.r, prod.i = z__1.i;
	    rnrm = dznrm2_(n, &vr_ref(1, ks), &c__1);
	    lnrm = dznrm2_(n, &vl_ref(1, ks), &c__1);
	    s[ks] = z_abs(&prod) / (rnrm * lnrm);

	}

	if (wantsp) {

/*           Estimate the reciprocal condition number of the k-th   
             eigenvector.   

             Copy the matrix T to the array WORK and swap the k-th   
             diagonal element to the (1,1) position. */

	    zlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], 
		    ldwork);
	    ztrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &k, &
		    c__1, &ierr);

/*           Form  C = T22 - lambda*I in WORK(2:N,2:N). */

	    i__2 = *n;
	    for (i__ = 2; i__ <= i__2; ++i__) {
		i__3 = work_subscr(i__, i__);
		i__4 = work_subscr(i__, i__);
		i__5 = work_subscr(1, 1);
		z__1.r = work[i__4].r - work[i__5].r, z__1.i = work[i__4].i - 
			work[i__5].i;
		work[i__3].r = z__1.r, work[i__3].i = z__1.i;
/* L20: */
	    }

/*           Estimate a lower bound for the 1-norm of inv(C'). The 1st   
             and (N+1)th columns of WORK are used to store work vectors. */

	    sep[ks] = 0.;
	    est = 0.;
	    kase = 0;
	    *(unsigned char *)normin = 'N';
L30:
	    i__2 = *n - 1;
	    zlacon_(&i__2, &work_ref(1, *n + 1), &work[work_offset], &est, &
		    kase);

	    if (kase != 0) {
		if (kase == 1) {

/*                 Solve C'*x = scale*b */

		    i__2 = *n - 1;
		    zlatrs_("Upper", "Conjugate transpose", "Nonunit", normin,
			     &i__2, &work_ref(2, 2), ldwork, &work[
			    work_offset], &scale, &rwork[1], &ierr);
		} else {

/*                 Solve C*x = scale*b */

		    i__2 = *n - 1;
		    zlatrs_("Upper", "No transpose", "Nonunit", normin, &i__2,
			     &work_ref(2, 2), ldwork, &work[work_offset], &
			    scale, &rwork[1], &ierr);
		}
		*(unsigned char *)normin = 'Y';
		if (scale != 1.) {

/*                 Multiply by 1/SCALE if doing so will not cause   
                   overflow. */

		    i__2 = *n - 1;
		    ix = izamax_(&i__2, &work[work_offset], &c__1);
		    i__2 = work_subscr(ix, 1);
		    xnorm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(
			    &work_ref(ix, 1)), abs(d__2));
		    if (scale < xnorm * smlnum || scale == 0.) {
			goto L40;
		    }
		    zdrscl_(n, &scale, &work[work_offset], &c__1);
		}
		goto L30;
	    }

	    sep[ks] = 1. / max(est,smlnum);
	}

L40:
	++ks;
L50:
	;
    }
    return 0;

/*     End of ZTRSNA */

} /* ztrsna_ */
コード例 #3
0
ファイル: zpbtrf.c プロジェクト: MichaelH13/sdkpub
/* Subroutine */ int zpbtrf_(char *uplo, integer *n, integer *kd, 
	doublecomplex *ab, integer *ldab, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZPBTRF computes the Cholesky factorization of a complex Hermitian   
    positive definite band matrix A.   

    The factorization has the form   
       A = U**H * U,  if UPLO = 'U', or   
       A = L  * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is lower triangular.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)   
            On entry, the upper or lower triangle of the Hermitian band   
            matrix A, stored in the first KD+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB   
            as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).   

            On exit, if INFO = 0, the triangular factor U or L from the   
            Cholesky factorization A = U**H*U or A = L*L**H of the band   
            matrix A, in the same storage format as A.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD+1.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i is not   
                  positive definite, and the factorization could not be   
                  completed.   

    Further Details   
    ===============   

    The band storage scheme is illustrated by the following example, when   
    N = 6, KD = 2, and UPLO = 'U':   

    On entry:                       On exit:   

        *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46   
        *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56   
       a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66   

    Similarly, if UPLO = 'L' the format of A is as follows:   

    On entry:                       On exit:   

       a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66   
       a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *   
       a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *   

    Array elements marked * are not used by the routine.   

    Contributed by   
    Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static doublecomplex c_b1 = {1.,0.};
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static doublereal c_b21 = -1.;
    static doublereal c_b22 = 1.;
    static integer c__33 = 33;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublecomplex z__1;
    /* Local variables */
    static doublecomplex work[1056]	/* was [33][32] */;
    static integer i__, j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), zherk_(char *, char *, integer *, 
	    integer *, doublereal *, doublecomplex *, integer *, doublereal *,
	     doublecomplex *, integer *);
    static integer i2, i3;
    extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *), 
	    zpbtf2_(char *, integer *, integer *, doublecomplex *, integer *, 
	    integer *);
    static integer ib, nb, ii, jj;
    extern /* Subroutine */ int zpotf2_(char *, integer *, doublecomplex *, 
	    integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
#define work_subscr(a_1,a_2) (a_2)*33 + a_1 - 34
#define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)]
#define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1
#define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*kd < 0) {
	*info = -3;
    } else if (*ldab < *kd + 1) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPBTRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the block size for this environment */

    nb = ilaenv_(&c__1, "ZPBTRF", uplo, n, kd, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);

/*     The block size must not exceed the semi-bandwidth KD, and must not   
       exceed the limit set by the size of the local array WORK. */

    nb = min(nb,32);

    if (nb <= 1 || nb > *kd) {

/*        Use unblocked code */

	zpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
    } else {

/*        Use blocked code */

	if (lsame_(uplo, "U")) {

/*           Compute the Cholesky factorization of a Hermitian band   
             matrix, given the upper triangle of the matrix in band   
             storage.   

             Zero the upper triangle of the work array. */

	    i__1 = nb;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = work_subscr(i__, j);
		    work[i__3].r = 0., work[i__3].i = 0.;
/* L10: */
		}
/* L20: */
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__1 = *n;
	    i__2 = nb;
	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		zpotf2_(uplo, &ib, &ab_ref(*kd + 1, i__), &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix.   
                   If A11 denotes the diagonal block which has just been   
                   factorized, then we need to update the remaining   
                   blocks in the diagram:   

                      A11   A12   A13   
                            A22   A23   
                                  A33   

                   The numbers of rows and columns in the partitioning   
                   are IB, I2, I3 respectively. The blocks A12, A22 and   
                   A23 are empty if IB = KD. The upper triangle of A13   
                   lies outside the band.   

   Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A12 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i2, &c_b1, &ab_ref(*kd + 1, i__),
				 &i__3, &ab_ref(*kd + 1 - ib, i__ + ib), &
				i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			zherk_("Upper", "Conjugate transpose", &i2, &ib, &
				c_b21, &ab_ref(*kd + 1 - ib, i__ + ib), &i__3,
				 &c_b22, &ab_ref(*kd + 1, i__ + ib), &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the lower triangle of A13 into the work array. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = work_subscr(ii, jj);
				i__6 = ab_subscr(ii - jj + 1, jj + i__ + *kd 
					- 1);
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
/* L30: */
			    }
/* L40: */
			}

/*                    Update A13 (in the work array). */

			i__3 = *ldab - 1;
			ztrsm_("Left", "Upper", "Conjugate transpose", "Non-"
				"unit", &ib, &i3, &c_b1, &ab_ref(*kd + 1, i__),
				 &i__3, work, &c__33);

/*                    Update A23 */

			if (i2 > 0) {
			    z__1.r = -1., z__1.i = 0.;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    zgemm_("Conjugate transpose", "No transpose", &i2,
				     &i3, &ib, &z__1, &ab_ref(*kd + 1 - ib, 
				    i__ + ib), &i__3, work, &c__33, &c_b1, &
				    ab_ref(ib + 1, i__ + *kd), &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			zherk_("Upper", "Conjugate transpose", &i3, &ib, &
				c_b21, work, &c__33, &c_b22, &ab_ref(*kd + 1, 
				i__ + *kd), &i__3);

/*                    Copy the lower triangle of A13 back into place. */

			i__3 = i3;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = ib;
			    for (ii = jj; ii <= i__4; ++ii) {
				i__5 = ab_subscr(ii - jj + 1, jj + i__ + *kd 
					- 1);
				i__6 = work_subscr(ii, jj);
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
/* L50: */
			    }
/* L60: */
			}
		    }
		}
/* L70: */
	    }
	} else {

/*           Compute the Cholesky factorization of a Hermitian band   
             matrix, given the lower triangle of the matrix in band   
             storage.   

             Zero the lower triangle of the work array. */

	    i__2 = nb;
	    for (j = 1; j <= i__2; ++j) {
		i__1 = nb;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    i__3 = work_subscr(i__, j);
		    work[i__3].r = 0., work[i__3].i = 0.;
/* L80: */
		}
/* L90: */
	    }

/*           Process the band matrix one diagonal block at a time. */

	    i__2 = *n;
	    i__1 = nb;
	    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
/* Computing MIN */
		i__3 = nb, i__4 = *n - i__ + 1;
		ib = min(i__3,i__4);

/*              Factorize the diagonal block */

		i__3 = *ldab - 1;
		zpotf2_(uplo, &ib, &ab_ref(1, i__), &i__3, &ii);
		if (ii != 0) {
		    *info = i__ + ii - 1;
		    goto L150;
		}
		if (i__ + ib <= *n) {

/*                 Update the relevant part of the trailing submatrix.   
                   If A11 denotes the diagonal block which has just been   
                   factorized, then we need to update the remaining   
                   blocks in the diagram:   

                      A11   
                      A21   A22   
                      A31   A32   A33   

                   The numbers of rows and columns in the partitioning   
                   are IB, I2, I3 respectively. The blocks A21, A22 and   
                   A32 are empty if IB = KD. The lower triangle of A31   
                   lies outside the band.   

   Computing MIN */
		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
		    i2 = min(i__3,i__4);
/* Computing MIN */
		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
		    i3 = min(i__3,i__4);

		    if (i2 > 0) {

/*                    Update A21 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i2, &ib, &c_b1, &ab_ref(1, i__), &
				i__3, &ab_ref(ib + 1, i__), &i__4);

/*                    Update A22 */

			i__3 = *ldab - 1;
			i__4 = *ldab - 1;
			zherk_("Lower", "No transpose", &i2, &ib, &c_b21, &
				ab_ref(ib + 1, i__), &i__3, &c_b22, &ab_ref(1,
				 i__ + ib), &i__4);
		    }

		    if (i3 > 0) {

/*                    Copy the upper triangle of A31 into the work array. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = work_subscr(ii, jj);
				i__6 = ab_subscr(*kd + 1 - jj + ii, jj + i__ 
					- 1);
				work[i__5].r = ab[i__6].r, work[i__5].i = ab[
					i__6].i;
/* L100: */
			    }
/* L110: */
			}

/*                    Update A31 (in the work array). */

			i__3 = *ldab - 1;
			ztrsm_("Right", "Lower", "Conjugate transpose", "Non"
				"-unit", &i3, &ib, &c_b1, &ab_ref(1, i__), &
				i__3, work, &c__33);

/*                    Update A32 */

			if (i2 > 0) {
			    z__1.r = -1., z__1.i = 0.;
			    i__3 = *ldab - 1;
			    i__4 = *ldab - 1;
			    zgemm_("No transpose", "Conjugate transpose", &i3,
				     &i2, &ib, &z__1, work, &c__33, &ab_ref(
				    ib + 1, i__), &i__3, &c_b1, &ab_ref(*kd + 
				    1 - ib, i__ + ib), &i__4);
			}

/*                    Update A33 */

			i__3 = *ldab - 1;
			zherk_("Lower", "No transpose", &i3, &ib, &c_b21, 
				work, &c__33, &c_b22, &ab_ref(1, i__ + *kd), &
				i__3);

/*                    Copy the upper triangle of A31 back into place. */

			i__3 = ib;
			for (jj = 1; jj <= i__3; ++jj) {
			    i__4 = min(jj,i3);
			    for (ii = 1; ii <= i__4; ++ii) {
				i__5 = ab_subscr(*kd + 1 - jj + ii, jj + i__ 
					- 1);
				i__6 = work_subscr(ii, jj);
				ab[i__5].r = work[i__6].r, ab[i__5].i = work[
					i__6].i;
/* L120: */
			    }
/* L130: */
			}
		    }
		}
/* L140: */
	    }
	}
    }
    return 0;

L150:
    return 0;

/*     End of ZPBTRF */

} /* zpbtrf_ */
コード例 #4
0
/* Subroutine */ int clarfb_(char *side, char *trans, char *direct, char *
	storev, integer *m, integer *n, integer *k, complex *v, integer *ldv, 
	complex *t, integer *ldt, complex *c__, integer *ldc, complex *work, 
	integer *ldwork)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    CLARFB applies a complex block reflector H or its transpose H' to a   
    complex M-by-N matrix C, from either the left or the right.   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply H or H' from the Left   
            = 'R': apply H or H' from the Right   

    TRANS   (input) CHARACTER*1   
            = 'N': apply H (No transpose)   
            = 'C': apply H' (Conjugate transpose)   

    DIRECT  (input) CHARACTER*1   
            Indicates how H is formed from a product of elementary   
            reflectors   
            = 'F': H = H(1) H(2) . . . H(k) (Forward)   
            = 'B': H = H(k) . . . H(2) H(1) (Backward)   

    STOREV  (input) CHARACTER*1   
            Indicates how the vectors which define the elementary   
            reflectors are stored:   
            = 'C': Columnwise   
            = 'R': Rowwise   

    M       (input) INTEGER   
            The number of rows of the matrix C.   

    N       (input) INTEGER   
            The number of columns of the matrix C.   

    K       (input) INTEGER   
            The order of the matrix T (= the number of elementary   
            reflectors whose product defines the block reflector).   

    V       (input) COMPLEX array, dimension   
                                  (LDV,K) if STOREV = 'C'   
                                  (LDV,M) if STOREV = 'R' and SIDE = 'L'   
                                  (LDV,N) if STOREV = 'R' and SIDE = 'R'   
            The matrix V. See further details.   

    LDV     (input) INTEGER   
            The leading dimension of the array V.   
            If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);   
            if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);   
            if STOREV = 'R', LDV >= K.   

    T       (input) COMPLEX array, dimension (LDT,K)   
            The triangular K-by-K matrix T in the representation of the   
            block reflector.   

    LDT     (input) INTEGER   
            The leading dimension of the array T. LDT >= K.   

    C       (input/output) COMPLEX array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by H*C or H'*C or C*H or C*H'.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace) COMPLEX array, dimension (LDWORK,K)   

    LDWORK  (input) INTEGER   
            The leading dimension of the array WORK.   
            If SIDE = 'L', LDWORK >= max(1,N);   
            if SIDE = 'R', LDWORK >= max(1,M).   

    =====================================================================   


       Quick return if possible   

       Parameter adjustments */
    /* Table of constant values */
    static complex c_b1 = {1.f,0.f};
    static integer c__1 = 1;
    
    /* System generated locals */
    integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, 
	    work_offset, i__1, i__2, i__3, i__4, i__5;
    complex q__1, q__2;
    /* Builtin functions */
    void r_cnjg(complex *, complex *);
    /* Local variables */
    static integer i__, j;
    extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, 
	    integer *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), ctrmm_(char *, char *, char *, char *, 
	    integer *, integer *, complex *, complex *, integer *, complex *, 
	    integer *), clacgv_(integer *, 
	    complex *, integer *);
    static char transt[1];
#define work_subscr(a_1,a_2) (a_2)*work_dim1 + a_1
#define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)]
#define c___subscr(a_1,a_2) (a_2)*c_dim1 + a_1
#define c___ref(a_1,a_2) c__[c___subscr(a_1,a_2)]
#define v_subscr(a_1,a_2) (a_2)*v_dim1 + a_1
#define v_ref(a_1,a_2) v[v_subscr(a_1,a_2)]


    v_dim1 = *ldv;
    v_offset = 1 + v_dim1 * 1;
    v -= v_offset;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1 * 1;
    t -= t_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    work_dim1 = *ldwork;
    work_offset = 1 + work_dim1 * 1;
    work -= work_offset;

    /* Function Body */
    if (*m <= 0 || *n <= 0) {
	return 0;
    }

    if (lsame_(trans, "N")) {
	*(unsigned char *)transt = 'C';
    } else {
	*(unsigned char *)transt = 'N';
    }

    if (lsame_(storev, "C")) {

	if (lsame_(direct, "F")) {

/*           Let  V =  ( V1 )    (first K rows)   
                       ( V2 )   
             where  V1  is unit lower triangular. */

	    if (lsame_(side, "L")) {

/*              Form  H * C  or  H' * C  where  C = ( C1 )   
                                                    ( C2 )   

                W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)   

                W := C1' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(n, &c___ref(j, 1), ldc, &work_ref(1, j), &c__1);
		    clacgv_(n, &work_ref(1, j), &c__1);
/* L10: */
		}

/*              W := W * V1 */

		ctrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1, 
			&v[v_offset], ldv, &work[work_offset], ldwork);
		if (*m > *k) {

/*                 W := W + C2'*V2 */

		    i__1 = *m - *k;
		    cgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
			     &c_b1, &c___ref(*k + 1, 1), ldc, &v_ref(*k + 1, 
			    1), ldv, &c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T'  or  W * T */

		ctrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - V * W' */

		if (*m > *k) {

/*                 C2 := C2 - V2 * W' */

		    i__1 = *m - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
			     &q__1, &v_ref(*k + 1, 1), ldv, &work[work_offset]
			    , ldwork, &c_b1, &c___ref(*k + 1, 1), ldc);
		}

/*              W := W * V1' */

		ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k, 
			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);

/*              C1 := C1 - W' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(j, i__);
			i__4 = c___subscr(j, i__);
			r_cnjg(&q__2, &work_ref(i__, j));
			q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - 
				q__2.i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L20: */
		    }
/* L30: */
		}

	    } else if (lsame_(side, "R")) {

/*              Form  C * H  or  C * H'  where  C = ( C1  C2 )   

                W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)   

                W := C1 */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(m, &c___ref(1, j), &c__1, &work_ref(1, j), &c__1);
/* L40: */
		}

/*              W := W * V1 */

		ctrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1, 
			&v[v_offset], ldv, &work[work_offset], ldwork);
		if (*n > *k) {

/*                 W := W + C2 * V2 */

		    i__1 = *n - *k;
		    cgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
			     &c___ref(1, *k + 1), ldc, &v_ref(*k + 1, 1), ldv,
			     &c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T  or  W * T' */

		ctrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - W * V' */

		if (*n > *k) {

/*                 C2 := C2 - W * V2' */

		    i__1 = *n - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
			     &q__1, &work[work_offset], ldwork, &v_ref(*k + 1,
			     1), ldv, &c_b1, &c___ref(1, *k + 1), ldc);
		}

/*              W := W * V1' */

		ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k, 
			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);

/*              C1 := C1 - W */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(i__, j);
			i__4 = c___subscr(i__, j);
			i__5 = work_subscr(i__, j);
			q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
				i__4].i - work[i__5].i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L50: */
		    }
/* L60: */
		}
	    }

	} else {

/*           Let  V =  ( V1 )   
                       ( V2 )    (last K rows)   
             where  V2  is unit upper triangular. */

	    if (lsame_(side, "L")) {

/*              Form  H * C  or  H' * C  where  C = ( C1 )   
                                                    ( C2 )   

                W := C' * V  =  (C1'*V1 + C2'*V2)  (stored in WORK)   

                W := C2' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(n, &c___ref(*m - *k + j, 1), ldc, &work_ref(1, j), 
			    &c__1);
		    clacgv_(n, &work_ref(1, j), &c__1);
/* L70: */
		}

/*              W := W * V2 */

		ctrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1, 
			&v_ref(*m - *k + 1, 1), ldv, &work[work_offset], 
			ldwork);
		if (*m > *k) {

/*                 W := W + C1'*V1 */

		    i__1 = *m - *k;
		    cgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
			     &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
			    c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T'  or  W * T */

		ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - V * W' */

		if (*m > *k) {

/*                 C1 := C1 - V1 * W' */

		    i__1 = *m - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
			     &q__1, &v[v_offset], ldv, &work[work_offset], 
			    ldwork, &c_b1, &c__[c_offset], ldc);
		}

/*              W := W * V2' */

		ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k, 
			&c_b1, &v_ref(*m - *k + 1, 1), ldv, &work[work_offset]
			, ldwork)
			;

/*              C2 := C2 - W' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(*m - *k + j, i__);
			i__4 = c___subscr(*m - *k + j, i__);
			r_cnjg(&q__2, &work_ref(i__, j));
			q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - 
				q__2.i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L80: */
		    }
/* L90: */
		}

	    } else if (lsame_(side, "R")) {

/*              Form  C * H  or  C * H'  where  C = ( C1  C2 )   

                W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK)   

                W := C2 */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(m, &c___ref(1, *n - *k + j), &c__1, &work_ref(1, j)
			    , &c__1);
/* L100: */
		}

/*              W := W * V2 */

		ctrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1, 
			&v_ref(*n - *k + 1, 1), ldv, &work[work_offset], 
			ldwork);
		if (*n > *k) {

/*                 W := W + C1 * V1 */

		    i__1 = *n - *k;
		    cgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
			     &c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, &
			    work[work_offset], ldwork)
			    ;
		}

/*              W := W * T  or  W * T' */

		ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - W * V' */

		if (*n > *k) {

/*                 C1 := C1 - W * V1' */

		    i__1 = *n - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
			     &q__1, &work[work_offset], ldwork, &v[v_offset], 
			    ldv, &c_b1, &c__[c_offset], ldc);
		}

/*              W := W * V2' */

		ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k, 
			&c_b1, &v_ref(*n - *k + 1, 1), ldv, &work[work_offset]
			, ldwork)
			;

/*              C2 := C2 - W */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(i__, *n - *k + j);
			i__4 = c___subscr(i__, *n - *k + j);
			i__5 = work_subscr(i__, j);
			q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
				i__4].i - work[i__5].i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L110: */
		    }
/* L120: */
		}
	    }
	}

    } else if (lsame_(storev, "R")) {

	if (lsame_(direct, "F")) {

/*           Let  V =  ( V1  V2 )    (V1: first K columns)   
             where  V1  is unit upper triangular. */

	    if (lsame_(side, "L")) {

/*              Form  H * C  or  H' * C  where  C = ( C1 )   
                                                    ( C2 )   

                W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)   

                W := C1' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(n, &c___ref(j, 1), ldc, &work_ref(1, j), &c__1);
		    clacgv_(n, &work_ref(1, j), &c__1);
/* L130: */
		}

/*              W := W * V1' */

		ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k, 
			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
		if (*m > *k) {

/*                 W := W + C2'*V2' */

		    i__1 = *m - *k;
		    cgemm_("Conjugate transpose", "Conjugate transpose", n, k,
			     &i__1, &c_b1, &c___ref(*k + 1, 1), ldc, &v_ref(1,
			     *k + 1), ldv, &c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T'  or  W * T */

		ctrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - V' * W' */

		if (*m > *k) {

/*                 C2 := C2 - V2' * W' */

		    i__1 = *m - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("Conjugate transpose", "Conjugate transpose", &
			    i__1, n, k, &q__1, &v_ref(1, *k + 1), ldv, &work[
			    work_offset], ldwork, &c_b1, &c___ref(*k + 1, 1), 
			    ldc);
		}

/*              W := W * V1 */

		ctrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1, 
			&v[v_offset], ldv, &work[work_offset], ldwork);

/*              C1 := C1 - W' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(j, i__);
			i__4 = c___subscr(j, i__);
			r_cnjg(&q__2, &work_ref(i__, j));
			q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - 
				q__2.i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L140: */
		    }
/* L150: */
		}

	    } else if (lsame_(side, "R")) {

/*              Form  C * H  or  C * H'  where  C = ( C1  C2 )   

                W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)   

                W := C1 */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(m, &c___ref(1, j), &c__1, &work_ref(1, j), &c__1);
/* L160: */
		}

/*              W := W * V1' */

		ctrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k, 
			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
		if (*n > *k) {

/*                 W := W + C2 * V2' */

		    i__1 = *n - *k;
		    cgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
			     &c_b1, &c___ref(1, *k + 1), ldc, &v_ref(1, *k + 
			    1), ldv, &c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T  or  W * T' */

		ctrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - W * V */

		if (*n > *k) {

/*                 C2 := C2 - W * V2 */

		    i__1 = *n - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("No transpose", "No transpose", m, &i__1, k, &q__1,
			     &work[work_offset], ldwork, &v_ref(1, *k + 1), 
			    ldv, &c_b1, &c___ref(1, *k + 1), ldc);
		}

/*              W := W * V1 */

		ctrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1, 
			&v[v_offset], ldv, &work[work_offset], ldwork);

/*              C1 := C1 - W */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(i__, j);
			i__4 = c___subscr(i__, j);
			i__5 = work_subscr(i__, j);
			q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
				i__4].i - work[i__5].i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L170: */
		    }
/* L180: */
		}

	    }

	} else {

/*           Let  V =  ( V1  V2 )    (V2: last K columns)   
             where  V2  is unit lower triangular. */

	    if (lsame_(side, "L")) {

/*              Form  H * C  or  H' * C  where  C = ( C1 )   
                                                    ( C2 )   

                W := C' * V'  =  (C1'*V1' + C2'*V2') (stored in WORK)   

                W := C2' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(n, &c___ref(*m - *k + j, 1), ldc, &work_ref(1, j), 
			    &c__1);
		    clacgv_(n, &work_ref(1, j), &c__1);
/* L190: */
		}

/*              W := W * V2' */

		ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k, 
			&c_b1, &v_ref(1, *m - *k + 1), ldv, &work[work_offset]
			, ldwork)
			;
		if (*m > *k) {

/*                 W := W + C1'*V1' */

		    i__1 = *m - *k;
		    cgemm_("Conjugate transpose", "Conjugate transpose", n, k,
			     &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset], 
			    ldv, &c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T'  or  W * T */

		ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - V' * W' */

		if (*m > *k) {

/*                 C1 := C1 - V1' * W' */

		    i__1 = *m - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("Conjugate transpose", "Conjugate transpose", &
			    i__1, n, k, &q__1, &v[v_offset], ldv, &work[
			    work_offset], ldwork, &c_b1, &c__[c_offset], ldc);
		}

/*              W := W * V2 */

		ctrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1, 
			&v_ref(1, *m - *k + 1), ldv, &work[work_offset], 
			ldwork);

/*              C2 := C2 - W' */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(*m - *k + j, i__);
			i__4 = c___subscr(*m - *k + j, i__);
			r_cnjg(&q__2, &work_ref(i__, j));
			q__1.r = c__[i__4].r - q__2.r, q__1.i = c__[i__4].i - 
				q__2.i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L200: */
		    }
/* L210: */
		}

	    } else if (lsame_(side, "R")) {

/*              Form  C * H  or  C * H'  where  C = ( C1  C2 )   

                W := C * V'  =  (C1*V1' + C2*V2')  (stored in WORK)   

                W := C2 */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    ccopy_(m, &c___ref(1, *n - *k + j), &c__1, &work_ref(1, j)
			    , &c__1);
/* L220: */
		}

/*              W := W * V2' */

		ctrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k, 
			&c_b1, &v_ref(1, *n - *k + 1), ldv, &work[work_offset]
			, ldwork)
			;
		if (*n > *k) {

/*                 W := W + C1 * V1' */

		    i__1 = *n - *k;
		    cgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
			     &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
			    c_b1, &work[work_offset], ldwork);
		}

/*              W := W * T  or  W * T' */

		ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
			t_offset], ldt, &work[work_offset], ldwork);

/*              C := C - W * V */

		if (*n > *k) {

/*                 C1 := C1 - W * V1 */

		    i__1 = *n - *k;
		    q__1.r = -1.f, q__1.i = 0.f;
		    cgemm_("No transpose", "No transpose", m, &i__1, k, &q__1,
			     &work[work_offset], ldwork, &v[v_offset], ldv, &
			    c_b1, &c__[c_offset], ldc)
			    ;
		}

/*              W := W * V2 */

		ctrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1, 
			&v_ref(1, *n - *k + 1), ldv, &work[work_offset], 
			ldwork);

/*              C1 := C1 - W */

		i__1 = *k;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			i__3 = c___subscr(i__, *n - *k + j);
			i__4 = c___subscr(i__, *n - *k + j);
			i__5 = work_subscr(i__, j);
			q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[
				i__4].i - work[i__5].i;
			c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L230: */
		    }
/* L240: */
		}

	    }

	}
    }

    return 0;

/*     End of CLARFB */

} /* clarfb_ */