コード例 #1
0
ファイル: DStarControl.cpp プロジェクト: zarya/MMDVMHost
void CDStarControl::clock(unsigned int ms)
{
	if (m_network != NULL)
		writeNetwork();

	m_ackTimer.clock(ms);
	if (m_ackTimer.isRunning() && m_ackTimer.hasExpired()) {
		sendAck();
		m_ackTimer.stop();
	}

	m_holdoffTimer.clock(ms);
	if (m_holdoffTimer.isRunning() && m_holdoffTimer.hasExpired())
		m_holdoffTimer.stop();

	m_timeoutTimer.clock(ms);

	if (m_state == RS_RELAYING_NETWORK_AUDIO) {
		m_networkWatchdog.clock(ms);

		if (m_networkWatchdog.hasExpired()) {
			// We're received the header haven't we?
			m_frames += 1U;
			if (m_bits == 0U) m_bits = 1U;
			LogMessage("D-Star, network watchdog has expired, %.1f seconds,  %u%% packet loss, BER: %.1f%%", float(m_frames) / 50.0F, (m_lost * 100U) / m_frames, float(m_errs * 100U) / float(m_bits));
			m_timeoutTimer.stop();
			writeEndOfTransmission();
#if defined(DUMP_DSTAR)
			closeFile();
#endif
		}
	}

	if (m_state == RS_RELAYING_NETWORK_AUDIO) {
		m_packetTimer.clock(ms);

		if (m_packetTimer.isRunning() && m_packetTimer.hasExpired()) {
			unsigned int frames = m_elapsed.elapsed() / DSTAR_FRAME_TIME;

			if (frames > m_frames) {
				unsigned int count = frames - m_frames;
				if (count > 3U) {
					LogMessage("D-Star, lost audio for 300ms filling in, %u %u", frames, m_frames);
					insertSilence(count - 1U);
				}
			}

			m_packetTimer.start();
		}
	}
}
コード例 #2
0
ファイル: YSFControl.cpp プロジェクト: Boromatic/MMDVMHost
void CYSFControl::clock(unsigned int ms)
{
	if (m_network != NULL)
		writeNetwork();

	m_holdoffTimer.clock(ms);
	if (m_holdoffTimer.isRunning() && m_holdoffTimer.hasExpired())
		m_holdoffTimer.stop();

	m_rfTimeoutTimer.clock(ms);
	m_netTimeoutTimer.clock(ms);

	if (m_netState == RS_NET_AUDIO) {
		m_networkWatchdog.clock(ms);

		if (m_networkWatchdog.hasExpired()) {
			LogMessage("YSF, network watchdog has expired, %.1f seconds, BER: %.1f%%", float(m_netFrames) / 10.0F, float(m_netErrs * 100U) / float(m_netBits));
			writeEndNet();
		}
	}
}
コード例 #3
0
ファイル: P25Control.cpp プロジェクト: phl0/MMDVMHost
void CP25Control::clock(unsigned int ms)
{
	if (m_network != NULL)
		writeNetwork();

	m_rfTimeout.clock(ms);
	m_netTimeout.clock(ms);

	if (m_netState == RS_NET_AUDIO) {
		m_networkWatchdog.clock(ms);

		if (m_networkWatchdog.hasExpired()) {
			LogMessage("P25, network watchdog has expired, %.1f seconds, %u%% packet loss", float(m_netFrames) / 50.0F, (m_netLost * 100U) / m_netFrames);
			m_display->clearP25();
			m_networkWatchdog.stop();
			m_netState = RS_NET_IDLE;
			m_netData.reset();
			m_netTimeout.stop();
		}
	}
}
コード例 #4
0
ファイル: YSFControl.cpp プロジェクト: g4klx/MMDVMHost
void CYSFControl::clock(unsigned int ms)
{
	if (m_network != NULL)
		writeNetwork();

	m_rfTimeoutTimer.clock(ms);
	m_netTimeoutTimer.clock(ms);

	if (m_netState == RS_NET_AUDIO) {
		m_networkWatchdog.clock(ms);

		if (m_networkWatchdog.hasExpired()) {
			LogMessage("YSF, network watchdog has expired, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 10.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
			writeEndNet();
		}
	}

	/*
	if (m_netState == RS_NET_AUDIO) {
		m_packetTimer.clock(ms);

		if (m_packetTimer.isRunning() && m_packetTimer.hasExpired()) {
			unsigned int elapsed = m_elapsed.elapsed();
			unsigned int frames = elapsed / YSF_FRAME_TIME;

			if (frames > m_netFrames) {
				unsigned int count = frames - m_netFrames;
				if (count > 2U) {
					LogDebug("YSF, lost audio for 200ms filling in, elapsed: %ums, expected: %u, received: %u", elapsed, frames, m_netFrames);
					insertSilence(count - 1U);
				}
			}

			m_packetTimer.start();
		}
	}
	*/
}
コード例 #5
0
int main()
{
  neural::Network net;

  char inFile[] = "net1.json";
  char outFile[] = "test1.json";

  readNetwork(inFile, &net);
  writeNetwork(outFile, &net);
  
  /*
  std::vector<double>   inputValues;  //Values to train neural network input with forward-propagation
  std::vector<double>   targetValues; //Values to train neural network output with back-propagation
  std::vector<double>   resultValues; //Holds output from neural net  
  
  //Train network
  myNet.feedForward(inputValues);      //Input on input training data 
  myNet.backPropagation(targetValues); //Train on expected output with backpropagation

  myNet.getResults(resultValues);
  */

  return 0;
}
コード例 #6
0
ファイル: YSFControl.cpp プロジェクト: g4klx/MMDVMHost
bool CYSFControl::writeModem(unsigned char *data, unsigned int len)
{
	assert(data != NULL);

	unsigned char type = data[0U];

	if (type == TAG_LOST && m_rfState == RS_RF_AUDIO) {
		LogMessage("YSF, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
		writeEndRF();
		return false;
	}

	if (type == TAG_LOST)
		return false;

	CYSFFICH fich;
	bool valid = fich.decode(data + 2U);

	if (valid && m_rfState == RS_RF_LISTENING) {
		unsigned char fi = fich.getFI();
		if (fi == YSF_FI_TERMINATOR)
			return false;

		m_rfFrames = 0U;
		m_rfErrs = 0U;
		m_rfBits = 1U;
		m_rfTimeoutTimer.start();
		m_rfPayload.reset();
		m_rfState = RS_RF_AUDIO;
#if defined(DUMP_YSF)
		openFile();
#endif
	}

	if (m_rfState != RS_RF_AUDIO)
		return false;

	if (valid)
		m_lastMR = fich.getMR();

	// Stop repeater packets coming through, unless we're acting as a remote gateway
	if (m_remoteGateway) {
		if (m_lastMR != YSF_MR_BUSY)
			return false;
	} else {
		if (m_lastMR == YSF_MR_BUSY)
			return false;
	}

	unsigned char fi = fich.getFI();
	if (valid && fi == YSF_FI_HEADER) {
		CSync::addYSFSync(data + 2U);

		// LogDebug("YSF, FICH: FI: %u, DT: %u, FN: %u, FT: %u", fich.getFI(), fich.getDT(), fich.getFN(), fich.getFT());

		valid = m_rfPayload.processHeaderData(data + 2U);

		if (valid)
			m_rfSource = m_rfPayload.getSource();

		unsigned char cm = fich.getCM();
		if (cm == YSF_CM_GROUP) {
			m_rfDest = (unsigned char*)"ALL       ";
		} else {
			if (valid)
				m_rfDest = m_rfPayload.getDest();
		}

		if (m_rfSource != NULL && m_rfDest != NULL) {
			m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", "          ");
			LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest);
		} else if (m_rfSource == NULL && m_rfDest != NULL) {
			m_display->writeFusion("??????????", (char*)m_rfDest, "R", "          ");
			LogMessage("YSF, received RF header from ?????????? to %10.10s", m_rfDest);
		} else if (m_rfSource != NULL && m_rfDest == NULL) {
			m_display->writeFusion((char*)m_rfSource, "??????????", "R", "          ");
			LogMessage("YSF, received RF header from %10.10s to ??????????", m_rfSource);
		} else {
			m_display->writeFusion("??????????", "??????????", "R", "          ");
			LogMessage("YSF, received RF header from ?????????? to ??????????");
		}

		data[0U] = TAG_DATA;
		data[1U] = 0x00U;

		writeNetwork(data, m_rfFrames % 128U);

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif

		if (m_duplex) {
			fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
			fich.encode(data + 2U);
			writeQueueRF(data);
		}

		m_rfFrames++;
	} else if (valid && fi == YSF_FI_TERMINATOR) {
		CSync::addYSFSync(data + 2U);

		// LogDebug("YSF, FICH: FI: %u, DT: %u, FN: %u, FT: %u", fich.getFI(), fich.getDT(), fich.getFN(), fich.getFT());

		m_rfPayload.processHeaderData(data + 2U);

		data[0U] = TAG_EOT;
		data[1U] = 0x00U;

		writeNetwork(data, m_rfFrames % 128U);

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif

		if (m_duplex) {
			fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
			fich.encode(data + 2U);
			writeQueueRF(data);
		}

		m_rfFrames++;

		LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
		writeEndRF();

		return false;
	} else if (valid) {
		CSync::addYSFSync(data + 2U);

		unsigned char bn = fich.getBN();
		unsigned char bt = fich.getBT();
		unsigned char fn = fich.getFN();
		unsigned char ft = fich.getFT();
		unsigned char dt = fich.getDT();

		// LogDebug("YSF, FICH: FI: %u, DT: %u, FN: %u, FT: %u", fich.getFI(), fich.getDT(), fich.getFN(), fich.getFT());

		switch (dt) {
		case YSF_DT_VD_MODE1: {
				valid = m_rfPayload.processVDMode1Data(data + 2U, fn);
				unsigned int errors = m_rfPayload.processVDMode1Audio(data + 2U);
				m_rfErrs += errors;
				m_rfBits += 235U;
				LogDebug("YSF, V/D Mode 1, seq %u, AMBE FEC %u/235 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 2.35F);
			}
			break;

		case YSF_DT_VD_MODE2: {
				valid = m_rfPayload.processVDMode2Data(data + 2U, fn);
				unsigned int errors = m_rfPayload.processVDMode2Audio(data + 2U);
				m_rfErrs += errors;
				m_rfBits += 135U;
				LogDebug("YSF, V/D Mode 2, seq %u, Repetition FEC %u/135 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 1.35F);
			}
			break;

		case YSF_DT_DATA_FR_MODE:
			LogDebug("YSF, RF data FICH B=%u/%u F=%u/%u", bn, bt, fn, ft);
			valid = m_rfPayload.processDataFRModeData(data + 2U, fn);
			break;

		case YSF_DT_VOICE_FR_MODE:
			if (fn != 0U || ft != 1U) {
				// The first packet after the header is odd, don't try and regenerate it
				unsigned int errors = m_rfPayload.processVoiceFRModeAudio(data + 2U);
				m_rfErrs += errors;
				m_rfBits += 720U;
				LogDebug("YSF, V Mode 3, seq %u, AMBE FEC %u/720 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 7.2F);
			}
			valid = false;
			break;

		default:
			break;
		}

		bool change = false;

		if (m_rfDest == NULL) {
			unsigned char cm = fich.getCM();
			if (cm == YSF_CM_GROUP) {
				m_rfDest = (unsigned char*)"ALL       ";
				change = true;
			} else if (valid) {
				m_rfDest = m_rfPayload.getDest();
				if (m_rfDest != NULL)
					change = true;
			}
		}

		if (valid && m_rfSource == NULL) {
			m_rfSource = m_rfPayload.getSource();
			if (m_rfSource != NULL)
				change = true;
		}

		if (change) {
			if (m_rfSource != NULL && m_rfDest != NULL) {
				m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", "          ");
				LogMessage("YSF, received RF data from %10.10s to %10.10s", m_rfSource, m_rfDest);
			}
			if (m_rfSource != NULL && m_rfDest == NULL) {
				m_display->writeFusion((char*)m_rfSource, "??????????", "R", "          ");
				LogMessage("YSF, received RF data from %10.10s to ??????????", m_rfSource);
			}
			if (m_rfSource == NULL && m_rfDest != NULL) {
				m_display->writeFusion("??????????", (char*)m_rfDest, "R", "          ");
				LogMessage("YSF, received RF data from ?????????? to %10.10s", m_rfDest);
			}
		}

		data[0U] = TAG_DATA;
		data[1U] = 0x00U;

		writeNetwork(data, m_rfFrames % 128U);

		if (m_duplex) {
			fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
			fich.encode(data + 2U);
			writeQueueRF(data);
		}

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif

		m_rfFrames++;
	} else {
		CSync::addYSFSync(data + 2U);

		data[0U] = TAG_DATA;
		data[1U] = 0x00U;

		writeNetwork(data, m_rfFrames % 128U);

		if (m_duplex)
			writeQueueRF(data);

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif
		m_rfFrames++;
	}

	return true;
}
コード例 #7
0
ファイル: DMRSlot.cpp プロジェクト: mathisschmieder/MMDVMHost
void CDMRSlot::writeModem(unsigned char *data)
{
	if (data[0U] == TAG_LOST && m_state == SS_RELAYING_RF) {
		LogMessage("DMR Slot %u, transmission lost", m_slotNo);
		writeEndOfTransmission();
		return;
	}

	if (data[0U] == TAG_LOST && m_state == SS_LATE_ENTRY) {
		m_state = SS_LISTENING;
		return;
	}

	if (m_state == SS_RELAYING_NETWORK)
		return;

	bool dataSync  = (data[1U] & DMR_SYNC_DATA)  == DMR_SYNC_DATA;
	bool audioSync = (data[1U] & DMR_SYNC_AUDIO) == DMR_SYNC_AUDIO;

	if (dataSync) {
		CSlotType slotType;
		slotType.putData(data + 2U);

		unsigned char colorCode = slotType.getColorCode();
		unsigned char dataType  = slotType.getDataType();

		if (colorCode != m_colorCode)
			return;

		if (dataType == DT_VOICE_LC_HEADER) {
			if (m_state != SS_RELAYING_RF) {
				CFullLC fullLC;
				m_lc = fullLC.decode(data + 2U, DT_VOICE_LC_HEADER);
				if (m_lc == NULL) {
					LogMessage("DMR Slot %u: unable to decode the LC", m_slotNo);
					return;
				}

				// Regenerate the LC
				fullLC.encode(*m_lc, data + 2U, DT_VOICE_LC_HEADER);

				// Regenerate the Slot Type
				slotType.getData(data + 2U);

				// Convert the Data Sync to be from the BS
				CDMRSync sync;
				sync.addSync(data + 2U, DST_BS_DATA);

				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				m_n = 0U;

				m_networkWatchdog.stop();
				m_timeoutTimer.start();

				m_seqNo = 0U;

				for (unsigned i = 0U; i < 3U; i++) {
					writeNetwork(data, DT_VOICE_LC_HEADER);
					writeRadioQueue(data);
				}

				m_state = SS_RELAYING_RF;
				setShortLC(m_slotNo, m_lc->getDstId(), m_lc->getFLCO());

				m_display->writeDMR(m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP, m_lc->getDstId());

				LogMessage("DMR Slot %u, received RF header from %u to %s%u", m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP ? "TG " : "", m_lc->getDstId());
			}
		} else if (dataType == DT_VOICE_PI_HEADER) {
			if (m_state == SS_RELAYING_RF) {
				// Regenerate the Slot Type
				slotType.getData(data + 2U);

				// Convert the Data Sync to be from the BS
				CDMRSync sync;
				sync.addSync(data + 2U, DST_BS_DATA);

				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				m_n = 0U;

				writeNetwork(data, DT_VOICE_PI_HEADER);
				writeRadioQueue(data);

				LogMessage("DMR Slot %u, received PI header", m_slotNo);
			} else {
				// Should save the PI header for after we have a valid LC
			}
		} else {
			// Ignore wakeup CSBKs
			if (dataType == DT_CSBK) {
				CCSBK csbk(data + 2U);
				CSBKO csbko = csbk.getCSBKO();
				if (csbko == CSBKO_BSDWNACT)
					return;
			}

			if (m_state == SS_RELAYING_RF) {
				unsigned char end[DMR_FRAME_LENGTH_BYTES + 2U];

				// Generate the LC
				CFullLC fullLC;
				fullLC.encode(*m_lc, end + 2U, DT_TERMINATOR_WITH_LC);

				// Generate the Slot Type
				CSlotType slotType;
				slotType.setColorCode(m_colorCode);
				slotType.setDataType(DT_TERMINATOR_WITH_LC);
				slotType.getData(end + 2U);

				// Set the Data Sync to be from the BS
				CDMRSync sync;
				sync.addSync(end + 2U, DST_BS_DATA);

				end[0U] = TAG_EOT;
				end[1U] = 0x00U;

				writeNetwork(end, DT_TERMINATOR_WITH_LC);
				writeRadioQueue(end);

				LogMessage("DMR Slot %u, received RF end of transmission", m_slotNo);

				// 480ms of idle to space things out
				for (unsigned int i = 0U; i < 8U; i++)
					writeRadioQueue(m_idle);

				writeEndOfTransmission();

				if (dataType == DT_TERMINATOR_WITH_LC)
					return;
			}

			// Regenerate the Slot Type
			slotType.getData(data + 2U);

			// Convert the Data Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_DATA);

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			writeNetwork(data, dataType);
			writeRadioQueue(data);
		}
	} else if (audioSync) {
		if (m_state == SS_RELAYING_RF) {
			// Convert the Audio Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_AUDIO);

			unsigned char fid = m_lc->getFID();
			if (fid == FID_ETSI || fid == FID_DMRA)
				; // AMBE FEC

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;
			m_n = 0U;

			writeRadioQueue(data);
			writeNetwork(data, DT_VOICE_SYNC);
		} else if (m_state == SS_LISTENING) {
			m_state = SS_LATE_ENTRY;
		}
	} else {
		if (m_state == SS_RELAYING_RF) {
			// Regenerate the EMB
			CEMB emb;
			emb.putData(data + 2U);
			emb.setColorCode(m_colorCode);
			emb.getData(data + 2U);

			unsigned char fid = m_lc->getFID();
			if (fid == FID_ETSI || fid == FID_DMRA)
				; // AMBE FEC

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;
			m_n++;

			writeRadioQueue(data);
			writeNetwork(data, DT_VOICE);
		} else if (m_state == SS_LATE_ENTRY) {
			// If we haven't received an LC yet, then be strict on the color code
			CEMB emb;
			emb.putData(data + 2U);
			unsigned char colorCode = emb.getColorCode();
			if (colorCode != m_colorCode)
				return;

			m_lc = m_embeddedLC.addData(data + 2U, emb.getLCSS());
			if (m_lc != NULL) {
				// Create a dummy start frame to replace the received frame
				unsigned char start[DMR_FRAME_LENGTH_BYTES + 2U];

				CDMRSync sync;
				sync.addSync(start + 2U, DST_BS_DATA);

				CFullLC fullLC;
				fullLC.encode(*m_lc, start + 2U, DT_VOICE_LC_HEADER);

				CSlotType slotType;
				slotType.setColorCode(m_colorCode);
				slotType.setDataType(DT_VOICE_LC_HEADER);
				slotType.getData(start + 2U);

				start[0U] = TAG_DATA;
				start[1U] = 0x00U;
				m_n = 0U;

				m_networkWatchdog.stop();
				m_timeoutTimer.start();

				m_seqNo = 0U;

				for (unsigned int i = 0U; i < 3U; i++) {
					writeNetwork(start, DT_VOICE_LC_HEADER);
					writeRadioQueue(start);
				}

				// Send the original audio frame out
				unsigned char fid = m_lc->getFID();
				if (fid == FID_ETSI || fid == FID_DMRA)
					; // AMBE FEC

				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				m_n++;

				writeRadioQueue(data);
				writeNetwork(data, DT_VOICE);

				m_state = SS_RELAYING_RF;

				setShortLC(m_slotNo, m_lc->getDstId(), m_lc->getFLCO());

				m_display->writeDMR(m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP, m_lc->getDstId());

				LogMessage("DMR Slot %u, received RF late entry from %u to %s%u", m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP ? "TG " : "", m_lc->getDstId());
			}
		}
	}
}
コード例 #8
0
ファイル: YSFControl.cpp プロジェクト: Boromatic/MMDVMHost
bool CYSFControl::writeModem(unsigned char *data)
{
	assert(data != NULL);

	unsigned char type = data[0U];

	if (type == TAG_LOST && m_rfState == RS_RF_AUDIO) {
		LogMessage("YSF, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
		writeEndRF();
		return false;
	}

	if (type == TAG_LOST)
		return false;

	CYSFFICH fich;
	bool valid = fich.decode(data + 2U);

	if (valid && m_rfState == RS_RF_LISTENING) {
		unsigned char fi = fich.getFI();
		if (fi == YSF_FI_TERMINATOR)
			return false;

		m_holdoffTimer.stop();

		m_rfFrames = 0U;
		m_rfErrs = 0U;
		m_rfBits = 1U;
		m_rfTimeoutTimer.start();
		m_rfPayload.reset();
		m_rfState = RS_RF_AUDIO;
#if defined(DUMP_YSF)
		openFile();
#endif
	}

	if (m_rfState != RS_RF_AUDIO)
		return false;

	unsigned char fi = fich.getFI();
	if (valid && fi == YSF_FI_HEADER) {
		CSync::addYSFSync(data + 2U);

		// LogDebug("YSF, FICH: FI: %u, DT: %u, FN: %u, FT: %u", fich.getFI(), fich.getDT(), fich.getFN(), fich.getFT());

		m_rfFrames++;

		valid = m_rfPayload.processHeaderData(data + 2U);

		if (valid)
			m_rfSource = m_rfPayload.getSource();

		unsigned char cm = fich.getCM();
		if (cm == YSF_CM_GROUP) {
			m_rfDest = (unsigned char*)"ALL       ";
		} else {
			if (valid)
				m_rfDest = m_rfPayload.getDest();
		}

		if (m_rfSource != NULL && m_rfDest != NULL) {
			m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", "          ");
			LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest);
		} else if (m_rfSource == NULL && m_rfDest != NULL) {
			m_display->writeFusion("??????????", (char*)m_rfDest, "R", "          ");
			LogMessage("YSF, received RF header from ?????????? to %10.10s", m_rfDest);
		} else if (m_rfSource != NULL && m_rfDest == NULL) {
			m_display->writeFusion((char*)m_rfSource, "??????????", "R", "          ");
			LogMessage("YSF, received RF header from %10.10s to ??????????", m_rfSource);
		} else {
			m_display->writeFusion("??????????", "??????????", "R", "          ");
			LogMessage("YSF, received RF header from ?????????? to ??????????");
		}

		data[0U] = TAG_DATA;
		data[1U] = 0x00U;

		writeNetwork(data);

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif

		if (m_duplex) {
			fich.setMR(YSF_MR_BUSY);
			fich.encode(data + 2U);
			writeQueueRF(data);
		}
	} else if (valid && fi == YSF_FI_TERMINATOR) {
		CSync::addYSFSync(data + 2U);

		// LogDebug("YSF, FICH: FI: %u, DT: %u, FN: %u, FT: %u", fich.getFI(), fich.getDT(), fich.getFN(), fich.getFT());

		m_rfFrames++;

		m_rfPayload.processHeaderData(data + 2U);

		data[0U] = TAG_EOT;
		data[1U] = 0x00U;

		writeNetwork(data);

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif

		if (m_duplex) {
			fich.setMR(YSF_MR_BUSY);
			fich.encode(data + 2U);
			writeQueueRF(data);
		}

		LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
		writeEndRF();

		return false;
	} else if (valid) {
		CSync::addYSFSync(data + 2U);

		unsigned char fn = fich.getFN();
		unsigned char ft = fich.getFT();
		unsigned char dt = fich.getDT();

		// LogDebug("YSF, FICH: FI: %u, DT: %u, FN: %u, FT: %u", fich.getFI(), fich.getDT(), fich.getFN(), fich.getFT());

		m_rfFrames++;

		switch (dt) {
		case YSF_DT_VD_MODE1:
			valid = m_rfPayload.processVDMode1Data(data + 2U, fn);
			m_rfErrs += m_rfPayload.processVDMode1Audio(data + 2U);
			m_rfBits += 235U;
			break;

		case YSF_DT_VD_MODE2:
			valid = m_rfPayload.processVDMode2Data(data + 2U, fn);
			m_rfErrs += m_rfPayload.processVDMode2Audio(data + 2U);
			m_rfBits += 135U;
			break;

		case YSF_DT_DATA_FR_MODE:
			valid = m_rfPayload.processDataFRModeData(data + 2U, fn);
			break;

		case YSF_DT_VOICE_FR_MODE:
			if (fn != 0U || ft != 1U) {
				// The first packet after the header is odd, don't try and regenerate it
				m_rfErrs += m_rfPayload.processVoiceFRModeAudio(data + 2U);
				m_rfBits += 720U;
			}
			valid = false;
			break;

		default:
			break;
		}

		bool change = false;

		if (m_rfDest == NULL) {
			unsigned char cm = fich.getCM();
			if (cm == YSF_CM_GROUP) {
				m_rfDest = (unsigned char*)"ALL       ";
				change = true;
			} else if (valid) {
				m_rfDest = m_rfPayload.getDest();
				if (m_rfDest != NULL)
					change = true;
			}
		}

		if (valid && m_rfSource == NULL) {
			m_rfSource = m_rfPayload.getSource();
			if (m_rfSource != NULL)
				change = true;
		}

		if (change) {
			if (m_rfSource != NULL && m_rfDest != NULL) {
				m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", "          ");
				LogMessage("YSF, received RF data from %10.10s to %10.10s", m_rfSource, m_rfDest);
			}
			if (m_rfSource != NULL && m_rfDest == NULL) {
				m_display->writeFusion((char*)m_rfSource, "??????????", "R", "          ");
				LogMessage("YSF, received RF data from %10.10s to ??????????", m_rfSource);
			}
			if (m_rfSource == NULL && m_rfDest != NULL) {
				m_display->writeFusion("??????????", (char*)m_rfDest, "R", "          ");
				LogMessage("YSF, received RF data from ?????????? to %10.10s", m_rfDest);
			}
		}

		data[0U] = TAG_DATA;
		data[1U] = 0x00U;

		writeNetwork(data);

		if (m_duplex) {
			fich.setMR(YSF_MR_BUSY);
			fich.encode(data + 2U);
			writeQueueRF(data);
		}

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif
	} else {
		CSync::addYSFSync(data + 2U);

		m_rfFrames++;

		data[0U] = TAG_DATA;
		data[1U] = 0x00U;

		writeNetwork(data);

		if (m_duplex)
			writeQueueRF(data);

#if defined(DUMP_YSF)
		writeFile(data + 2U);
#endif
	}

	return true;
}
コード例 #9
0
ファイル: DMRSlot.cpp プロジェクト: jcyfkimi/MMDVMHost
void CDMRSlot::writeModem(unsigned char *data)
{
	if (data[0U] == TAG_LOST && m_state == RS_RELAYING_RF_AUDIO) {
		LogMessage("DMR Slot %u, transmission lost, BER: %u%%", m_slotNo, (m_errs * 100U) / m_bits);
		writeEndOfTransmission();
		return;
	}

	if (data[0U] == TAG_LOST && m_state == RS_RELAYING_RF_DATA) {
		LogMessage("DMR Slot %u, transmission lost", m_slotNo);
		writeEndOfTransmission();
		return;
	}

	if (data[0U] == TAG_LOST && m_state == RS_LATE_ENTRY) {
		m_state = RS_LISTENING;
		return;
	}

	if (m_state == RS_RELAYING_NETWORK_AUDIO || m_state == RS_RELAYING_NETWORK_DATA)
		return;

	bool dataSync  = (data[1U] & DMR_SYNC_DATA)  == DMR_SYNC_DATA;
	bool audioSync = (data[1U] & DMR_SYNC_AUDIO) == DMR_SYNC_AUDIO;

	if (dataSync) {
		CSlotType slotType;
		slotType.putData(data + 2U);

		unsigned char dataType = slotType.getDataType();

		if (dataType == DT_VOICE_LC_HEADER) {
			if (m_state == RS_RELAYING_RF_AUDIO)
				return;

			CFullLC fullLC;
			m_lc = fullLC.decode(data + 2U, DT_VOICE_LC_HEADER);
			if (m_lc == NULL) {
				LogMessage("DMR Slot %u: unable to decode the LC", m_slotNo);
				return;
			}

			// Regenerate the Slot Type
			slotType.getData(data + 2U);

			// Convert the Data Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_DATA);

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			m_networkWatchdog.stop();
			m_timeoutTimer.start();

			m_seqNo = 0U;
			m_n     = 0U;

			m_bits = 1U;
			m_errs = 0U;

			// Put a small delay into starting retransmission
			writeQueue(m_idle);

			for (unsigned i = 0U; i < 3U; i++) {
				writeNetwork(data, DT_VOICE_LC_HEADER);
				writeQueue(data);
			}

			m_state = RS_RELAYING_RF_AUDIO;
			setShortLC(m_slotNo, m_lc->getDstId(), m_lc->getFLCO());

			m_display->writeDMR(m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP, m_lc->getDstId());

			LogMessage("DMR Slot %u, received RF voice header from %u to %s%u", m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP ? "TG " : "", m_lc->getDstId());
		} else if (dataType == DT_VOICE_PI_HEADER) {
			if (m_state != RS_RELAYING_RF_AUDIO)
				return;

			// Regenerate the Slot Type
			slotType.getData(data + 2U);

			// Convert the Data Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_DATA);

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			m_n = 0U;

			writeNetwork(data, DT_VOICE_PI_HEADER);
			writeQueue(data);
		} else if (dataType == DT_TERMINATOR_WITH_LC) {
			if (m_state != RS_RELAYING_RF_AUDIO)
				return;

			// Regenerate the Slot Type
			slotType.getData(data + 2U);

			// Set the Data Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_DATA);

			data[0U] = TAG_EOT;
			data[1U] = 0x00U;

			writeNetwork(data, DT_TERMINATOR_WITH_LC);
			writeQueue(data);

			LogMessage("DMR Slot %u, received RF end of voice transmission, BER: %u%%", m_slotNo, (m_errs * 100U) / m_bits);

			// 480ms of idle to space things out
			for (unsigned int i = 0U; i < 8U; i++)
				writeQueue(m_idle);

			writeEndOfTransmission();
		} else if (dataType == DT_DATA_HEADER) {
			if (m_state == RS_RELAYING_RF_DATA)
				return;

			// Regenerate the Slot Type
			slotType.getData(data + 2U);

			// Convert the Data Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_DATA);

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			m_networkWatchdog.stop();

			m_seqNo = 0U;
			m_n = 0U;

			// Put a small delay into starting retransmission
			writeQueue(m_idle);

			for (unsigned i = 0U; i < 3U; i++) {
				writeNetwork(data, DT_DATA_HEADER);
				writeQueue(data);
			}

			m_state = RS_RELAYING_RF_DATA;
			// setShortLC(m_slotNo, m_lc->getDstId(), m_lc->getFLCO());

			// m_display->writeDMR(m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP, m_lc->getDstId());

			// LogMessage("DMR Slot %u, received RF data header from %u to %s%u", m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP ? "TG " : "", m_lc->getDstId());
			LogMessage("DMR Slot %u, received RF data header", m_slotNo);
		} else {
			// Regenerate the Slot Type
			slotType.getData(data + 2U);

			// Convert the Data Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_DATA);

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			writeNetwork(data, dataType);
			writeQueue(data);
		}
	} else if (audioSync) {
		if (m_state == RS_RELAYING_RF_AUDIO) {
			// Convert the Audio Sync to be from the BS
			CDMRSync sync;
			sync.addSync(data + 2U, DST_BS_AUDIO);

			unsigned char fid = m_lc->getFID();
			if (fid == FID_ETSI || fid == FID_DMRA)
				m_errs += m_fec.regenerateDMR(data + 2U);
			m_bits += 216U;

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			m_n = 0U;

			writeQueue(data);
			writeNetwork(data, DT_VOICE_SYNC);
		} else if (m_state == RS_LISTENING) {
			m_state = RS_LATE_ENTRY;
		}
	} else {
		CEMB emb;
		emb.putData(data + 2U);

		if (m_state == RS_RELAYING_RF_AUDIO) {
			// Regenerate the EMB
			emb.setColorCode(m_colorCode);
			emb.getData(data + 2U);

			unsigned char fid = m_lc->getFID();
			if (fid == FID_ETSI || fid == FID_DMRA)
				m_errs += m_fec.regenerateDMR(data + 2U);
			m_bits += 216U;

			data[0U] = TAG_DATA;
			data[1U] = 0x00U;

			m_n++;

			writeQueue(data);
			writeNetwork(data, DT_VOICE);
		} else if (m_state == RS_LATE_ENTRY) {
			// If we haven't received an LC yet, then be strict on the color code
			unsigned char colorCode = emb.getColorCode();
			if (colorCode != m_colorCode)
				return;

			m_lc = m_embeddedLC.addData(data + 2U, emb.getLCSS());
			if (m_lc != NULL) {
				// Create a dummy start frame to replace the received frame
				unsigned char start[DMR_FRAME_LENGTH_BYTES + 2U];

				CDMRSync sync;
				sync.addSync(start + 2U, DST_BS_DATA);

				CFullLC fullLC;
				fullLC.encode(*m_lc, start + 2U, DT_VOICE_LC_HEADER);

				CSlotType slotType;
				slotType.setColorCode(m_colorCode);
				slotType.setDataType(DT_VOICE_LC_HEADER);
				slotType.getData(start + 2U);

				start[0U] = TAG_DATA;
				start[1U] = 0x00U;

				m_networkWatchdog.stop();
				m_timeoutTimer.start();

				m_seqNo = 0U;
				m_n     = 0U;

				m_bits = 1U;
				m_errs = 0U;

				for (unsigned int i = 0U; i < 3U; i++) {
					writeNetwork(start, DT_VOICE_LC_HEADER);
					writeQueue(start);
				}

				// Regenerate the EMB
				emb.getData(data + 2U);

				// Send the original audio frame out
				unsigned char fid = m_lc->getFID();
				if (fid == FID_ETSI || fid == FID_DMRA)
					m_errs += m_fec.regenerateDMR(data + 2U);
				m_bits += 216U;

				data[0U] = TAG_DATA;
				data[1U] = 0x00U;

				m_n++;

				writeQueue(data);
				writeNetwork(data, DT_VOICE);

				m_state = RS_RELAYING_RF_AUDIO;

				setShortLC(m_slotNo, m_lc->getDstId(), m_lc->getFLCO());

				m_display->writeDMR(m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP, m_lc->getDstId());

				LogMessage("DMR Slot %u, received RF late entry from %u to %s%u", m_slotNo, m_lc->getSrcId(), m_lc->getFLCO() == FLCO_GROUP ? "TG " : "", m_lc->getDstId());
			}
		}
	}
}
コード例 #10
0
ファイル: P25Control.cpp プロジェクト: phl0/MMDVMHost
bool CP25Control::writeModem(unsigned char* data, unsigned int len)
{
	assert(data != NULL);

	bool sync = data[1U] == 0x01U;

	if (data[0U] == TAG_LOST && m_rfState == RS_RF_AUDIO) {
		if (m_rssi != 0U)
			LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
		else
			LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));

		if (m_netState == RS_NET_IDLE)
			m_display->clearP25();

		writeNetwork(m_rfLDU, m_lastDUID, true);
		writeNetwork(data + 2U, P25_DUID_TERM, true);
		m_rfState = RS_RF_LISTENING;
		m_rfTimeout.stop();
		m_rfData.reset();
#if defined(DUMP_P25)
		closeFile();
#endif
		return false;
	}

	if (data[0U] == TAG_LOST && m_rfState == RS_RF_DATA) {
		if (m_netState == RS_NET_IDLE)
			m_display->clearP25();

		m_rfState    = RS_RF_LISTENING;
		m_rfPDUCount = 0U;
		m_rfPDUBits  = 0U;
#if defined(DUMP_P25)
		closeFile();
#endif
		return false;
	}

	if (data[0U] == TAG_LOST) {
		m_rfState = RS_RF_LISTENING;
		return false;
	}

	if (!sync && m_rfState == RS_RF_LISTENING)
		return false;

	// Decode the NID
	bool valid = m_nid.decode(data + 2U);

	if (m_rfState == RS_RF_LISTENING && !valid)
		return false;

	unsigned char duid = m_nid.getDUID();
	if (!valid) {
		switch (m_lastDUID) {
		case P25_DUID_HEADER:
		case P25_DUID_LDU2:
			duid = P25_DUID_LDU1;
			break;
		case P25_DUID_LDU1:
			duid = P25_DUID_LDU2;
			break;
		case P25_DUID_PDU:
			duid = P25_DUID_PDU;
			break;
		case P25_DUID_TSDU:
			duid = P25_DUID_TSDU;
			break;
		default:
			break;
		}
	}

	// Have we got RSSI bytes on the end of a P25 LDU?
	if (len == (P25_LDU_FRAME_LENGTH_BYTES + 4U)) {
		uint16_t raw = 0U;
		raw |= (data[218U] << 8) & 0xFF00U;
		raw |= (data[219U] << 0) & 0x00FFU;

		// Convert the raw RSSI to dBm
		int rssi = m_rssiMapper->interpolate(raw);
		if (rssi != 0)
			LogDebug("P25, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi);

		// RSSI is always reported as positive
		m_rssi = (rssi >= 0) ? rssi : -rssi;

		if (m_rssi > m_minRSSI)
			m_minRSSI = m_rssi;
		if (m_rssi < m_maxRSSI)
			m_maxRSSI = m_rssi;

		m_aveRSSI += m_rssi;
		m_rssiCount++;
	}

	if (duid == P25_DUID_LDU1) {
		if (m_rfState == RS_RF_LISTENING) {
			m_rfData.reset();
			bool ret = m_rfData.decodeLDU1(data + 2U);
			if (!ret) {
				m_lastDUID = duid;
				return false;
			}

			unsigned int srcId = m_rfData.getSrcId();

			if (m_selfOnly) {
				if (m_id > 99999999U) {		// Check that the Config DMR-ID is bigger than 8 digits
					if (srcId != m_id / 100U)
						return false;
				}

				else if (m_id > 9999999U) {	// Check that the Config DMR-ID is bigger than 7 digits
					if (srcId != m_id / 10U)
						return false;
				}

				else if (srcId != m_id) {	// All other cases
					return false;
				}
			}

			if (!m_uidOverride) {
				bool found = m_lookup->exists(srcId);
				if (!found)
					return false;
			}

			bool           grp = m_rfData.getLCF() == P25_LCF_GROUP;
			unsigned int dstId = m_rfData.getDstId();
			std::string source = m_lookup->find(srcId);

			LogMessage("P25, received RF voice transmission from %s to %s%u", source.c_str(), grp ? "TG " : "", dstId);
			m_display->writeP25(source.c_str(), grp, dstId, "R");

			m_rfState = RS_RF_AUDIO;

			m_minRSSI = m_rssi;
			m_maxRSSI = m_rssi;
			m_aveRSSI = m_rssi;
			m_rssiCount = 1U;

			createRFHeader();
			writeNetwork(data + 2U, P25_DUID_HEADER, false);
		} else if (m_rfState == RS_RF_AUDIO) {
			writeNetwork(m_rfLDU, m_lastDUID, false);
		}

		if (m_rfState == RS_RF_AUDIO) {
			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_LDU1);

			// Regenerate LDU1 Data
			m_rfData.encodeLDU1(data + 2U);

			// Regenerate the Low Speed Data
			m_rfLSD.process(data + 2U);

			// Regenerate Audio
			unsigned int errors = m_audio.process(data + 2U);
			LogDebug("P25, LDU1 audio, errs: %u/1233 (%.1f%%)", errors, float(errors) / 12.33F);

			m_display->writeP25BER(float(errors) / 12.33F);

			m_rfBits += 1233U;
			m_rfErrs += errors;
			m_rfFrames++;
			m_lastDUID = duid;

			// Add busy bits
			addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true);

#if defined(DUMP_P25)
			writeFile(data + 2U, len - 2U);
#endif

			::memcpy(m_rfLDU, data + 2U, P25_LDU_FRAME_LENGTH_BYTES);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U);
			}

			m_display->writeP25RSSI(m_rssi);

			return true;
		}
	} else if (duid == P25_DUID_LDU2) {
		if (m_rfState == RS_RF_AUDIO) {
			writeNetwork(m_rfLDU, m_lastDUID, false);

			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_LDU2);

			// Add the dummy LDU2 data
			m_rfData.encodeLDU2(data + 2U);

			// Regenerate the Low Speed Data
			m_rfLSD.process(data + 2U);

			// Regenerate Audio
			unsigned int errors = m_audio.process(data + 2U);
			LogDebug("P25, LDU2 audio, errs: %u/1233 (%.1f%%)", errors, float(errors) / 12.33F);

			m_display->writeP25BER(float(errors) / 12.33F);

			m_rfBits += 1233U;
			m_rfErrs += errors;
			m_rfFrames++;
			m_lastDUID = duid;

			// Add busy bits
			addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true);

#if defined(DUMP_P25)
			writeFile(data + 2U, len - 2U);
#endif

			::memcpy(m_rfLDU, data + 2U, P25_LDU_FRAME_LENGTH_BYTES);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U);
			}

			m_display->writeP25RSSI(m_rssi);

			return true;
		}
	} else if (duid == P25_DUID_TSDU) {
		if (m_rfState != RS_RF_DATA) {
			m_rfPDUCount = 0U;
			m_rfPDUBits = 0U;
			m_rfState = RS_RF_DATA;
			m_rfDataFrames = 0U;
		}
	
		bool ret = m_rfData.decodeTSDU(data + 2U);
		if (!ret) {
			m_lastDUID = duid;
			return false;
		}
	
		unsigned int srcId = m_rfData.getSrcId();
		unsigned int dstId = m_rfData.getDstId();
	
		unsigned char data[P25_TSDU_FRAME_LENGTH_BYTES + 2U];
	
		switch (m_rfData.getLCF()) {
		case P25_LCF_TSBK_CALL_ALERT:
			LogMessage("P25, received RF TSDU transmission, CALL ALERT from %u to %u", srcId, dstId);
			::memset(data + 2U, 0x00U, P25_TSDU_FRAME_LENGTH_BYTES);
	
			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_TSDU);

			// Regenerate TDULC Data
			m_rfData.encodeTSDU(data + 2U);

			// Add busy bits
			addBusyBits(data + 2U, P25_TSDU_FRAME_LENGTH_BITS, true, false);

			// Set first busy bits to 1,1
			setBusyBits(data + 2U, P25_SS0_START, true, true);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;

				writeQueueRF(data, P25_TSDU_FRAME_LENGTH_BYTES + 2U);
			}
			break;
		case P25_LCF_TSBK_ACK_RSP_FNE:
			LogMessage("P25, received RF TSDU transmission, ACK RESPONSE FNE from %u to %u", srcId, dstId);
			::memset(data + 2U, 0x00U, P25_TSDU_FRAME_LENGTH_BYTES);

			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_TSDU);

			// Regenerate TDULC Data
			m_rfData.encodeTSDU(data + 2U);

			// Add busy bits
			addBusyBits(data + 2U, P25_TSDU_FRAME_LENGTH_BITS, true, false);

			// Set first busy bits to 1,1
			setBusyBits(data + 2U, P25_SS0_START, true, true);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;

				writeQueueRF(data, P25_TSDU_FRAME_LENGTH_BYTES + 2U);
			}
			break;
		default:
			LogMessage("P25, recieved RF TSDU transmission, unhandled LCF $%02X", m_rfData.getLCF());
			break;
		}

		m_rfState = RS_RF_LISTENING;
		return true;
	} else if (duid == P25_DUID_TERM || duid == P25_DUID_TERM_LC) {
		if (m_rfState == RS_RF_AUDIO) {
			writeNetwork(m_rfLDU, m_lastDUID, true);

			::memset(data + 2U, 0x00U, P25_TERM_FRAME_LENGTH_BYTES);

			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_TERM);

			// Add busy bits
			addBusyBits(data + 2U, P25_TERM_FRAME_LENGTH_BITS, false, true);

			m_rfState = RS_RF_LISTENING;
			m_rfTimeout.stop();
			m_rfData.reset();
			m_lastDUID = duid;

			if (m_rssi != 0U)
				LogMessage("P25, received RF end of voice transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
			else
				LogMessage("P25, received RF end of voice transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));

			m_display->clearP25();

#if defined(DUMP_P25)
			closeFile();
#endif

			writeNetwork(data + 2U, P25_DUID_TERM, true);

			if (m_duplex) {
				data[0U] = TAG_EOT;
				data[1U] = 0x00U;
				writeQueueRF(data, P25_TERM_FRAME_LENGTH_BYTES + 2U);
			}
		}
	} else if (duid == P25_DUID_PDU) {
		if (m_rfState != RS_RF_DATA) {
			m_rfPDUCount   = 0U;
			m_rfPDUBits    = 0U;
			m_rfState      = RS_RF_DATA;
			m_rfDataFrames = 0U;
		}

		unsigned int start = m_rfPDUCount * P25_LDU_FRAME_LENGTH_BITS;

		unsigned char buffer[P25_LDU_FRAME_LENGTH_BYTES];
		unsigned int bits = CP25Utils::decode(data + 2U, buffer, start, start + P25_LDU_FRAME_LENGTH_BITS);

		for (unsigned int i = 0U; i < bits; i++, m_rfPDUBits++) {
			bool b = READ_BIT(buffer, i);
			WRITE_BIT(m_rfPDU, m_rfPDUBits, b);
		}

		if (m_rfPDUCount == 0U) {
			CP25Trellis trellis;
			unsigned char header[P25_PDU_HEADER_LENGTH_BYTES];
			bool valid = trellis.decode12(m_rfPDU + P25_SYNC_LENGTH_BYTES + P25_NID_LENGTH_BYTES, header);
			if (valid)
				valid = CCRC::checkCCITT162(header, P25_PDU_HEADER_LENGTH_BYTES);

			if (valid) {
				unsigned int llId = (header[3U] << 16) + (header[4U] << 8) + header[5U];
				unsigned int sap  = header[1U] & 0x3FU;
				m_rfDataFrames    = header[6U] & 0x7FU;

				LogMessage("P25, received RF data transmission for Local Link Id %u, SAP %u, %u blocks", llId, sap, m_rfDataFrames);
			} else {
				m_rfPDUCount   = 0U;
				m_rfPDUBits    = 0U;
				m_rfState      = RS_RF_LISTENING;
				m_rfDataFrames = 0U;
			}
		}

		if (m_rfState == RS_RF_DATA) {
			m_rfPDUCount++;

			unsigned int bitLength = ((m_rfDataFrames + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_SYNC_LENGTH_BITS + P25_NID_LENGTH_BITS;

			if (m_rfPDUBits >= bitLength) {
				unsigned int offset = P25_SYNC_LENGTH_BYTES + P25_NID_LENGTH_BYTES;

				// Regenerate the PDU header
				CP25Trellis trellis;
				unsigned char header[P25_PDU_HEADER_LENGTH_BYTES];
				trellis.decode12(m_rfPDU + offset, header);
				trellis.encode12(header, m_rfPDU + offset);
				offset += P25_PDU_FEC_LENGTH_BITS;

				// Regenerate the PDU data
				for (unsigned int i = 0U; i < m_rfDataFrames; i++) {
					unsigned char data[P25_PDU_CONFIRMED_LENGTH_BYTES];

					bool valid = trellis.decode34(m_rfPDU + offset, data);
					if (valid) {
						trellis.encode34(data, m_rfPDU + offset);
					} else {
						valid = trellis.decode12(m_rfPDU + offset, data);
						if (valid)
							trellis.encode12(data, m_rfPDU + offset);
					}

					offset += P25_PDU_FEC_LENGTH_BITS;
				}

				unsigned char pdu[1024U];

				// Add the data
				unsigned int newBitLength = CP25Utils::encode(m_rfPDU, pdu + 2U, bitLength);
				unsigned int newByteLength = newBitLength / 8U;
				if ((newBitLength % 8U) > 0U)
					newByteLength++;

				// Regenerate Sync
				CSync::addP25Sync(pdu + 2U);

				// Regenerate NID
				m_nid.encode(pdu + 2U, P25_DUID_PDU);

				// Add busy bits
				addBusyBits(pdu + 2U, newBitLength, false, true);

				if (m_duplex) {
					pdu[0U] = TAG_DATA;
					pdu[1U] = 0x00U;
					writeQueueRF(pdu, newByteLength + 2U);
				}

				LogMessage("P25, ended RF data transmission");
				m_display->clearP25();

				m_rfPDUCount = 0U;
				m_rfPDUBits = 0U;
				m_rfState = RS_RF_LISTENING;
				m_rfDataFrames = 0U;
			}

			return true;
		}
	}

	return false;
}