コード例 #1
0
ファイル: tpcrapi2.c プロジェクト: joncampbell123/doslib
int main() {
    unsigned int i;

#if defined(TARGET_WINDOWS) && TARGET_WINDOWS == 32 && !defined(WIN386)
    /* As a 32-bit Windows application, we *can* talk directly to the 8254 but only if running under Windows 3.1/95/98/ME.
     * Windows NT would never permit us to directly talk to IO.
     *
     * However if we're a Win16 program or Watcom 386 application, Windows NT will trap and emulate the 8254 through NTVDM.EXE */
    detect_windows();
    if (!(windows_mode == WINDOWS_REAL || windows_mode == WINDOWS_STANDARD || windows_mode == WINDOWS_ENHANCED)) {
        printf("This test program is only applicable to Windows 3.x/9x\n");
        return 1;
    }
#endif

	printf("8254 library test program\n");
	if (!probe_8254()) {
		printf("Chip not present. Your computer might be 2010-era hardware that dropped support for it.\n");
		return 1;
	}

    printf("This program tests the ability for emulation to handle\n");
    printf("rapid changes to PC speaker frequency.\n");
    printf("Apogee/Duke Nukem style sound effects.\n");

#if defined(NO_PORT_43)
# undef write_8254_pc_speaker
#endif

	write_8254_system_timer(0); /* restore normal function to prevent BIOS from going crazy */
    write_8254_pc_speaker(0); /* make sure the PIT timer is in mode 3 (square wave) */

    printf("Rapid ramping (entry)\n");
    play_sfx(duke_entry);

    printf("Rapid ramping (entry) alternate with extra delay\n");
    play_sfx(duke_entry_alt);

    printf("Rapid ramping (item)\n");
    for (i=0;i < 8;i++) play_sfx(duke_item);

    printf("Rapid ramping (item) alternate\n");
    for (i=0;i < 8;i++) play_sfx(duke_item_alt);

	write_8254_system_timer(0); /* restore normal function to prevent BIOS from going crazy */
	return 0;
}
コード例 #2
0
int main() {
	struct t8254_readback_t readback;
	t8254_time_t tick[3];
	unsigned int i;

	printf("8254 library test program\n");
	if (!probe_8254()) {
		printf("Chip not present. Your computer might be 2010-era hardware that dropped support for it.\n");
		return 1;
	}
	if (!probe_8259()) {
		printf("8259 interrupt controller not present. Your computer might be 2010-era hardware that dropped support for it.\n");
		return 1;
	}

	printf("8254 base clock: %luHz\n",T8254_REF_CLOCK_HZ);

	speaker_rate = T8254_REF_CLOCK_HZ / 400UL;	/* 400Hz */

	prev_irq0 = _dos_getvect(T8254_IRQ+0x08);
	_dos_setvect(T8254_IRQ+0x8,irq0);

	_cli();
	write_8254_pc_speaker(speaker_rate);
	write_8254_system_timer(max);
	_sti();

#ifdef TARGET_PC98
	/* PC-98 does not have IRQ0 running by default */
	p8259_unmask(T8254_IRQ);
#endif

	while (1) {
		if (kbhit()) {
			int c = getch();
			if (c == 27)
				break;
			else if (c == '-') {
				max -= 80;
				if (max > (0xFFFF-80))
					max = 0xFFFF;

				_cli();
				write_8254_system_timer(max);
				_sti();
			}
			else if (c == '=') {
				max += 110;
				if (max < 110 || max > (0xFFFF-110))
					max = 0xFFFF;
	
				_cli();
				write_8254_system_timer(max);
				_sti();
			}
			/* play with timer 2 and the PC speaker gate */
			else if (c == 'p') {
				unsigned char on = (t8254_pc_speaker_read_gate() != 0) ? 1 : 0;
				if (on) t8254_pc_speaker_set_gate(0);
				else t8254_pc_speaker_set_gate(3);
			}
			else if (c == '1') {
#ifndef TARGET_PC98
				unsigned char v = t8254_pc_speaker_read_gate();
				t8254_pc_speaker_set_gate(v ^ PC_SPEAKER_OUTPUT_TTL_AND_GATE);
#endif
			}
			else if (c == '2') {
#ifndef TARGET_PC98
				unsigned char v = t8254_pc_speaker_read_gate();
				t8254_pc_speaker_set_gate(v ^ PC_SPEAKER_COUNTER_2_GATE);
#endif
			}
			else if (c == '[') {
				speaker_rate += 110;
				if (speaker_rate > (0xFFFF-110) || speaker_rate < 110)
					speaker_rate = 0xFFFF;

				write_8254_pc_speaker(speaker_rate);
			}
			else if (c == ']') {
				speaker_rate -= 110;
				if (speaker_rate > (0xFFFF-110))
					speaker_rate = 0;

				write_8254_pc_speaker(speaker_rate);
			}
			else if (c == 'w') {
				printf("\n");
				pulse_width_test();
				_cli();
				write_8254_system_timer(max);
				_sti();
				printf("\n");
			}
			else if (c == 'z') {
				/* sleep-wait loop test */
				unsigned long delay_ticks;
				unsigned long z;
				unsigned int c,cmax;

				printf("\nDelay interval in us? ");
				z = 1000000; scanf("%lu",&z);

				delay_ticks = t8254_us2ticks(z);
				printf("  %lu = %lu ticks\n",z,delay_ticks);

				if (delay_ticks == 0UL)	cmax = (unsigned int)(T8254_REF_CLOCK_HZ / 20UL);
				else			cmax = (unsigned int)(T8254_REF_CLOCK_HZ / 20UL / (unsigned long)delay_ticks);
				if (cmax == 0) cmax = 1;

				write_8254_pc_speaker(T8254_REF_CLOCK_HZ / 400UL); /* tick as fast as possible */
				while (1) {
					if (kbhit()) {
						if (getch() == 27) break;
					}

					for (c=0;c < cmax;c++) {
						t8254_pc_speaker_set_gate(3);
						t8254_wait(delay_ticks);
						t8254_pc_speaker_set_gate(0);
						t8254_wait(delay_ticks);
					}
				}
			}
			else if (c == 'd') {
				printf("\n                                    \nDetail mode, hit 'd' again to exit: [WARNING: 8254 only]\n");
				while (1) {
					if (kbhit()) {
						int c = getch();
						if (c == 'd') {
							break;
						}
					}

					_cli();
					readback_8254(T8254_READBACK_ALL,&readback);
					_sti();
					printf("\x0D");
					for (i=0;i <= 2;i++) {
						printf("[%u] stat=%02x count=%04x  ",i,
							readback.timer[i].status,
							readback.timer[i].count);
					}
					fflush(stdout);
				}
				printf("\n");
			}
		}

		for (i=0;i <= 2;i++) tick[i] = read_8254(i);

		/* BUG: DOSBox/DOSBox-X appear to have a bug where the PC speaker readback toggles
		 *      regardless of the GATE input to Counter 2. Bring GATE low (setting bit 1
		 *      of port 61h to 0) is supposed to cause Counter 2 to stop. The AND gate
		 *      after the output (bit 0 of port 61h) is not supposed to affect the readback. */
		printf("\x0D %04x %04x %04x max=%04x count=%04x SPKR=%u",tick[0],tick[1],tick[2],
			max,counter,read_8254_pc_speaker_output()!=0?1:0);
		fflush(stdout);
	}
	printf("\n");

#ifdef TARGET_PC98
	/* PC-98 does not have IRQ0 running by default */
	p8259_mask(T8254_IRQ);
#endif

	_cli();
	write_8254_pc_speaker(0);
	t8254_pc_speaker_set_gate(0);
	_dos_setvect(T8254_IRQ+0x8,prev_irq0);
	_sti();

	write_8254_system_timer(0xFFFF); /* restore normal function to prevent BIOS from going crazy */
	return 0;
}
コード例 #3
0
void pulse_width_test() {
	int fd;
	unsigned char cc;
	unsigned int play;
	unsigned char plan_b=0;
	unsigned int patience = 10000;

	_cli();
	write_8254_system_timer(0xFFFF);	/* BUGFIX: Personal experience tells me BIOSes would fail reading the floppy if the IRQ 0 timer isn't ticking along at 18Hz */
	_sti();

	fd = open("..\\test1_22.wav",O_RDONLY|O_BINARY);
	if (fd < 0) fd = open("test1_22.wav",O_RDONLY|O_BINARY);
	if (fd < 0) {
		fprintf(stderr,"Cannot open test WAV\n");
		return;
	}
	lseek(fd,44,SEEK_SET);
	read(fd,tmp,sizeof(tmp));
	for (play=0;play < sizeof(tmp);play++) tmp[play] = (((tmp[play]) * 53) / 255) + 1; /* add "noise" to dither */
	close(fd);

	/* set timer 0 to 54 ticks (1.191MHz / 54 ~ 22050Hz) */
	_cli();
	t8254_pc_speaker_set_gate(0);
	write_8254_pc_speaker(1);
	write_8254_system_timer(54);
	_sti();

	_cli();
	{
		outp(T8254_CONTROL_PORT,(0 << 6) | (0 << 4) | 0);	/* latch counter N, counter latch read */
		do {
			if (--patience == 1) break;
			cc = inp(T8254_TIMER_PORT(0));
			inp(T8254_TIMER_PORT(0));
		} while (cc < (54/2));
		do {
			if (--patience == 0) break;
			cc = inp(T8254_TIMER_PORT(0));
			inp(T8254_TIMER_PORT(0));
		} while (cc >= (54/2));
		if (patience <= 2) {
			write_8254_system_timer(0xFFFF);	/* BUGFIX: on very old slow machines, the 54-count tick can easily cause the printf() below to absolutely CRAWL... */
			_sti();
			fprintf(stderr,"Oops! Either your CPU is too fast or the timer countdown trick doesn't work.\n");
			_cli();
			write_8254_system_timer(54);
			plan_b = 1;
		}
	}
	_sti();

	while (1) {
		if (kbhit()) {
			int c = getch();
			if (c == 27) break;
		}

		if (plan_b) {
			/* run with interrupts enabled, use IRQ0 to know when to tick */
			_cli();
			counter = 0;
			t8254_pc_speaker_set_gate(3);
			for (play=0;play < sizeof(tmp);) {
				outp(T8254_CONTROL_PORT,(2 << 6) | (1 << 4) | (T8254_MODE_0_INT_ON_TERMINAL_COUNT << 1)); /* MODE 0, low byte only, counter 2 */
				outp(T8254_TIMER_PORT(2),tmp[play]);
				_sti();
				while (counter == 0);
				_cli();
				play += counter;
				counter = 0;
			}
			_sti();
		}
		else {
			_cli();
			t8254_pc_speaker_set_gate(3);
			outp(T8254_CONTROL_PORT,(0 << 6) | (0 << 4) | 0);	/* latch counter N, counter latch read */
			for (play=0;play < sizeof(tmp);play++) {
				outp(T8254_CONTROL_PORT,(2 << 6) | (1 << 4) | (T8254_MODE_0_INT_ON_TERMINAL_COUNT << 1)); /* MODE 0, low byte only, counter 2 */
				outp(T8254_TIMER_PORT(2),tmp[play]);

				do {
					cc = inp(T8254_TIMER_PORT(0));
					inp(T8254_TIMER_PORT(0));
				} while (cc < (54/2));

				do {
					cc = inp(T8254_TIMER_PORT(0));
					inp(T8254_TIMER_PORT(0));
				} while (cc >= (54/2));
			}
			_sti();
		}
	}

	t8254_pc_speaker_set_gate(0);
}
コード例 #4
0
ファイル: rdtsc.c プロジェクト: joncampbell123/doslib
int main(int argc,char *argv[],char *envp[]) {
	rdtsc_t start,measure,ticks_per_sec;
    unsigned char force = 0;
	double t;
	int c;

    {
        int i = 1;
        char *a;

        while (i < argc) {
            a = argv[i++];

            if (*a == '-') {
                do { a++; } while (*a == '-');

                if (!strcmp(a,"f") || !strcmp(a,"force"))
                    force = 1;
                else
                    return 1;
            }
            else {
                return 1;
            }
        }
    }

	cpu_probe();
	printf("Your CPU is basically a %s or higher\n",cpu_basic_level_to_string(cpu_basic_level));
	if (cpu_v86_active)
		printf(" - Your CPU is currently running me in virtual 8086 mode\n");

    if (force) {
        printf(" - You're forcing me to use RDTSC. I may crash if your CPU doesn't\n");
        printf("   support it or the environment doesn't enable it.\n");
        printf("   OK! Here we go....!\n");
    }
    else {
        if (!(cpu_flags & CPU_FLAG_CPUID)) {
            printf(" - Your CPU doesn't support CPUID, how can it support RDTSC?\n");
            return 1;
        }

        if (!(cpu_cpuid_features.a.raw[2] & 0x10)) {
            printf(" - Your CPU does not support RDTSC\n");
            return 1;
        }

        if (cpu_flags & CPU_FLAG_DONT_USE_RDTSC) {
            printf(" - Your CPU does support RDTSC but it's not recommended in this environment.\n");
            printf("   This is usually due to running a 16-bit build in pure DOS under EMM386.EXE.\n");
            return 1;
        }
    }

#if defined(TARGET_OS2)
# if TARGET_MSDOS == 32
	/* OS/2 32-bit: We can use DosQuerySysInfo() */
	printf("Measuring CPU speed, using DosQuerySysInfo(), over 3 seconds\n");
	{
		ULONG startTick,tmp;
		start = cpu_rdtsc();
		startTick = GetMsCount();
		do { tmp = GetMsCount();
		} while ((tmp - startTick) < 3000); /* NTS: <- I know this rolls over in 49 days,
		the math though should overflow the 32-bit integer and produce correct results anyway */
		measure = cpu_rdtsc();

		/* use the precise tick count to better compute ticks_per_sec */
		ticks_per_sec = ((measure - start) * 1000ULL) / ((rdtsc_t)(tmp - startTick));
		printf("Measurement: %lums = %lld ticks\n",tmp - startTick,(int64_t)ticks_per_sec);
		printf("             From 0x%llX to 0x%llX\n",start,measure);
	}
# else
	/* OS/2 16-bit: There is no API (that I know of) to get tick count. Use system clock. */
	printf("Measuring CPU speed, using system clock with 1-second resolution, across 3 seconds\n");
	{
		time_t startTick,tmp;

		/* wait for the immediate start of a one-second tick, then record RDTSC and count until 3 seconds */
		startTick = time(NULL);
		do { tmp = time(NULL); } while (tmp == startTick);
		start = cpu_rdtsc(); startTick = tmp;

		/* NOW! Count 3 seconds and measure CPU ticks */
		do { tmp = time(NULL);
		} while ((tmp - startTick) < 3);
		measure = cpu_rdtsc();

		/* use the precise tick count to better compute ticks_per_sec */
		ticks_per_sec = ((measure - start) * 1ULL) / ((rdtsc_t)(tmp - startTick));
		printf("Measurement: %lu seconds = %lld ticks\n",tmp - startTick,(int64_t)ticks_per_sec);
		printf("             From 0x%llX to 0x%llX\n",start,measure);
	}
# endif
#elif defined(TARGET_WINDOWS)
# if TARGET_MSDOS == 16
	/* Windows 2.x/3.0/3.1: Use GetTickCount() or
	 * Windows 3.1: Use TOOLHELP.DLL TimerCount() which is more accurate (really?) */
	if (ToolHelpInit()) {
		TIMERINFO ti;

		ti.dwSize = sizeof(ti);
		printf("Measuring CPU speed, using TOOLHELP TimerCount() over 1 second\n");
		{
			DWORD startTick,tmp;
			start = cpu_rdtsc();
			if (!__TimerCount(&ti)) {
				printf("TimerCount() failed\n");
				return 1;
			}
			startTick = ti.dwmsSinceStart;
			do {
#  if defined(WIN_STDOUT_CONSOLE)
				_win_pump(); /* <- you MUST call this. The message pump must run, or else the timer won't advance and this loop will run forever.
			                           The fact that GetTickCount() depends on a working message pump under Windows 3.1 seems to be a rather serious
						   oversight on Microsoft's part. Note that the problem described here does not apply to Windows 9x/ME. Also note
						   the Toolhelp function TimerCount() relies on GetTickCount() as a basic for time (though Toolhelp uses VxD services
						   or direct I/O port hackery to refine the timer count) */
#  endif

				if (!__TimerCount(&ti)) {
					printf("TimerCount() failed\n");
					return 1;
				}

				tmp = ti.dwmsSinceStart;
			} while ((tmp - startTick) < 1000); /* NTS: <- I know this rolls over in 49 days,
			the math though should overflow the 32-bit integer and produce correct results anyway */
			measure = cpu_rdtsc();

			/* use the precise tick count to better compute ticks_per_sec */
			ticks_per_sec = ((measure - start) * 1000ULL) / ((rdtsc_t)(tmp - startTick));
			printf("Measurement: %lums = %lld ticks\n",tmp - startTick,(int64_t)ticks_per_sec);
			printf("             From 0x%llX to 0x%llX\n",start,measure);
		}
	}
	else {
# else
	{
# endif
		printf("Measuring CPU speed, using GetTickCount() over 3 second\n");
		{
			DWORD startTick,tmp;
			start = cpu_rdtsc();
			startTick = GetTickCount();
			/* NTS: Dunno yet about Windows 3.1, but Windows 95 seems to require we Yield(). If we don't, the GetTickCount() return
			 *      value never updates and we're forever stuck in a loop. */
			do {
#  if defined(WIN_STDOUT_CONSOLE)
				_win_pump(); /* <- you MUST call this. The message pump must run, or else the timer won't advance and this loop will run forever.
			                           The fact that GetTickCount() depends on a working message pump under Windows 3.1 seems to be a rather serious
						   oversight on Microsoft's part. Note that the problem described here does not apply to Windows 9x/ME */
#  endif
				tmp = GetTickCount();
			} while ((tmp - startTick) < 3000); /* NTS: <- I know this rolls over in 49 days,
			the math though should overflow the 32-bit integer and produce correct results anyway */
			measure = cpu_rdtsc();

			/* use the precise tick count to better compute ticks_per_sec */
			ticks_per_sec = ((measure - start) * 1000ULL) / ((rdtsc_t)(tmp - startTick));
			printf("Measurement: %lums = %lld ticks\n",tmp - startTick,(int64_t)ticks_per_sec);
			printf("             From 0x%llX to 0x%llX\n",start,measure);
		}
	}
#else
	/* MS-DOS: Init the 8254 timer library for precise measurement */
	if (!probe_8254()) {
		printf("Cannot init 8254 timer\n");
		return 1;
	}

    /* DOSBox-X and most motherboards leave the PIT in a mode that counts down by 2.
     * Our code sets the counter and puts it in a mode that counts down by 1.
     * We have to do this or our wait functions exit in half the time (which explains
     * why testing this code in DOSBox-X often comes up with RDTSC running at 2x
     * normal speed. */
    write_8254_system_timer(0); /* 18.2 tick/sec on our terms (proper PIT mode) */

	printf("Measuring CPU speed (relative to 8254 timer)\n");

	_cli();
	start = cpu_rdtsc();
	t8254_wait(t8254_us2ticks(1000000));
	measure = cpu_rdtsc();
	_sti();

	printf("Measurement: 1 sec = %lld ticks\n",(int64_t)(measure - start));
	printf("             From 0x%llX to 0x%llX\n",start,measure);
	ticks_per_sec = (measure - start);
#endif

	if ((int64_t)ticks_per_sec < 0) {
		printf("Cannot determine CPU cycle count\n");
		ticks_per_sec = 100000ULL;
	}

	while (1) {
		measure = cpu_rdtsc();
		t = (double)((int64_t)(measure - start));
		t /= ticks_per_sec;

		printf("\x0D" "0x%llX = %.3f   ",measure,t);
#if !defined(WINFCON_STOCK_WIN_MAIN)
		fflush(stdout); /* FIXME: The fake console code should intercept fflush() too */
#endif

		if (kbhit()) {
			c = getch();
			if (c == 0) c = getch() << 8;

			if (c == 27)
				break;
			else if (c == 'r' || c == 'R') {
				if (c == 'r' || (cpu_flags & CPU_FLAG_DONT_WRITE_RDTSC)) {
					printf("\nI am not able to write the TSC register within this environment\nYou can force me by typing SHIFT+R, don't blame me when I crash...\n");
				}
				else {
					printf("\nUsing MSR to reset TSC to 0\n");
					/* demonstrating WRMSR to write the TSC (yes, you can!) */
					cpu_rdtsc_write(start = 0ULL);
					printf("Result: 0x%llX\n",cpu_rdtsc());
				}
			}
			else if (c == 's') {
				if (c == 's' && (cpu_flags & CPU_FLAG_DONT_WRITE_RDTSC)) {
					printf("\nI am not able to write the TSC register within this environment\nYou can force me by typing SHIFT+S, don't blame me when I crash...\n");
				}
				else {
					printf("\nUsing MSR to reset TSC to 0x123456789ABCDEF\n");
					/* demonstrating WRMSR to write the TSC (yes, you can!) */
					cpu_rdtsc_write(start = 0x123456789ABCDEFULL);
					printf("Result: 0x%llX\n",cpu_rdtsc());
				}
			}
		}
	}
	printf("\n");

	return 0;
}