コード例 #1
0
ファイル: raytime.c プロジェクト: JanThorbecke/OpenSource
int main(int argc, char **argv)
{
	modPar mod;
	recPar rec;
	srcPar src;
	shotPar shot;
	rayPar ray;
    float *velocity, *slowness, *smooth, *trueslow, **inter;
	double t0, t1, t2, tinit, tray, tio;
	size_t size;
	int nw, n1, ix, iz, ir, ixshot, izshot;
	int nt, ntfft, nfreq, ig;
	int irec, sbox, ipos, nrx, nrz, nr;
    fcoord coordsx, coordgx, Time;
    icoord grid, isrc; 
    float Jr, *ampl, *time, *ttime, *ttime_p, cp_average, *wavelet, dw, dt;
	float dxrcv, dzrcv, rdelay, tr, dt_tmp;
    segy hdr;
    char filetime[1024], fileamp[1024], *method, *file_rcvtime, *file_src;
    size_t  nwrite, nread;
	int verbose;
    complex *cmute, *cwav;
    FILE *fpt, *fpa, *fpwav, *fprcv;

	t0= wallclock_time();
	initargs(argc,argv);
	requestdoc(0);

	if(!getparint("verbose",&verbose)) verbose=0;
    if(!getparint("sbox", &sbox)) sbox = 1;
    if(!getparstring("method", &method)) method="jesper";
	if (!getparfloat("rec_delay",&rdelay)) rdelay=0.0;

	getParameters(&mod, &rec, &src, &shot, &ray, verbose);

    /* read file_src if file_rcvtime is defined */

    if (!getparstring("file_rcvtime",&file_rcvtime)) file_rcvtime=NULL;

	if (file_rcvtime != NULL) {
    	if (!getparstring("file_src",&file_src)) file_src=NULL;
		if (!getparfloat("dt",&dt)) dt=0.004;
		if (file_src != NULL ) {
        	fpwav = fopen( file_src, "r" );
        	assert( fpwav != NULL);
        	nread = fread( &hdr, 1, TRCBYTES, fpwav );
        	assert(nread == TRCBYTES);
			ntfft = optncr(MAX(hdr.ns, rec.nt));
 			wavelet = (float *)calloc(ntfft,sizeof(float));
			/* read first trace */
        	nread = fread(wavelet, sizeof(float), hdr.ns, fpwav);
        	assert (nread == hdr.ns);
        	fclose(fpwav);
		}
		else {
			ntfft = optncr(rec.nt);
 			wavelet = (float *)calloc(ntfft,sizeof(float));
			wavelet[0] = 1.0;
		}
    	nfreq = ntfft/2+1;
    	cwav    = (complex *)calloc(nfreq,sizeof(complex));
    	cmute   = (complex *)calloc(nfreq,sizeof(complex));
        rc1fft(wavelet,cwav,ntfft,-1);
    	dw      = 2*M_PI/(ntfft*dt);
	}

	/* allocate arrays for model parameters: the different schemes use different arrays */

	n1 = mod.nz;
    if(!strcmp(method,"fd")) nw = 0;
    else nw = ray.smoothwindow;

	velocity = (float *)calloc(mod.nx*mod.nz,sizeof(float));
	slowness = (float *)calloc((mod.nx+2*nw)*(mod.nz+2*nw),sizeof(float));
    trueslow = (float *)calloc(mod.nx*mod.nz,sizeof(float));

    if(!strcmp(method,"fd")) {
		ttime = (float *)calloc(mod.nx*mod.nz,sizeof(float));
	}

	/* read velocity and density files */
	readModel(mod, velocity, slowness, nw);

	/* allocate arrays for wavefield and receiver arrays */

	size = shot.n*rec.n;
    time = (float *)calloc(size,sizeof(float));
    ampl = (float *)calloc(size,sizeof(float));

	/* Sinking source and receiver arrays: 
	   If P-velocity==0 the source and receiver 
	   postions are placed deeper until the P-velocity changes. 
	   Setting the option rec.sinkvel only sinks the receiver position 
       (not the source) and uses the velocity 
	   of the first receiver to sink through to the next layer. */

/* sink receivers to value different than sinkvel */
	for (ir=0; ir<rec.n; ir++) {
		iz = rec.z[ir];
		ix = rec.x[ir];
		while(velocity[(ix)*n1+iz] == rec.sinkvel) iz++;
		rec.z[ir]=iz+rec.sinkdepth;
		rec.zr[ir]=rec.zr[ir]+(rec.z[ir]-iz)*mod.dz;
//		rec.zr[ir]=rec.z[ir]*mod.dz;
		if (verbose>3) vmess("receiver position %d at grid[ix=%d, iz=%d] = (x=%f z=%f)", ir, ix, rec.z[ir], rec.xr[ir]+mod.x0, rec.zr[ir]+mod.z0);
	}
		vmess("   - method for ray-tracing       = %s", method);
/*
*/

/* sink sources to value different than zero */
	for (izshot=0; izshot<shot.nz; izshot++) {
		for (ixshot=0; ixshot<shot.nx; ixshot++) {
			iz = shot.z[izshot];
			ix = shot.x[ixshot];
			while(velocity[(ix)*n1+iz] == 0.0) iz++;
			shot.z[izshot]=iz+src.sinkdepth; 
		}
	}

	if (verbose>3) writeSrcRecPos(&mod, &rec, &src, &shot);

    /* smooth slowness grid */
    grid.x = mod.nx;
    grid.z = mod.nz;
    grid.y = 1;
    if ( nw != 0 ) { /* smooth slowness */ 
        smooth = (float *)calloc(grid.x*grid.z,sizeof(float));
        applyMovingAverageFilter(slowness, grid, nw, 2, smooth);
        memcpy(slowness,smooth,grid.x*grid.z*sizeof(float));
        free(smooth);
	}

    /* prepare output file and headers */
    strcpy(filetime, rec.file_rcv);
    name_ext(filetime, "_time");
    fpt = fopen(filetime, "w");
    assert(fpt != NULL);

	if (ray.geomspread) {
        strcpy(fileamp, rec.file_rcv);
        name_ext(fileamp, "_amp");
        fpa = fopen(fileamp, "w");
        assert(fpa != NULL);
	}
	if (file_rcvtime != NULL) {
        fprcv = fopen(file_rcvtime, "w");
        assert(fprcv != NULL);
	}

    memset(&hdr,0,sizeof(hdr));
    hdr.scalco = -1000;
    hdr.scalel = -1000;
    hdr.trid   = 0;

	t1=wallclock_time();
	tinit = t1-t0;
    tray=0.0;
    tio=0.0;

	/* Outer loop over number of shots */
	for (izshot=0; izshot<shot.nz; izshot++) {
		for (ixshot=0; ixshot<shot.nx; ixshot++) {

	        t2=wallclock_time();
        	if (verbose) {
            	vmess("Modeling source %d at gridpoints ix=%d iz=%d", (izshot*shot.n)+ixshot, shot.x[ixshot], shot.z[izshot]);
            	vmess(" which are actual positions x=%.2f z=%.2f", mod.x0+mod.dx*shot.x[ixshot], mod.z0+mod.dz*shot.z[izshot]);
            	vmess("Receivers at gridpoint x-range ix=%d - %d", rec.x[0], rec.x[rec.n-1]);
            	vmess(" which are actual positions x=%.2f - %.2f", mod.x0+rec.xr[0], mod.x0+rec.xr[rec.n-1]);
            	vmess("Receivers at gridpoint z-range iz=%d - %d", rec.z[0], rec.z[rec.n-1]);
            	vmess(" which are actual positions z=%.2f - %.2f", mod.z0+rec.zr[0], mod.z0+rec.zr[rec.n-1]);
        	}

        	coordsx.x = shot.x[ixshot]*mod.dx;
        	coordsx.z = shot.z[izshot]*mod.dz;
        	coordsx.y = 0;

	        t1=wallclock_time();
            tio += t1-t2;

            if (!strcmp(method,"jesper")) {
#pragma omp parallel for default(shared) \
private (coordgx,irec,Time,Jr) 
        		for (irec=0; irec<rec.n; irec++) {
            		coordgx.x=rec.xr[irec];
            		coordgx.z=rec.zr[irec];
            		coordgx.y = 0;
		
            		getWaveParameter(slowness, grid, mod.dx, coordsx, coordgx, ray, &Time, &Jr);
	
            		time[((izshot*shot.nx)+ixshot)*rec.n + irec] = Time.x + Time.y + 0.5*Time.z;
            		ampl[((izshot*shot.nx)+ixshot)*rec.n + irec] = Jr;
            		if (verbose>4) vmess("JS: shot=%f,%f receiver at %f,%f T0=%f T1=%f T2=%f Jr=%f",coordsx.x, coordsx.z, coordgx.x, coordgx.z, Time.x, Time.y, Time.z, Jr); 
        		}
			}
            else if(!strcmp(method,"fd")) {
	            int mzrcv;

                isrc.x = shot.x[ixshot];
                isrc.y = 0;
                isrc.z = shot.z[izshot];

                mzrcv = 0;
                for (irec = 0; irec < rec.n; irec++) mzrcv = MAX(rec.z[irec], mzrcv);

                vidale(ttime,slowness,&isrc,grid,mod.dx,sbox, mzrcv);
        		for (irec=0; irec<rec.n; irec++) {
            		coordgx.x=mod.x0+rec.xr[irec];
            		coordgx.z=mod.z0+rec.zr[irec];
            		coordgx.y = 0;
					ipos = ((izshot*shot.nx)+ixshot)*rec.n + irec;
	
            		time[ipos] = ttime[rec.z[irec]*mod.nx+rec.x[irec]];
					/* compute average velocity between source and receiver */
 					nrx = (rec.x[irec]-isrc.x);
 					nrz = (rec.z[irec]-isrc.z);
 					nr = abs(nrx) + abs(nrz);
					cp_average = 0.0;
        			for (ir=0; ir<nr; ir++) {
						ix = isrc.x + floor((ir*nrx)/nr);
						iz = isrc.z + floor((ir*nrz)/nr);
						//fprintf(stderr,"ir=%d ix=%d iz=%d velocity=%f\n", ir, ix, iz, velocity[ix*mod.nz+iz]);
						cp_average += velocity[ix*mod.nz+iz];
					}
					cp_average = cp_average/((float)nr);
            		ampl[ipos] = sqrt(time[ipos]*cp_average);
            		if (verbose>4) vmess("FD: shot=%f,%f receiver at %f(%d),%f(%d) T=%e V=%f Ampl=%f",coordsx.x, coordsx.z, coordgx.x, rec.x[irec], coordgx.z, rec.z[irec], time[ipos], cp_average, ampl[ipos]); 
        		}
            }
	        t2=wallclock_time();
            tray += t2-t1;

        	hdr.sx     = 1000*(mod.x0+mod.dx*shot.x[ixshot]);
        	hdr.sdepth = 1000*(mod.z0+mod.dz*shot.z[izshot]);
        	hdr.selev  = (int)(-1000.0*(mod.z0+mod.dz*shot.z[izshot]));
        	hdr.fldr   = ((izshot*shot.nx)+ixshot)+1;
        	hdr.tracl  = ((izshot*shot.nx)+ixshot)+1;
        	hdr.tracf  = ((izshot*shot.nx)+ixshot)+1;
        	hdr.ntr    = shot.n;
    		hdr.dt     = (unsigned short)1;
    		hdr.trwf   = shot.n;
    		hdr.ns     = rec.n;
        	//hdr.d1     = (rec.x[1]-rec.x[0])*mod.dx; // discrete
        	hdr.d1     = (rec.xr[1]-rec.xr[0]);
        	hdr.f1     = mod.x0+rec.x[0]*mod.dx;
        	hdr.d2     = (shot.x[MIN(shot.n-1,1)]-shot.x[0])*mod.dx;
        	hdr.f2     = mod.x0+shot.x[0]*mod.dx;
			dt_tmp = (fabs(hdr.d1*((float)hdr.scalco)));
			hdr.dt	   = (unsigned short)dt_tmp;
    
        	nwrite = fwrite( &hdr, 1, TRCBYTES, fpt);
        	assert(nwrite == TRCBYTES);
        	nwrite = fwrite( &time[((izshot*shot.nx)+ixshot)*rec.n], sizeof(float), rec.n, fpt);
        	assert(nwrite == rec.n);
	    	fflush(fpt);
	    	if (ray.geomspread) {
            	nwrite = fwrite( &hdr, 1, TRCBYTES, fpa);
            	assert(nwrite == TRCBYTES);
            	nwrite = fwrite( &ampl[((izshot*shot.nx)+ixshot)*rec.n], sizeof(float), rec.n, fpa);
            	assert(nwrite == rec.n);
	        	fflush(fpa);
        	}
			if (file_rcvtime != NULL) {
    			hdr.ns     = rec.nt;
    			hdr.trwf   = rec.n;
    			hdr.ntr    = ((izshot*shot.nx)+ixshot+1)*rec.n;
    			hdr.dt     = dt*1000000;
    			hdr.d1     = dt;
        		hdr.f1     = 0.0;
        		hdr.d2     = (rec.xr[1]-rec.xr[0]);
    			hdr.f2     = mod.x0+rec.x[0]*mod.dx;

        		for (irec=0; irec<rec.n; irec++) {
					ipos = ((izshot*shot.nx)+ixshot)*rec.n + irec;
        			hdr.tracf  = irec+1;
        			hdr.tracl  = ((izshot*shot.nx)+ixshot*shot.nz)+irec+1;
        			hdr.gx     = 1000*(mod.x0+rec.xr[irec]);
        			hdr.offset = (rec.xr[irec]-shot.x[ixshot]*mod.dx);
        			hdr.gelev  = (int)(-1000*(mod.z0+rec.zr[irec]));

					tr = time[ipos]+rdelay;
                    for (ig=0; ig<nfreq; ig++) {
                        cmute[ig].r = (cwav[ig].r*cos(ig*dw*tr-M_PI/4.0)-cwav[ig].i*sin(ig*dw*tr-M_PI/4.0))/(ntfft*ampl[ipos]);
                        cmute[ig].i = (cwav[ig].i*cos(ig*dw*tr-M_PI/4.0)+cwav[ig].r*sin(ig*dw*tr-M_PI/4.0))/(ntfft*ampl[ipos]);
                    }
                	cr1fft(cmute,wavelet,ntfft,-1);
        			nwrite = fwrite( &hdr, 1, TRCBYTES, fprcv);
        			nwrite = fwrite( wavelet, sizeof(float), rec.nt, fprcv );
				}
			}
	        t1=wallclock_time();
            tio += t1-t2;
    	} /* end of ixshot loop */
	} /* end of loop over number of shots */
	fclose(fpt);
	if (file_rcvtime != NULL) fclose(fprcv);
	if (ray.geomspread) fclose(fpa);

	t1= wallclock_time();
	if (verbose) {
		vmess("*******************************************");
		vmess("************* runtime info ****************");
		vmess("*******************************************");
		vmess("Total compute time ray-tracing    = %.2f s.", t1-t0);
		vmess("   - intializing arrays and model = %.3f", tinit);
		vmess("   - ray tracing                  = %.3f", tray);
		vmess("   - writing data to file         = %.3f", tio);
	}

	/* free arrays */

	initargs(argc,argv); /* this will free the arg arrays declared */
	free(velocity);
	free(slowness);
	
	return 0;
}
コード例 #2
0
ファイル: fdelmodc.c プロジェクト: whu-pzhang/OpenSource
int main(int argc, char **argv)
{
	modPar mod;
	recPar rec;
	snaPar sna;
	wavPar wav;
	srcPar src;
	bndPar bnd;
	shotPar shot;
	float **src_nwav;
	float *rox, *roz, *l2m, *lam, *mul;
	float *tss, *tes, *tep, *p, *q, *r;
	float *vx, *vz, *tzz, *txz, *txx;
	float *rec_vx, *rec_vz, *rec_p;
	float *rec_txx, *rec_tzz, *rec_txz;
	float *rec_pp, *rec_ss;
	float *rec_udp, *rec_udvz;
	float *beam_vx, *beam_vz, *beam_p;
	float *beam_txx, *beam_tzz, *beam_txz;
	float *beam_pp, *beam_ss;	
	float sinkvel;
	double t0, t1, t2, t3, tt, tinit;
	size_t size, sizem, nsamp, memsize;
	int n1, ix, iz, ir, ishot, i;
	int ioPx, ioPz;
	int it0, it1, its, it, fileno, isam;
	int ixsrc, izsrc;
	int verbose;

	t0= wallclock_time();
	initargs(argc,argv);
	requestdoc(0);

	if (!getparint("verbose",&verbose)) verbose=0;
	getParameters(&mod, &rec, &sna, &wav, &src, &shot, &bnd, verbose);

	/* allocate arrays for model parameters: the different schemes use different arrays */

	n1 = mod.naz;
	sizem=mod.nax*mod.naz;

	rox = (float *)calloc(sizem,sizeof(float));
	roz = (float *)calloc(sizem,sizeof(float));
	l2m = (float *)calloc(sizem,sizeof(float));
	if (mod.ischeme==2) {
		tss = (float *)calloc(sizem,sizeof(float));
		tep = (float *)calloc(sizem,sizeof(float));
		q = (float *)calloc(sizem,sizeof(float));
	}
	if (mod.ischeme>2) {
		lam = (float *)calloc(sizem,sizeof(float));
		mul = (float *)calloc(sizem,sizeof(float));
	}
	if (mod.ischeme==4) {
		tss = (float *)calloc(sizem,sizeof(float));
		tes = (float *)calloc(sizem,sizeof(float));
		tep = (float *)calloc(sizem,sizeof(float));
		r = (float *)calloc(sizem,sizeof(float));
		p = (float *)calloc(sizem,sizeof(float));
		q = (float *)calloc(sizem,sizeof(float));
	}

	/* read velocity and density files */

	readModel(mod, bnd, rox, roz, l2m, lam, mul, tss, tes, tep);

	/* read and/or define source wavelet(s) */

	/* Using a random source, which can have a random length 
	   for each source position, a pointer array with variable 
	   length (wav.nsamp[i]) is used.
	   The total length of all the source lengths together is wav.nst */
	
	if (wav.random) {
		src_nwav = (float **)calloc(wav.nx,sizeof(float *));
		src_nwav[0] = (float *)calloc(wav.nst,sizeof(float));
		assert(src_nwav[0] != NULL);
		nsamp = 0;
		for (i=0; i<wav.nx; i++) {
			src_nwav[i] = (float *)(src_nwav[0] + nsamp);
			nsamp += wav.nsamp[i];
		}
	}
	else {
		src_nwav = (float **)calloc(wav.nx,sizeof(float *));
		src_nwav[0] = (float *)calloc(wav.nt*wav.nx,sizeof(float));
		assert(src_nwav[0] != NULL);
		for (i=0; i<wav.nx; i++) {
			src_nwav[i] = (float *)(src_nwav[0] + wav.nt*i);
		}
	}

	defineSource(wav, src, src_nwav, mod.grid_dir, verbose);

	/* allocate arrays for wavefield and receiver arrays */

	vx  = (float *)calloc(sizem,sizeof(float));
	vz  = (float *)calloc(sizem,sizeof(float));
	tzz = (float *)calloc(sizem,sizeof(float)); /* =P field for acoustic */
	if (mod.ischeme>2) {
		txz = (float *)calloc(sizem,sizeof(float));
		txx = (float *)calloc(sizem,sizeof(float));
	}
	if (rec.type.vz)  rec_vz  = (float *)calloc(size,sizeof(float));
	
	size = rec.n*rec.nt;
	if (rec.type.vz)  rec_vz  = (float *)calloc(size,sizeof(float));
	if (rec.type.vx)  rec_vx  = (float *)calloc(size,sizeof(float));
	if (rec.type.p)   rec_p   = (float *)calloc(size,sizeof(float));
	if (rec.type.txx) rec_txx = (float *)calloc(size,sizeof(float));
	if (rec.type.tzz) rec_tzz = (float *)calloc(size,sizeof(float));
	if (rec.type.txz) rec_txz = (float *)calloc(size,sizeof(float));
	if (rec.type.pp)  rec_pp  = (float *)calloc(size,sizeof(float));
	if (rec.type.ss)  rec_ss  = (float *)calloc(size,sizeof(float));
    if (rec.type.ud) { /* get velcity and density at first receiver location */
		ir = mod.ioZz + rec.z[0]+(rec.x[0]+mod.ioZx)*n1;
		rec.rho = mod.dt/(mod.dx*roz[ir]);
		rec.cp  = sqrt(l2m[ir]*(roz[ir]))*mod.dx/mod.dt;
		rec_udvz  = (float *)calloc(mod.nax*rec.nt,sizeof(float));
		rec_udp   = (float *)calloc(mod.nax*rec.nt,sizeof(float));
	}
	
	if(sna.beam) {
		size = sna.nz*sna.nx;
		if (sna.type.vz)  beam_vz  = (float *)calloc(size,sizeof(float));
		if (sna.type.vx)  beam_vx  = (float *)calloc(size,sizeof(float));
		if (sna.type.p)   beam_p   = (float *)calloc(size,sizeof(float));
		if (sna.type.txx) beam_txx = (float *)calloc(size,sizeof(float));
		if (sna.type.tzz) beam_tzz = (float *)calloc(size,sizeof(float));
		if (sna.type.txz) beam_txz = (float *)calloc(size,sizeof(float));
		if (sna.type.pp)  beam_pp  = (float *)calloc(size,sizeof(float));
		if (sna.type.ss)  beam_ss  = (float *)calloc(size,sizeof(float));
	}

	t1= wallclock_time();
	if (verbose) {
		tinit = t1-t0;
		vmess("*******************************************");
		vmess("************* runtime info ****************");
		vmess("*******************************************");
		vmess("CPU time for intializing arrays and model = %f", tinit);
	}

	/* Sinking source and receiver arrays: 
	   If P-velocity==0 the source and receiver 
	   postions are placed deeper until the P-velocity changes. 
	   The free-surface position is stored in bnd.surface[ix].
	   Setting the option rec.sinkvel only sinks the receiver position 
       (not the source) and uses the velocity 
	   of the first receiver to sink through to the next layer. */

    ioPx=mod.ioPx;
    ioPz=mod.ioPz;
    if (bnd.lef==4 || bnd.lef==2) ioPx += bnd.ntap;
    if (bnd.top==4 || bnd.top==2) ioPz += bnd.ntap;
	if (rec.sinkvel) sinkvel=l2m[(rec.x[0]+ioPx)*n1+rec.z[0]+ioPz];
	else sinkvel = 0.0;

/* sink receivers to value different than sinkvel */
	for (ir=0; ir<rec.n; ir++) {
		iz = rec.z[ir];
		ix = rec.x[ir];
		while(l2m[(ix+ioPx)*n1+iz+ioPz] == sinkvel) iz++;
		rec.z[ir]=iz+rec.sinkdepth;
		rec.zr[ir]=rec.zr[ir]+(rec.z[ir]-iz)*mod.dz;
//		rec.zr[ir]=rec.z[ir]*mod.dz;
		if (verbose>3) vmess("receiver position %d at grid[ix=%d, iz=%d] = (x=%f z=%f)", ir, ix+ioPx, rec.z[ir]+ioPz, rec.xr[ir]+mod.x0, rec.zr[ir]+mod.z0);
	}

/* sink sources to value different than zero */
	for (ishot=0; ishot<shot.n; ishot++) {
		iz = shot.z[ishot];
		ix = shot.x[ishot];
		while(l2m[(ix+ioPx)*n1+iz+ioPz] == 0.0) iz++;
		shot.z[ishot]=iz+src.sinkdepth; 
	}

	/* scan for free surface boundary in case it has a topography */
	for (ix=0; ix<mod.nx; ix++) {
		iz = ioPz;
		while(l2m[(ix+ioPx)*n1+iz] == 0.0) iz++;
		bnd.surface[ix+ioPx] = iz;
		if ((verbose>3) && (iz != ioPz)) vmess("Topgraphy surface x=%.2f z=%.2f", mod.x0+mod.dx*ix, mod.z0+mod.dz*(iz-ioPz));
	}
	for (ix=0; ix<ioPx; ix++) {
		bnd.surface[ix] = bnd.surface[ioPx];
	}
	for (ix=ioPx+mod.nx; ix<mod.iePx; ix++) {
		bnd.surface[ix] = bnd.surface[mod.iePx-1];
	}
	if (verbose>3) writeSrcRecPos(&mod, &rec, &src, &shot);

	/* Outer loop over number of shots */
	for (ishot=0; ishot<shot.n; ishot++) {

		izsrc = shot.z[ishot];
		ixsrc = shot.x[ishot];
		fileno= 0;

		memset(vx,0,sizem*sizeof(float));
		memset(vz,0,sizem*sizeof(float));
		memset(tzz,0,sizem*sizeof(float));
		if (mod.ischeme==2) {
			memset(q,0,sizem*sizeof(float));
		}
		if (mod.ischeme>2) {
			memset(txz,0,sizem*sizeof(float));
			memset(txx,0,sizem*sizeof(float));
		}
		if (mod.ischeme==4) {
			memset(r,0,sizem*sizeof(float));
			memset(p,0,sizem*sizeof(float));
			memset(q,0,sizem*sizeof(float));
		}
		if (verbose) {
			if (!src.random) {
				vmess("Modeling source %d at gridpoints ix=%d iz=%d", ishot, shot.x[ishot], shot.z[ishot]);
				vmess(" which are actual positions x=%.2f z=%.2f", mod.x0+mod.dx*shot.x[ishot], mod.z0+mod.dz*shot.z[ishot]);
			}
			vmess("Receivers at gridpoint x-range ix=%d - %d", rec.x[0], rec.x[rec.n-1]);
			vmess(" which are actual positions x=%.2f - %.2f", mod.x0+rec.xr[0], mod.x0+rec.xr[rec.n-1]);
			vmess("Receivers at gridpoint z-range iz=%d - %d", rec.z[0], rec.z[rec.n-1]);
			vmess(" which are actual positions z=%.2f - %.2f", mod.z0+rec.zr[0], mod.z0+rec.zr[rec.n-1]);
		}

		if (mod.grid_dir) { /* reverse time modeling */
			it0=-mod.nt+1;
			it1=0;
			its=-1;

			it0=0;
			it1=mod.nt;
			its=1;
		}
		else {
			it0=0;
			it1=mod.nt;
			its=1;
		}

		/* Main loop over the number of time steps */
		for (it=it0; it<it1; it++) {

#pragma omp parallel default (shared) \
shared (rox, roz, l2m, lam, mul, txx, txz, tzz, vx, vz) \
shared (tss, tep, tes, r, q, p) \
shared (tinit, it0, it1, its) \
shared(beam_vx, beam_vz, beam_txx, beam_tzz, beam_txz, beam_p, beam_pp, beam_ss) \
shared(rec_vx, rec_vz, rec_txx, rec_tzz, rec_txz, rec_p, rec_pp, rec_ss) \
private (tt, t2, t3) \
shared (shot, bnd, mod, src, wav, rec, ixsrc, izsrc, it, src_nwav, verbose)
{
			switch ( mod.ischeme ) {
				case 1 : /* Acoustic FD kernel */
					if (mod.iorder==2) {
						acoustic2(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
							vx, vz, tzz, rox, roz, l2m, verbose);
					}
					else if (mod.iorder==4) {
                        if (mod.sh) {
                            acousticSH4(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
                                  vx, vz, tzz, rox, roz, l2m, verbose);
                        }
                        else {
                            acoustic4(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
                                      vx, vz, tzz, rox, roz, l2m, verbose);
                        }
					}
					else if (mod.iorder==6) {
						acoustic6(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
							vx, vz, tzz, rox, roz, l2m, verbose);
					}
					break;
				case 2 : /* Visco-Acoustic FD kernel */
					viscoacoustic4(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
							vx, vz, tzz, rox, roz, l2m, tss, tep, q, verbose);
					break;
				case 3 : /* Elastic FD kernel */
                    if (mod.iorder==4) {
                        elastic4(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
                            vx, vz, tzz, txx, txz, rox, roz, l2m, lam, mul, verbose);
					}
					else if (mod.iorder==6) {
                        elastic6(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
							vx, vz, tzz, txx, txz, rox, roz, l2m, lam, mul, verbose);
                    }
					break;
				case 4 : /* Visco-Elastic FD kernel */
					viscoelastic4(mod, src, wav, bnd, it, ixsrc, izsrc, src_nwav, 
						vx, vz, tzz, txx, txz, rox, roz, l2m, lam, mul, 
						tss, tep, tes, r, q, p, verbose);
					break;
			}

			/* write samples to file if rec.nt samples are calculated */

#pragma omp master
{
			if ( (((it-rec.delay) % rec.skipdt)==0) && (it >= rec.delay) ) {
				int writeToFile, itwritten;

				writeToFile = ! ( (((it-rec.delay)/rec.skipdt)+1)%rec.nt );
				itwritten   = fileno*(rec.nt)*rec.skipdt;
				isam        = (it-rec.delay-itwritten)/rec.skipdt;

				/* store time at receiver positions */
				getRecTimes(mod, rec, bnd, it, isam, vx, vz, tzz, txx, txz, 
					rec_vx, rec_vz, rec_txx, rec_tzz, rec_txz, 
					rec_p, rec_pp, rec_ss, rec_udp, rec_udvz, verbose);
			
				/* at the end of modeling a shot, write receiver array to output file(s) */
				if (writeToFile && (it+rec.skipdt <= it1-1) ) {
					fileno = ( ((it-rec.delay)/rec.skipdt)+1)/rec.nt;
					writeRec(rec, mod, bnd, wav, ixsrc, izsrc, isam+1, ishot, fileno,
						rec_vx, rec_vz, rec_txx, rec_tzz, rec_txz, 
						rec_p, rec_pp, rec_ss, rec_udp, rec_udvz, verbose);
				}
			}

			/* write snapshots to output file(s) */
			if (sna.nsnap) {
				writeSnapTimes(mod, sna, ixsrc, izsrc, it, vx, vz, tzz, txx, txz, verbose);
			}

			/* calculate beams */
			if(sna.beam) {
				getBeamTimes(mod, sna, vx, vz, tzz, txx,  txz, 
					beam_vx, beam_vz, beam_txx, beam_tzz, beam_txz, 
					beam_p, beam_pp, beam_ss, verbose);
			}
}
					
			/* taper the edges of the model */
//			taperEdges(mod, bnd, vx, vz, verbose);

#pragma omp master
{
			if (verbose) {
				if (it==it0+100*its) t2=wallclock_time();
				if (it==(it0+500*its)) {
					t3=wallclock_time();
					tt=(t3-t2)*(((it1-it0)*its)/400.0);
					vmess("Estimated compute time = %.2f s. per shot.",tt);
					vmess("Estimated total compute time = %.2f s.",tinit+shot.n*tt);
				}
			}
}
} /* end of OpenMP parallel section */

		} /* end of loop over time steps it */

		/* write output files: receivers and or beams */
		if (fileno) fileno++;
		
		if (rec.scale==1) { /* scale receiver with distance src-rcv */
			float xsrc, zsrc, Rrec, rdx, rdz;
			int irec;
			xsrc=mod.x0+mod.dx*ixsrc;
			zsrc=mod.z0+mod.dz*izsrc;
			for (irec=0; irec<rec.n; irec++) {
				rdx=mod.x0+rec.xr[irec]-xsrc;
				rdz=mod.z0+rec.zr[irec]-zsrc;
				Rrec = sqrt(rdx*rdx+rdz*rdz);
				fprintf(stderr,"Rec %d is scaled with distance %f R=%.2f,%.2f S=%.2f,%.2f\n", irec, Rrec,rdx,rdz,xsrc,zsrc);
				for (it=0; it<rec.nt; it++) {
					rec_p[irec*rec.nt+it] *= sqrt(Rrec);
				}
			}
		}
		writeRec(rec, mod, bnd, wav, ixsrc, izsrc, isam+1, ishot, fileno,
			rec_vx, rec_vz, rec_txx, rec_tzz, rec_txz, 
			rec_p, rec_pp, rec_ss, rec_udp, rec_udvz, verbose);
		
		writeBeams(mod, sna, ixsrc, izsrc, ishot, fileno, 
				   beam_vx, beam_vz, beam_txx, beam_tzz, beam_txz, 
				   beam_p, beam_pp, beam_ss, verbose);
		

	} /* end of loop over number of shots */


	t1= wallclock_time();
	if (verbose) {
		vmess("Total compute time FD modelling = %.2f s.", t1-t0);
	}

	/* free arrays */
	
	free(rox);
	free(roz);
	free(l2m);
	free(src_nwav[0]);
	free(src_nwav);
	free(vx);
	free(vz);
	free(tzz);
	if (rec.type.vz)  free(rec_vz);
	if (rec.type.vx)  free(rec_vx);
	if (rec.type.p)   free(rec_p);
	if (rec.type.txx) free(rec_txx);
	if (rec.type.tzz) free(rec_tzz);
	if (rec.type.txz) free(rec_txz);
	if (rec.type.pp)  free(rec_pp);
	if (rec.type.ss)  free(rec_ss);
	if (rec.type.ud)  {
		free(rec_udvz);
		free(rec_udp);
	}
	if(sna.beam) {
		if (sna.type.vz)  free(beam_vz);
		if (sna.type.vx)  free(beam_vx);
		if (sna.type.p)   free(beam_p);
		if (sna.type.txx) free(beam_txx);
		if (sna.type.tzz) free(beam_tzz);
		if (sna.type.txz) free(beam_txz);
		if (sna.type.pp)  free(beam_pp);
		if (sna.type.ss)  free(beam_ss);
	}
	
	if (mod.ischeme==2) {
		free(tss);
		free(tep);
		free(q);
	}
	if (mod.ischeme>2) {
		free(lam);
		free(mul);
		free(txz);
		free(txx);
	}
	if (mod.ischeme==4) {
		free(tss);
		free(tes);
		free(tep);
		free(r);
		free(p);
		free(q);
	}


	return 0;
}