static void bssm_param_plain_write(const GthBSSMParam *bssm_param, FILE *outfp) { GtStr *str; gt_assert(bssm_param && outfp); str = gt_str_new(); gt_str_append_cstr(str, "BSSM = {\n"); if (bssm_param->gt_donor_model_set) { write_model(str, "gt_donor_model", &bssm_param->gt_donor_model); gt_str_append_cstr(str, ",\n"); } if (bssm_param->gc_donor_model_set) { write_model(str, "gc_donor_model", &bssm_param->gc_donor_model); gt_str_append_cstr(str, ",\n"); } if (bssm_param->ag_acceptor_model_set) { write_model(str, "ag_acceptor_model", &bssm_param->ag_acceptor_model); gt_str_append_char(str, '\n'); } gt_str_append_cstr(str, "}\n"); gt_xfwrite(gt_str_get(str), sizeof (char), gt_str_length(str), outfp); gt_str_delete(str); }
int _svm_learn (int argc, char* argv[]) { char docfile[200]; /* file with training examples */ char modelfile[200]; /* file for resulting classifier */ char restartfile[200]; /* file with initial alphas */ DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL *model=(MODEL *)my_malloc(sizeof(MODEL)); HIDEO_ENV *hideo_env=create_env(); model->td_pred=NULL; model->n_td_pred=0; _read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity, &learn_parm,&kernel_parm); read_documents(docfile,&docs,&target,&totwords,&totdoc); if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in,hideo_env); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model,hideo_env); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model,hideo_env); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in,hideo_env); } if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ /* deep_copy_of_model=copy_model(model); */ write_model(modelfile,model); free(alpha_in); free_model(model,0); for(i=0;i<totdoc;i++) free_example(docs[i],1); free(docs); free(target); free_env(hideo_env); return(0); }
int main (int argc, char* argv[]) { DOC *docs; /* training examples */ long max_docs,max_words_doc; long totwords,totdoc,ll,i; long kernel_cache_size; double *target; KERNEL_CACHE kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL model; read_input_parameters(argc,argv,docfile,modelfile,&verbosity, &kernel_cache_size,&learn_parm,&kernel_parm); if(verbosity>=1) { printf("Scanning examples..."); fflush(stdout); } nol_ll(docfile,&max_docs,&max_words_doc,&ll); /* scan size of input file */ max_words_doc+=10; ll+=10; max_docs+=2; if(verbosity>=1) { printf("done\n"); fflush(stdout); } docs = (DOC *)my_malloc(sizeof(DOC)*max_docs); /* feature vectors */ target = (double *)my_malloc(sizeof(double)*max_docs); /* target values */ //printf("\nMax docs: %ld, approximated number of feature occurences %ld, maximal length of a line %ld\n\n",max_docs,max_words_doc,ll); read_documents(docfile,docs,target,max_words_doc,ll,&totwords,&totdoc,&kernel_parm); printf("\nNumber of examples: %ld, linear space size: %ld\n\n",totdoc,totwords); //if(kernel_parm.kernel_type==5) totwords=totdoc; // The number of features is proportional to the number of parse-trees, i.e. totdoc // or should we still use totwords to approximate svm_maxqpsize for the Tree Kernel (see hideo.c) ??????? if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,NULL,&model); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,NULL,&model); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,NULL,&model); } } else { if(learn_parm.type == CLASSIFICATION) { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache_init(&kernel_cache,totdoc,kernel_cache_size); svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,&model); /* Free the memory used for the cache. */ kernel_cache_cleanup(&kernel_cache); } else if(learn_parm.type == REGRESSION) { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache_init(&kernel_cache,2*totdoc,kernel_cache_size); svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,&model); /* Free the memory used for the cache. */ kernel_cache_cleanup(&kernel_cache); } else if(learn_parm.type == RANKING) { printf("Learning rankings is not implemented for non-linear kernels in this version!\n"); exit(1); } else if(learn_parm.type == PERCEPTRON) { perceptron_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,&model,modelfile); } else if(learn_parm.type == PERCEPTRON_BATCH) { batch_perceptron_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache_size,&model); } } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ write_model(modelfile,&model); free(model.supvec); free(model.alpha); free(model.index); for(i=0;i<totdoc;i++){ freeExample(&docs[i]); } free(docs); free(target); return(0); }
/************************************************************************* This function performs the entire training process of the model Allows for training in stages, gives better output and checks that previous stages are intialized **************************************************************************/ void AllScoreModels::trainModelsInStages( const char *newModelName, const FileManager& fm, const SpectraAggregator& sa, mass_t initialToleranceEstimate, int startTrainingStage, int endTrainingStage, int specificCharge, int specificSize, int specificRegion, const char *pathNegativeSpectra) { setTrainingStageNames(); if (endTrainingStage >= trainingStages_.size()) endTrainingStage = trainingStages_.size() -1; // check what stages were initialized already checkModelsInitializationStatus(true); model_name = newModelName; config_.set_model_name(string(newModelName)); // check if starting stage dependencies if (startTrainingStage>0) { int i; for (i=0; i<startTrainingStage && i<7; i++) if (! trainingStages_[i].indWasInitialized) break; if (i<startTrainingStage && i<7) { cout << "Stage " << i << " (" << trainingStages_[i].name << ") was not initialized!" << endl; cout << "Starting training at this stage!" << endl; startTrainingStage=i; } } // start training according to stages // partition according to sizes if (startTrainingStage<=0 && endTrainingStage>=0) { trainingStages_[0].writeNameHeader(); config_.computeSizeThresholds(sa); } // selection of fragments if (startTrainingStage<=1 && endTrainingStage>=1) { trainingStages_[1].writeNameHeader(); config_.setTolerances(initialToleranceEstimate); config_.selectFragmentIonTypes(sa, 16, 0.05); } // fragment tolerance and precursor tolerance if (startTrainingStage<=2 && endTrainingStage>=2) { trainingStages_[2].writeNameHeader(); config_.learnTolerancesFromData(sa, initialToleranceEstimate); write_model(); } // SQS - spectra quality score if (startTrainingStage<=3 && endTrainingStage>=3) { trainingStages_[3].writeNameHeader(); if (! pathNegativeSpectra) { cout << "Error: to train SQS models you must supply a file with negative spectra samples (with the -neg_spec_list flag)." << endl; write_model(); exit(1); } pmcsqs.trainSqsModels(&config_, sa, pathNegativeSpectra, specificCharge); write_model(); } // PMCR - precursor mass correction if (startTrainingStage<=4 && endTrainingStage>=4) { trainingStages_[4].writeNameHeader(); pmcsqs.trainPmcRankModels(&config_, sa, specificCharge); write_model(); } // Node scores if (startTrainingStage<=5 && endTrainingStage>=5) { trainingStages_[5].writeNameHeader(); prmNodeScoreModel_.trainNodeScoreModels(static_cast<void*>(this), newModelName, sa, specificCharge, specificSize, specificRegion); write_model(); } // Node score normalizer if (startTrainingStage<=6 && endTrainingStage>=6) { trainingStages_[6].writeNameHeader(); prmNodeScoreModel_.learnPrmNormalizerValue(static_cast<void*>(this), sa); prmNodeScoreModel_.write_prm_normalizer_values(); } // Edge scores if (startTrainingStage<=7 && endTrainingStage>=7) { trainingStages_[7].writeNameHeader(); edgeModel_.train_all_edge_models(sa,static_cast<void*>(this),specificCharge); write_model(); } // rerank model (database scores) if (startTrainingStage<=8 && endTrainingStage>=7) { trainingStages_[8].writeNameHeader(); } exit(0); cout << endl << "STAGE 7: Train Amino Acid models" << endl; cout << "********************************" << endl << endl; if (startTrainingStage>7) { cout << endl << "Already done." << endl; } else { if (specificCharge>0) cout << "+++ Only specified charge " << specificCharge << endl << endl; amino_acid_probs.train_amino_acid_prob_models(fm,this,specificCharge, specificSize); } /* cout << endl << "STAGE 8: Train Cumulative de novo probability models" << endl; cout << "****************************************************" << endl << endl; if (startTrainingStage>8) { cout << endl << "Already done." << endl; } else { if (specific_charge>0) cout << "+++ Only specified charge " << specific_charge << endl << endl; .train_seq_prob_models(fm,this,specific_charge,specific_size); } */ if (endTrainingStage<=8) { write_model(); exit(0); } exit(0); }
int SVMLightRunner::librarySVMLearnMain( int argc, char **argv, bool use_gmumr, SVMConfiguration &config ) { LOG( config.log, LogLevel::DEBUG_LEVEL, __debug_prefix__ + ".librarySVMLearnMain() Started." ); DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL *model=(MODEL *)my_malloc(sizeof(MODEL)); // GMUM.R changes { librarySVMLearnReadInputParameters( argc, argv, docfile, modelfile, restartfile, &verbosity, &learn_parm, &kernel_parm, use_gmumr, config ); kernel_parm.kernel_type = static_cast<long int>(config.kernel_type); libraryReadDocuments( docfile, &docs, &target, &totwords, &totdoc, use_gmumr, config ); // GMUM.R changes } if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the * same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } //gmum.r init_global_params_QP(); if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } //gmum.r config.iter = learn_parm.iterations; if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ /* deep_copy_of_model=copy_model(model); */ // GMUM.R changes { if (!use_gmumr) { write_model(modelfile,model); } else { SVMLightModelToSVMConfiguration(model, config); } // GMUM.R changes } free(alpha_in); free_model(model,0); for(i=0;i<totdoc;i++) free_example(docs[i],1); free(docs); free(target); LOG( config.log, LogLevel::DEBUG_LEVEL, __debug_prefix__ + ".librarySVMLearnMain() Done." ); return(0); }
void write_struct_model(char *file, STRUCTMODEL *sm, STRUCT_LEARN_PARM *sparm) { /* Writes structural model sm to file file. */ write_model(file,sm->svm_model); }
int main(int argc, char *argv[]) { lprec *lp = NULL; char *filen, *wlp = NULL, *wmps = NULL, *wfmps = NULL, plp = FALSE; int i; int verbose = IMPORTANT /* CRITICAL */; int debug = -1; MYBOOL report = FALSE; MYBOOL nonames = FALSE, norownames = FALSE, nocolnames = FALSE; MYBOOL write_model_after = FALSE; MYBOOL noint = FALSE; int print_sol = -1; MYBOOL print_stats = FALSE; int floor_first = -1; MYBOOL do_set_bb_depthlimit = FALSE; int bb_depthlimit = 0; MYBOOL do_set_solutionlimit = FALSE; int solutionlimit = 0; MYBOOL break_at_first = FALSE; int scaling = 0; double scaleloop = 0; MYBOOL tracing = FALSE; short filetype = filetypeLP; int anti_degen1 = -1; int anti_degen2 = -1; short print_timing = FALSE; short parse_only = FALSE; int do_presolve = -1; short objective = 0; short PRINT_SOLUTION = 2; int improve = -1; int pivoting1 = -1; int pivoting2 = -1; int bb_rule1 = -1; int bb_rule2 = -1; int max_num_inv = -1; int scalemode1 = -1; int scalemode2 = -1; int crashmode = -1; char *guessbasis = NULL; /* short timeoutok = FALSE; */ long sectimeout = -1; int result; MYBOOL preferdual = AUTOMATIC; int simplextype = -1; MYBOOL do_set_obj_bound = FALSE; REAL obj_bound = 0; REAL mip_absgap = -1; REAL mip_relgap = -1; REAL epsperturb = -1; REAL epsint = -1; REAL epspivot = -1; REAL epsd = -1; REAL epsb = -1; REAL epsel = -1; MYBOOL do_set_break_at_value = FALSE; REAL break_at_value = 0; REAL accuracy_error0, accuracy_error = -1; FILE *fpin = stdin; char *bfp = NULL; char *rxliname = NULL, *rxli = NULL, *rxlidata = NULL, *rxlioptions = NULL, *wxliname = NULL, *wxlisol = NULL, *wxli = NULL, *wxlioptions = NULL, *wxlisoloptions = NULL; char *rbasname = NULL, *wbasname = NULL; char *debugdump_before = NULL; char *debugdump_after = NULL; char *rparname = NULL; char *rparoptions = NULL; char *wparname = NULL; char *wparoptions = NULL; char obj_in_basis = -1; char mps_ibm = FALSE; char mps_negobjconst = FALSE; char mps_free = FALSE; MYBOOL ok; # define SCALINGTHRESHOLD 0.03 /* read command line arguments */ # if defined FORTIFY Fortify_EnterScope(); # endif for(i = 1; i < argc; i++) { ok = FALSE; if(strncmp(argv[i], "-v", 2) == 0) { if (argv[i][2]) verbose = atoi(argv[i] + 2); else verbose = NORMAL; } else if(strcmp(argv[i], "-d") == 0) debug = TRUE; else if(strcmp(argv[i], "-R") == 0) report = TRUE; else if(strcmp(argv[i], "-i") == 0) print_sol = TRUE; else if(strcmp(argv[i], "-ia") == 0) print_sol = AUTOMATIC; else if(strcmp(argv[i], "-stat") == 0) print_stats = TRUE; else if(strcmp(argv[i], "-nonames") == 0) nonames = TRUE; else if(strcmp(argv[i], "-norownames") == 0) norownames = TRUE; else if(strcmp(argv[i], "-nocolnames") == 0) nocolnames = TRUE; else if((strcmp(argv[i], "-c") == 0) || (strcmp(argv[i], "-cc") == 0)) floor_first = BRANCH_CEILING; else if(strcmp(argv[i], "-cf") == 0) floor_first = BRANCH_FLOOR; else if(strcmp(argv[i], "-ca") == 0) floor_first = BRANCH_AUTOMATIC; else if((strcmp(argv[i], "-depth") == 0) && (i + 1 < argc)) { do_set_bb_depthlimit = TRUE; bb_depthlimit = atoi(argv[++i]); } else if(strcmp(argv[i], "-Bw") == 0) or_value(&bb_rule2, NODE_WEIGHTREVERSEMODE); else if(strcmp(argv[i], "-Bb") == 0) or_value(&bb_rule2, NODE_BRANCHREVERSEMODE); else if(strcmp(argv[i], "-Bg") == 0) or_value(&bb_rule2, NODE_GREEDYMODE); else if(strcmp(argv[i], "-Bp") == 0) or_value(&bb_rule2, NODE_PSEUDOCOSTMODE); else if(strcmp(argv[i], "-BR") == 0) or_value(&bb_rule2, NODE_PSEUDORATIOSELECT); else if(strcmp(argv[i], "-Bf") == 0) or_value(&bb_rule2, NODE_DEPTHFIRSTMODE); else if(strcmp(argv[i], "-Br") == 0) or_value(&bb_rule2, NODE_RANDOMIZEMODE); else if(strcmp(argv[i], "-BG") == 0) or_value(&bb_rule2, 0 /* NODE_GUBMODE */); /* doesn't work yet */ else if(strcmp(argv[i], "-Bd") == 0) or_value(&bb_rule2, NODE_DYNAMICMODE); else if(strcmp(argv[i], "-Bs") == 0) or_value(&bb_rule2, NODE_RESTARTMODE); else if(strcmp(argv[i], "-BB") == 0) or_value(&bb_rule2, NODE_BREADTHFIRSTMODE); else if(strcmp(argv[i], "-Bo") == 0) or_value(&bb_rule2, NODE_AUTOORDER); else if(strcmp(argv[i], "-Bc") == 0) or_value(&bb_rule2, NODE_RCOSTFIXING); else if(strcmp(argv[i], "-Bi") == 0) or_value(&bb_rule2, NODE_STRONGINIT); else if(strncmp(argv[i], "-B", 2) == 0) { if (argv[i][2]) set_value(&bb_rule1, atoi(argv[i] + 2)); else set_value(&bb_rule1, NODE_FIRSTSELECT); } else if((strcmp(argv[i], "-n") == 0) && (i + 1 < argc)) { do_set_solutionlimit = TRUE; solutionlimit = atoi(argv[++i]); } else if((strcmp(argv[i], "-b") == 0) && (i + 1 < argc)) { obj_bound = atof(argv[++i]); do_set_obj_bound = TRUE; } else if(((strcmp(argv[i], "-g") == 0) || (strcmp(argv[i], "-ga") == 0)) && (i + 1 < argc)) mip_absgap = atof(argv[++i]); else if((strcmp(argv[i], "-gr") == 0) && (i + 1 < argc)) mip_relgap = atof(argv[++i]); else if((strcmp(argv[i], "-e") == 0) && (i + 1 < argc)) { epsint = atof(argv[++i]); if((epsint <= 0.0) || (epsint >= 0.5)) { fprintf(stderr, "Invalid tolerance %g; 0 < epsilon < 0.5\n", (double)epsint); EndOfPgr(FORCED_EXIT); } } else if((strcmp(argv[i], "-r") == 0) && (i + 1 < argc)) max_num_inv = atoi(argv[++i]); else if((strcmp(argv[i], "-o") == 0) && (i + 1 < argc)) { break_at_value = atof(argv[++i]); do_set_break_at_value = TRUE; } else if(strcmp(argv[i], "-f") == 0) break_at_first = TRUE; else if(strcmp(argv[i], "-timeoutok") == 0) /* timeoutok = TRUE */; /* option no longer needed, but still accepted */ else if(strcmp(argv[i], "-h") == 0) { print_help(argv); EndOfPgr(EXIT_SUCCESS); } else if(strcmp(argv[i], "-prim") == 0) preferdual = FALSE; else if(strcmp(argv[i], "-dual") == 0) preferdual = TRUE; else if(strcmp(argv[i], "-simplexpp") == 0) simplextype = SIMPLEX_PRIMAL_PRIMAL; else if(strcmp(argv[i], "-simplexdp") == 0) simplextype = SIMPLEX_DUAL_PRIMAL; else if(strcmp(argv[i], "-simplexpd") == 0) simplextype = SIMPLEX_PRIMAL_DUAL; else if(strcmp(argv[i], "-simplexdd") == 0) simplextype = SIMPLEX_DUAL_DUAL; else if(strcmp(argv[i], "-sp") == 0) or_value(&scalemode2, SCALE_POWER2); else if(strcmp(argv[i], "-si") == 0) or_value(&scalemode2, SCALE_INTEGERS); else if(strcmp(argv[i], "-se") == 0) or_value(&scalemode2, SCALE_EQUILIBRATE); else if(strcmp(argv[i], "-sq") == 0) or_value(&scalemode2, SCALE_QUADRATIC); else if(strcmp(argv[i], "-sl") == 0) or_value(&scalemode2, SCALE_LOGARITHMIC); else if(strcmp(argv[i], "-sd") == 0) or_value(&scalemode2, SCALE_DYNUPDATE); else if(strcmp(argv[i], "-sr") == 0) or_value(&scalemode2, SCALE_ROWSONLY); else if(strcmp(argv[i], "-sc") == 0) or_value(&scalemode2, SCALE_COLSONLY); else if(strncmp(argv[i], "-s", 2) == 0) { set_value(&scalemode1, SCALE_NONE); scaling = SCALE_MEAN; if (argv[i][2]) { switch (atoi(argv[i] + 2)) { case 0: scaling = SCALE_NONE; break; case 1: set_value(&scalemode1, SCALE_GEOMETRIC); break; case 2: set_value(&scalemode1, SCALE_CURTISREID); break; case 3: set_value(&scalemode1, SCALE_EXTREME); break; case 4: set_value(&scalemode1, SCALE_MEAN); break; case 5: set_value(&scalemode1, SCALE_MEAN | SCALE_LOGARITHMIC); break; case 6: set_value(&scalemode1, SCALE_RANGE); break; case 7: set_value(&scalemode1, SCALE_MEAN | SCALE_QUADRATIC); break; } } else set_value(&scalemode1, SCALE_MEAN); if((i + 1 < argc) && (isNum(argv[i + 1]))) scaleloop = atoi(argv[++i]); } else if(strncmp(argv[i], "-C", 2) == 0) crashmode = atoi(argv[i] + 2); else if((strcmp(argv[i],"-gbas") == 0) && (i + 1 < argc)) guessbasis = argv[++i]; else if(strcmp(argv[i], "-t") == 0) tracing = TRUE; else if(strncmp(argv[i], "-S", 2) == 0) { if (argv[i][2]) PRINT_SOLUTION = (short) atoi(argv[i] + 2); else PRINT_SOLUTION = 2; } else if(strncmp(argv[i], "-improve", 8) == 0) { if (argv[i][8]) or_value(&improve, atoi(argv[i] + 8)); } else if(strcmp(argv[i], "-pivll") == 0) or_value(&pivoting2, PRICE_LOOPLEFT); else if(strcmp(argv[i], "-pivla") == 0) or_value(&pivoting2, PRICE_LOOPALTERNATE); #if defined EnablePartialOptimization else if(strcmp(argv[i], "-pivpc") == 0) or_value(&pivoting2, PRICE_AUTOPARTIALCOLS); else if(strcmp(argv[i], "-pivpr") == 0) or_value(&pivoting2, PRICE_AUTOPARTIALROWS); else if(strcmp(argv[i], "-pivp") == 0) or_value(&pivoting2, PRICE_AUTOPARTIAL); #endif else if(strcmp(argv[i], "-pivf") == 0) or_value(&pivoting2, PRICE_PRIMALFALLBACK); else if(strcmp(argv[i], "-pivm") == 0) or_value(&pivoting2, PRICE_MULTIPLE); else if(strcmp(argv[i], "-piva") == 0) or_value(&pivoting2, PRICE_ADAPTIVE); else if(strcmp(argv[i], "-pivr") == 0) or_value(&pivoting2, PRICE_RANDOMIZE); else if(strcmp(argv[i], "-pivh") == 0) or_value(&pivoting2, PRICE_HARRISTWOPASS); else if(strcmp(argv[i], "-pivt") == 0) or_value(&pivoting2, PRICE_TRUENORMINIT); else if(strncmp(argv[i], "-piv", 4) == 0) { if (argv[i][4]) set_value(&pivoting1, atoi(argv[i] + 4)); else set_value(&pivoting1, PRICER_DEVEX | PRICE_ADAPTIVE); } #if defined PARSER_LP else if(strcmp(argv[i],"-lp") == 0) filetype = filetypeLP; #endif else if((strcmp(argv[i],"-wlp") == 0) && (i + 1 < argc)) wlp = argv[++i]; else if(strcmp(argv[i],"-plp") == 0) plp = TRUE; else if(strcmp(argv[i],"-mps") == 0) filetype = filetypeMPS; else if(strcmp(argv[i],"-mps_ibm") == 0) mps_ibm = TRUE; else if(strcmp(argv[i],"-mps_negobjconst") == 0) mps_negobjconst = TRUE; else if(strcmp(argv[i],"-mps_free") == 0) mps_free = TRUE; else if(strcmp(argv[i],"-fmps") == 0) filetype = filetypeFREEMPS; else if((strcmp(argv[i],"-wmps") == 0) && (i + 1 < argc)) wmps = argv[++i]; else if((strcmp(argv[i],"-wfmps") == 0) && (i + 1 < argc)) wfmps = argv[++i]; else if(strcmp(argv[i],"-wafter") == 0) write_model_after = TRUE; else if(strcmp(argv[i],"-degen") == 0) set_value(&anti_degen1, ANTIDEGEN_DEFAULT); else if(strcmp(argv[i],"-degenf") == 0) or_value(&anti_degen2, ANTIDEGEN_FIXEDVARS); else if(strcmp(argv[i],"-degenc") == 0) or_value(&anti_degen2, ANTIDEGEN_COLUMNCHECK); else if(strcmp(argv[i],"-degens") == 0) or_value(&anti_degen2, ANTIDEGEN_STALLING); else if(strcmp(argv[i],"-degenn") == 0) or_value(&anti_degen2, ANTIDEGEN_NUMFAILURE); else if(strcmp(argv[i],"-degenl") == 0) or_value(&anti_degen2, ANTIDEGEN_LOSTFEAS); else if(strcmp(argv[i],"-degeni") == 0) or_value(&anti_degen2, ANTIDEGEN_INFEASIBLE); else if(strcmp(argv[i],"-degend") == 0) or_value(&anti_degen2, ANTIDEGEN_DYNAMIC); else if(strcmp(argv[i],"-degenb") == 0) or_value(&anti_degen2, ANTIDEGEN_DURINGBB); else if(strcmp(argv[i],"-degenr") == 0) or_value(&anti_degen2, ANTIDEGEN_RHSPERTURB); else if(strcmp(argv[i],"-degenp") == 0) or_value(&anti_degen2, ANTIDEGEN_BOUNDFLIP); else if(strcmp(argv[i],"-time") == 0) { if(clock() == -1) fprintf(stderr, "CPU times not available on this machine\n"); else print_timing = TRUE; } else if((strcmp(argv[i],"-bfp") == 0) && (i + 1 < argc)) bfp = argv[++i]; else if((strcmp(argv[i],"-rxli") == 0) && (i + 2 < argc)) { rxliname = argv[++i]; rxli = argv[++i]; fpin = NULL; filetype = filetypeXLI; } else if((strcmp(argv[i],"-rxlidata") == 0) && (i + 1 < argc)) rxlidata = argv[++i]; else if((strcmp(argv[i],"-rxliopt") == 0) && (i + 1 < argc)) rxlioptions = argv[++i]; else if((strcmp(argv[i],"-wxli") == 0) && (i + 2 < argc)) { wxliname = argv[++i]; wxli = argv[++i]; } else if((strcmp(argv[i],"-wxliopt") == 0) && (i + 1 < argc)) wxlioptions = argv[++i]; else if((strcmp(argv[i],"-wxlisol") == 0) && (i + 2 < argc)) { wxliname = argv[++i]; wxlisol = argv[++i]; } else if((strcmp(argv[i],"-wxlisolopt") == 0) && (i + 1 < argc)) wxlisoloptions = argv[++i]; else if((strcmp(argv[i],"-rbas") == 0) && (i + 1 < argc)) rbasname = argv[++i]; else if((strcmp(argv[i],"-wbas") == 0) && (i + 1 < argc)) wbasname = argv[++i]; else if((strcmp(argv[i],"-Db") == 0) && (i + 1 < argc)) debugdump_before = argv[++i]; else if((strcmp(argv[i],"-Da") == 0) && (i + 1 < argc)) debugdump_after = argv[++i]; else if((strcmp(argv[i],"-timeout") == 0) && (i + 1 < argc)) sectimeout = atol(argv[++i]); else if((strcmp(argv[i],"-trej") == 0) && (i + 1 < argc)) epspivot = atof(argv[++i]); else if((strcmp(argv[i],"-epsp") == 0) && (i + 1 < argc)) epsperturb = atof(argv[++i]); else if((strcmp(argv[i],"-epsd") == 0) && (i + 1 < argc)) epsd = atof(argv[++i]); else if((strcmp(argv[i],"-epsb") == 0) && (i + 1 < argc)) epsb = atof(argv[++i]); else if((strcmp(argv[i],"-epsel") == 0) && (i + 1 < argc)) epsel = atof(argv[++i]); else if(strcmp(argv[i],"-parse_only") == 0) parse_only = TRUE; else ok = TRUE; if(!ok) ; else if(strcmp(argv[i],"-presolverow") == 0) or_value(&do_presolve, PRESOLVE_ROWS); else if(strcmp(argv[i],"-presolvecol") == 0) or_value(&do_presolve, PRESOLVE_COLS); else if(strcmp(argv[i],"-presolve") == 0) or_value(&do_presolve, PRESOLVE_ROWS | PRESOLVE_COLS); else if(strcmp(argv[i],"-presolvel") == 0) or_value(&do_presolve, PRESOLVE_LINDEP); else if(strcmp(argv[i],"-presolves") == 0) or_value(&do_presolve, PRESOLVE_SOS); else if(strcmp(argv[i],"-presolver") == 0) or_value(&do_presolve, PRESOLVE_REDUCEMIP); else if(strcmp(argv[i],"-presolvek") == 0) or_value(&do_presolve, PRESOLVE_KNAPSACK); else if(strcmp(argv[i],"-presolveq") == 0) or_value(&do_presolve, PRESOLVE_ELIMEQ2); else if(strcmp(argv[i],"-presolvem") == 0) or_value(&do_presolve, PRESOLVE_MERGEROWS); else if(strcmp(argv[i],"-presolvefd") == 0) or_value(&do_presolve, PRESOLVE_COLFIXDUAL); else if(strcmp(argv[i],"-presolvebnd") == 0) or_value(&do_presolve, PRESOLVE_BOUNDS); else if(strcmp(argv[i],"-presolved") == 0) or_value(&do_presolve, PRESOLVE_DUALS); else if(strcmp(argv[i],"-presolvef") == 0) or_value(&do_presolve, PRESOLVE_IMPLIEDFREE); else if(strcmp(argv[i],"-presolveslk") == 0) or_value(&do_presolve, PRESOLVE_IMPLIEDSLK); else if(strcmp(argv[i],"-presolveg") == 0) or_value(&do_presolve, PRESOLVE_REDUCEGCD); else if(strcmp(argv[i],"-presolveb") == 0) or_value(&do_presolve, PRESOLVE_PROBEFIX); else if(strcmp(argv[i],"-presolvec") == 0) or_value(&do_presolve, PRESOLVE_PROBEREDUCE); else if(strcmp(argv[i],"-presolverowd") == 0) or_value(&do_presolve, PRESOLVE_ROWDOMINATE); else if(strcmp(argv[i],"-presolvecold") == 0) or_value(&do_presolve, PRESOLVE_COLDOMINATE); else if(strcmp(argv[i],"-min") == 0) objective = -1; else if(strcmp(argv[i],"-max") == 0) objective = 1; else if(strcmp(argv[i],"-noint") == 0) noint = TRUE; else if((strcmp(argv[i],"-rpar") == 0) && (i + 1 < argc)) i++; else if((strcmp(argv[i],"-rparopt") == 0) && (i + 1 < argc)) i++; else if((strcmp(argv[i],"-wpar") == 0) && (i + 1 < argc)) i++; else if((strcmp(argv[i],"-wparopt") == 0) && (i + 1 < argc)) i++; else if(strcmp(argv[i],"-o0") == 0) obj_in_basis = FALSE; else if(strcmp(argv[i],"-o1") == 0) obj_in_basis = TRUE; else if((strcmp(argv[i], "-ac") == 0) && (i + 1 < argc)) accuracy_error = atof(argv[++i]); else if(fpin == stdin) { filen = argv[i]; if(*filen == '<') filen++; if((fpin = fopen(filen, "r")) == NULL) { print_help(argv); fprintf(stderr,"\nError, Unable to open input file '%s'\n", argv[i]); EndOfPgr(FORCED_EXIT); } } else { filen = argv[i]; if(*filen != '>') { print_help(argv); fprintf(stderr, "\nError, Unrecognized command line argument '%s'\n", argv[i]); EndOfPgr(FORCED_EXIT); } } } signal(SIGABRT,/* (void (*) OF((int))) */ SIGABRT_func); if ((filetype != filetypeXLI) && (fpin == NULL)) { lp = NULL; fprintf(stderr, "Cannot combine -rxli option with -lp, -mps, -fmps.\n"); } else { switch(filetype) { #if defined PARSER_LP case filetypeLP: lp = read_lp(fpin, verbose, NULL); break; #endif case filetypeMPS: lp = read_mps(fpin, verbose | (mps_free ? MPS_FREE : 0) | (mps_ibm ? MPS_IBM : 0) | (mps_negobjconst ? MPS_NEGOBJCONST : 0)); break; case filetypeFREEMPS: lp = read_freemps(fpin, verbose | (mps_ibm ? MPS_IBM : 0) | (mps_negobjconst ? MPS_NEGOBJCONST : 0)); break; case filetypeXLI: lp = read_XLI(rxliname, rxli, rxlidata, rxlioptions, verbose); break; } } if((fpin != NULL) && (fpin != stdin)) fclose(fpin); if(print_timing) print_cpu_times("Parsing input"); if(lp == NULL) { fprintf(stderr, "Unable to read model.\n"); EndOfPgr(FORCED_EXIT); } for(i = 1; i < argc; i++) { if((strcmp(argv[i],"-rpar") == 0) && (i + 1 < argc)) { if(rparname != NULL) { if(!read_params(lp, rparname, rparoptions)) { fprintf(stderr, "Unable to read parameter file (%s)\n", rparname); delete_lp(lp); EndOfPgr(FORCED_EXIT); } } rparname = argv[++i]; } else if((strcmp(argv[i],"-rparopt") == 0) && (i + 1 < argc)) rparoptions = argv[++i]; else if((strcmp(argv[i],"-wpar") == 0) && (i + 1 < argc)) wparname = argv[++i]; else if((strcmp(argv[i],"-wparopt") == 0) && (i + 1 < argc)) wparoptions = argv[++i]; } if(rparname != NULL) if(!read_params(lp, rparname, rparoptions)) { fprintf(stderr, "Unable to read parameter file (%s)\n", rparname); delete_lp(lp); EndOfPgr(FORCED_EXIT); } if((nonames) || (nocolnames)) set_use_names(lp, FALSE, FALSE); if((nonames) || (norownames)) set_use_names(lp, TRUE, FALSE); if(objective != 0) { if(objective == 1) set_maxim(lp); else set_minim(lp); } if (obj_in_basis != -1) set_obj_in_basis(lp, obj_in_basis); if(noint) { /* remove integer conditions */ for(i = get_Ncolumns(lp); i >= 1; i--) { if(is_SOS_var(lp, i)) { fprintf(stderr, "Unable to remove integer conditions because there is at least one SOS constraint\n"); delete_lp(lp); EndOfPgr(FORCED_EXIT); } set_semicont(lp, i, FALSE); set_int(lp, i, FALSE); } } if(!write_model_after) write_model(lp, plp, wlp, wmps, wfmps, wxli, NULL, wxliname, wxlioptions); if(print_stats) print_statistics(lp); if(parse_only) { if(!write_model_after) { delete_lp(lp); EndOfPgr(0); } /* else if(!sectimeout) */ sectimeout = 1; } if(PRINT_SOLUTION >= 5) print_lp(lp); #if 0 put_abortfunc(lp,(abortfunc *) myabortfunc, NULL); #endif if(sectimeout > 0) set_timeout(lp, sectimeout); if(print_sol >= 0) set_print_sol(lp, print_sol); if(epsint >= 0) set_epsint(lp, epsint); if(epspivot >= 0) set_epspivot(lp, epspivot); if(epsperturb >= 0) set_epsperturb(lp, epsperturb); if(epsd >= 0) set_epsd(lp, epsd); if(epsb >= 0) set_epsb(lp, epsb); if(epsel >= 0) set_epsel(lp, epsel); if(debug >= 0) set_debug(lp, (MYBOOL) debug); if(floor_first != -1) set_bb_floorfirst(lp, floor_first); if(do_set_bb_depthlimit) set_bb_depthlimit(lp, bb_depthlimit); if(do_set_solutionlimit) set_solutionlimit(lp, solutionlimit); if(tracing) set_trace(lp, tracing); if(do_set_obj_bound) set_obj_bound(lp, obj_bound); if(do_set_break_at_value) set_break_at_value(lp, break_at_value); if(break_at_first) set_break_at_first(lp, break_at_first); if(mip_absgap >= 0) set_mip_gap(lp, TRUE, mip_absgap); if(mip_relgap >= 0) set_mip_gap(lp, FALSE, mip_relgap); if((anti_degen1 != -1) || (anti_degen2 != -1)) { if((anti_degen1 == -1) || (anti_degen2 != -1)) anti_degen1 = 0; if(anti_degen2 == -1) anti_degen2 = 0; set_anti_degen(lp, anti_degen1 | anti_degen2); } set_presolve(lp, ((do_presolve == -1) ? get_presolve(lp): do_presolve) | ((PRINT_SOLUTION >= 4) ? PRESOLVE_SENSDUALS : 0), get_presolveloops(lp)); if(improve != -1) set_improve(lp, improve); if(max_num_inv >= 0) set_maxpivot(lp, max_num_inv); if(preferdual != AUTOMATIC) set_preferdual(lp, preferdual); if((pivoting1 != -1) || (pivoting2 != -1)) { if(pivoting1 == -1) pivoting1 = get_pivoting(lp) & PRICER_LASTOPTION; if(pivoting2 == -1) pivoting2 = 0; set_pivoting(lp, pivoting1 | pivoting2); } if((scalemode1 != -1) || (scalemode2 != -1)) { if(scalemode1 == -1) scalemode1 = get_scaling(lp) & SCALE_CURTISREID; if(scalemode2 == -1) scalemode2 = 0; set_scaling(lp, scalemode1 | scalemode2); } if(crashmode != -1) set_basiscrash(lp, crashmode); if((bb_rule1 != -1) || (bb_rule2 != -1)) { if(bb_rule1 == -1) bb_rule1 = get_bb_rule(lp) & NODE_USERSELECT; if(bb_rule2 == -1) bb_rule2 = 0; set_bb_rule(lp, bb_rule1 | bb_rule2); } if(simplextype != -1) set_simplextype(lp, simplextype); if(bfp != NULL) if(!set_BFP(lp, bfp)) { fprintf(stderr, "Unable to set BFP package.\n"); delete_lp(lp); EndOfPgr(FORCED_EXIT); } if(debugdump_before != NULL) print_debugdump(lp, debugdump_before); if(report) put_msgfunc(lp, LPMessageCB, NULL, MSG_LPFEASIBLE | MSG_LPOPTIMAL | MSG_MILPFEASIBLE | MSG_MILPBETTER | MSG_PERFORMANCE); if(scaling) { if(scaleloop <= 0) scaleloop = 5; if(scaleloop - (int) scaleloop < SCALINGTHRESHOLD) scaleloop = (int) scaleloop + SCALINGTHRESHOLD; set_scalelimit(lp, scaleloop); } if (accuracy_error != -1) set_break_numeric_accuracy(lp, accuracy_error); if(guessbasis != NULL) { REAL *guessvector, a; int *basisvector; int Nrows = get_Nrows(lp); int Ncolumns = get_Ncolumns(lp); int col; char buf[50], *ptr; FILE *fp; if ((fp = fopen(guessbasis, "r")) != NULL) { guessvector = (REAL *) calloc(1+Ncolumns, sizeof(*guessvector)); basisvector = (int *) malloc((1+Nrows+Ncolumns)*sizeof(*basisvector)); if ((guessvector != NULL) && (basisvector != NULL)) { while ((!feof(fp)) && (fgets(buf, sizeof(buf), fp) != NULL)) { ptr = strrchr(buf, ':'); if (ptr == NULL) { printf("Mallformed line: %s\n", buf); } else { a = atof(ptr + 1); while ((ptr > buf) && (isspace(ptr[-1]))) ptr--; *ptr = 0; col = get_nameindex(lp, buf, FALSE); if (col < 1) printf("guess_basis: Unknown variable name %s\n", buf); else guessvector[col] = a; } } if (guess_basis(lp, guessvector, basisvector)) { if (!set_basis(lp, basisvector, TRUE)) printf("Unable to set guessed basis.\n"); } else printf("Unable to guess basis from provided variables.\n"); } else printf("guess_basis: Out of memory.\n"); if (basisvector != NULL) free(basisvector); if (guessvector != NULL) free(guessvector); fclose(fp); } else printf("Unable to open file %s\n", guessbasis); } if(rbasname != NULL) if(!read_basis(lp, rbasname, NULL)) { fprintf(stderr, "Unable to read basis file.\n"); delete_lp(lp); EndOfPgr(FORCED_EXIT); } result = solve(lp); if(wbasname != NULL) if(!write_basis(lp, wbasname)) fprintf(stderr, "Unable to write basis file.\n"); if(write_model_after) write_model(lp, plp, wlp, wmps, wfmps, wxli, NULL, wxliname, wxlioptions); write_model(lp, FALSE, NULL, NULL, NULL, NULL, wxlisol, wxliname, wxlisoloptions); if(PRINT_SOLUTION >= 6) print_scales(lp); if((print_timing) && (!parse_only)) print_cpu_times("solving"); if(debugdump_after != NULL) print_debugdump(lp, debugdump_after); if(wparname != NULL) if(!write_params(lp, wparname, wparoptions)) { fprintf(stderr, "Unable to write parameter file (%s)\n", wparname); delete_lp(lp); EndOfPgr(FORCED_EXIT); } if(parse_only) { delete_lp(lp); EndOfPgr(0); } /* if((timeoutok) && (result == TIMEOUT) && (get_solutioncount(lp) > 0)) result = OPTIMAL; */ switch(result) { case SUBOPTIMAL: case PRESOLVED: case OPTIMAL: case PROCBREAK: case FEASFOUND: if ((result == SUBOPTIMAL) && (PRINT_SOLUTION >= 1)) printf("Suboptimal solution\n"); if (result == PRESOLVED) printf("Presolved solution\n"); if (PRINT_SOLUTION >= 1) print_objective(lp); if (PRINT_SOLUTION >= 2) print_solution(lp, 1); if (PRINT_SOLUTION >= 3) print_constraints(lp, 1); if (PRINT_SOLUTION >= 4) print_duals(lp); if(tracing) fprintf(stderr, "Branch & Bound depth: %d\nNodes processed: %.0f\nSimplex pivots: %.0f\nNumber of equal solutions: %d\n", get_max_level(lp), (REAL) get_total_nodes(lp), (REAL) get_total_iter(lp), get_solutioncount(lp)); break; case NOMEMORY: if (PRINT_SOLUTION >= 1) printf("Out of memory\n"); break; case INFEASIBLE: if (PRINT_SOLUTION >= 1) printf("This problem is infeasible\n"); break; case UNBOUNDED: if (PRINT_SOLUTION >= 1) printf("This problem is unbounded\n"); break; case PROCFAIL: if (PRINT_SOLUTION >= 1) printf("The B&B routine failed\n"); break; case TIMEOUT: if (PRINT_SOLUTION >= 1) printf("Timeout\n"); break; case USERABORT: if (PRINT_SOLUTION >= 1) printf("User aborted\n"); break; case ACCURACYERROR: if (PRINT_SOLUTION >= 1) printf("Accuracy error\n"); break; default: if (PRINT_SOLUTION >= 1) printf("lp_solve failed\n"); break; } if (PRINT_SOLUTION >= 7) print_tableau(lp); delete_lp(lp); EndOfPgr(result); return(result); }