コード例 #1
0
int main(int argc, char *argv[])
{
    superlu_dist_options_t options;
    SuperLUStat_t stat;
    SuperMatrix A;
    ScalePermstruct_t ScalePermstruct;
    LUstruct_t LUstruct;
    gridinfo_t grid;
    double   *berr;
    doublecomplex   *a, *b, *xtrue;
    int_t    *asub, *xa;
    int_t    m, n, nnz;
    int_t    nprow, npcol;
    int      iam, info, ldb, ldx, nrhs;
    char     trans[1];
    char     **cpp, c;
    FILE *fp, *fopen();
    extern int cpp_defs();

    /* prototypes */
    extern void LUstructInit(const int_t, LUstruct_t *);
    extern void LUstructFree(LUstruct_t *);
    extern void Destroy_LU(int_t, gridinfo_t *, LUstruct_t *);

    nprow = 1;  /* Default process rows.      */
    npcol = 1;  /* Default process columns.   */
    nrhs = 1;   /* Number of right-hand side. */

    /* ------------------------------------------------------------
       INITIALIZE MPI ENVIRONMENT. 
       ------------------------------------------------------------*/
    MPI_Init( &argc, &argv );

    /* Parse command line argv[]. */
    for (cpp = argv+1; *cpp; ++cpp) {
	if ( **cpp == '-' ) {
	    c = *(*cpp+1);
	    ++cpp;
	    switch (c) {
	      case 'h':
		  printf("Options:\n");
		  printf("\t-r <int>: process rows    (default " IFMT ")\n", nprow);
		  printf("\t-c <int>: process columns (default " IFMT ")\n", npcol);
		  exit(0);
		  break;
	      case 'r': nprow = atoi(*cpp);
		        break;
	      case 'c': npcol = atoi(*cpp);
		        break;
	    }
	} else { /* Last arg is considered a filename */
	    if ( !(fp = fopen(*cpp, "r")) ) {
                ABORT("File does not exist");
            }
	    break;
	}
    }

    /* ------------------------------------------------------------
       INITIALIZE THE SUPERLU PROCESS GRID. 
       ------------------------------------------------------------*/
    superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);

    /* Bail out if I do not belong in the grid. */
    iam = grid.iam;
    if ( iam >= nprow * npcol )
	goto out;


#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter main()");
#endif
    
    /* ------------------------------------------------------------
       PROCESS 0 READS THE MATRIX A, AND THEN BROADCASTS IT TO ALL
       THE OTHER PROCESSES.
       ------------------------------------------------------------*/
    if ( !iam ) {
	/* Print the CPP definitions. */
	cpp_defs();
	
	/* Read the matrix stored on disk in Harwell-Boeing format. */
	zreadhb_dist(iam, fp, &m, &n, &nnz, &a, &asub, &xa);
	
	printf("Input matrix file: %s\n", *cpp);
	printf("\tDimension\t" IFMT "x" IFMT "\t # nonzeros " IFMT "\n", m, n, nnz);
	printf("\tProcess grid\t%d X %d\n", (int) grid.nprow, (int) grid.npcol);

	/* Broadcast matrix A to the other PEs. */
	MPI_Bcast( &m,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &n,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &nnz, 1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( a,    nnz, SuperLU_MPI_DOUBLE_COMPLEX, 0, grid.comm );
	MPI_Bcast( asub, nnz, mpi_int_t,  0, grid.comm );
	MPI_Bcast( xa,   n+1, mpi_int_t,  0, grid.comm );
    } else {
	/* Receive matrix A from PE 0. */
	MPI_Bcast( &m,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &n,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &nnz, 1,   mpi_int_t,  0, grid.comm );

	/* Allocate storage for compressed column representation. */
	zallocateA_dist(n, nnz, &a, &asub, &xa);

	MPI_Bcast( a,    nnz, SuperLU_MPI_DOUBLE_COMPLEX, 0, grid.comm );
	MPI_Bcast( asub, nnz, mpi_int_t,  0, grid.comm );
	MPI_Bcast( xa,   n+1, mpi_int_t,  0, grid.comm );
    }
	
    /* Create compressed column matrix for A. */
    zCreate_CompCol_Matrix_dist(&A, m, n, nnz, a, asub, xa,
				SLU_NC, SLU_Z, SLU_GE);

    /* Generate the exact solution and compute the right-hand side. */
    if (!(b=doublecomplexMalloc_dist(m*nrhs))) ABORT("Malloc fails for b[]");
    if (!(xtrue=doublecomplexMalloc_dist(n*nrhs))) ABORT("Malloc fails for xtrue[]");
    *trans = 'N';
    ldx = n;
    ldb = m;
    zGenXtrue_dist(n, nrhs, xtrue, ldx);
    zFillRHS_dist(trans, nrhs, xtrue, ldx, &A, b, ldb);

    if ( !(berr = doubleMalloc_dist(nrhs)) )
	ABORT("Malloc fails for berr[].");

    /* ------------------------------------------------------------
       NOW WE SOLVE THE LINEAR SYSTEM.
       ------------------------------------------------------------*/

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = METIS_AT_PLUS_A;
        options.RowPerm = LargeDiag_MC64;
        options.ReplaceTinyPivot = YES;
        options.Trans = NOTRANS;
        options.IterRefine = DOUBLE;
        options.SolveInitialized = NO;
        options.RefineInitialized = NO;
        options.PrintStat = YES;
     */
    set_default_options_dist(&options);

    if (!iam) {
	print_sp_ienv_dist(&options);
	print_options_dist(&options);
    }

    /* Initialize ScalePermstruct and LUstruct. */
    ScalePermstructInit(m, n, &ScalePermstruct);
    LUstructInit(n, &LUstruct);

    /* Initialize the statistics variables. */
    PStatInit(&stat);

    /* Call the linear equation solver. */
    pzgssvx_ABglobal(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid,
		     &LUstruct, berr, &stat, &info);

    /* Check the accuracy of the solution. */
    if ( !iam ) {
	zinf_norm_error_dist(n, nrhs, b, ldb, xtrue, ldx, &grid);
    }
    PStatPrint(&options, &stat, &grid);        /* Print the statistics. */

    /* ------------------------------------------------------------
       DEALLOCATE STORAGE.
       ------------------------------------------------------------*/
    PStatFree(&stat);
    Destroy_CompCol_Matrix_dist(&A);
    Destroy_LU(n, &grid, &LUstruct);
    ScalePermstructFree(&ScalePermstruct);
    LUstructFree(&LUstruct);
    SUPERLU_FREE(b);
    SUPERLU_FREE(xtrue);
    SUPERLU_FREE(berr);

    /* ------------------------------------------------------------
       RELEASE THE SUPERLU PROCESS GRID.
       ------------------------------------------------------------*/
out:
    superlu_gridexit(&grid);

    /* ------------------------------------------------------------
       TERMINATES THE MPI EXECUTION ENVIRONMENT.
       ------------------------------------------------------------*/
    MPI_Finalize();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Exit main()");
#endif

}
コード例 #2
0
int main(int argc, char *argv[])
{
    superlu_options_t options;
    SuperLUStat_t stat;
    SuperMatrix A;
    ScalePermstruct_t ScalePermstruct;
    LUstruct_t LUstruct;
    gridinfo_t grid;
    double   *berr;
    doublecomplex   *a, *a1, *b, *b1, *xtrue;
    int_t    *asub, *asub1, *xa, *xa1;
    int_t    i, j, m, n, nnz;
    int_t    nprow, npcol;
    int      iam, info, ldb, ldx, nrhs;
    char     trans[1];
    char     **cpp, c;
    FILE *fp, *fopen();
    extern int cpp_defs();


    nprow = 1;  /* Default process rows.      */
    npcol = 1;  /* Default process columns.   */
    nrhs = 1;   /* Number of right-hand side. */

    /* ------------------------------------------------------------
       INITIALIZE MPI ENVIRONMENT. 
       ------------------------------------------------------------*/
    MPI_Init( &argc, &argv );

    /* Parse command line argv[]. */
    for (cpp = argv+1; *cpp; ++cpp) {
	if ( **cpp == '-' ) {
	    c = *(*cpp+1);
	    ++cpp;
	    switch (c) {
	      case 'h':
		  printf("Options:\n");
		  printf("\t-r <int>: process rows    (default %d)\n", nprow);
		  printf("\t-c <int>: process columns (default %d)\n", npcol);
		  exit(0);
		  break;
	      case 'r': nprow = atoi(*cpp);
		        break;
	      case 'c': npcol = atoi(*cpp);
		        break;
	    }
	} else { /* Last arg is considered a filename */
	    if ( !(fp = fopen(*cpp, "r")) ) {
                ABORT("File does not exist");
            }
	    break;
	}
    }

    /* ------------------------------------------------------------
       INITIALIZE THE SUPERLU PROCESS GRID. 
       ------------------------------------------------------------*/
    superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);

    /* Bail out if I do not belong in the grid. */
    iam = grid.iam;
    if ( iam >= nprow * npcol )
	goto out;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter main()");
#endif

    /* ------------------------------------------------------------
       Process 0 reads the matrix A, and then broadcasts it to all
       the other processes.
       ------------------------------------------------------------*/
    if ( !iam ) {
	/* Print the CPP definitions. */
	cpp_defs();
	
	/* Read the matrix stored on disk in Harwell-Boeing format. */
	zreadhb_dist(iam, fp, &m, &n, &nnz, &a, &asub, &xa);
	
	printf("Input matrix file: %s\n", *cpp);
	printf("\tDimension\t%dx%d\t # nonzeros %d\n", m, n, nnz);
	printf("\tProcess grid\t%d X %d\n", grid.nprow, grid.npcol);

	/* Broadcast matrix A to the other PEs. */
	MPI_Bcast( &m,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &n,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &nnz, 1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( a,    nnz, SuperLU_MPI_DOUBLE_COMPLEX, 0, grid.comm );
	MPI_Bcast( asub, nnz, mpi_int_t,  0, grid.comm );
	MPI_Bcast( xa,   n+1, mpi_int_t,  0, grid.comm );
    } else {
	/* Receive matrix A from PE 0. */
	MPI_Bcast( &m,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &n,   1,   mpi_int_t,  0, grid.comm );
	MPI_Bcast( &nnz, 1,   mpi_int_t,  0, grid.comm );

	/* Allocate storage for compressed column representation. */
	zallocateA_dist(n, nnz, &a, &asub, &xa);

	MPI_Bcast( a,    nnz, SuperLU_MPI_DOUBLE_COMPLEX, 0, grid.comm );
	MPI_Bcast( asub, nnz, mpi_int_t,  0, grid.comm );
	MPI_Bcast( xa,   n+1, mpi_int_t,  0, grid.comm );
    }
	
    /* Create compressed column matrix for A. */
    zCreate_CompCol_Matrix_dist(&A, m, n, nnz, a, asub, xa,
				SLU_NC, SLU_Z, SLU_GE);

    /* Generate the exact solution and compute the right-hand side. */
    if (!(b=doublecomplexMalloc_dist(m * nrhs))) ABORT("Malloc fails for b[]");
    if (!(xtrue=doublecomplexMalloc_dist(n*nrhs))) ABORT("Malloc fails for xtrue[]");
    *trans = 'N';
    ldx = n;
    ldb = m;
    zGenXtrue_dist(n, nrhs, xtrue, ldx);
    zFillRHS_dist(trans, nrhs, xtrue, ldx, &A, b, ldb);

    /* Save a copy of the right-hand side. */  
    if ( !(b1 = doublecomplexMalloc_dist(m * nrhs)) ) ABORT("Malloc fails for b1[]");
    for (j = 0; j < nrhs; ++j)
	for (i = 0; i < m; ++i) b1[i+j*ldb] = b[i+j*ldb];
    
    if ( !(berr = doubleMalloc_dist(nrhs)) )
	ABORT("Malloc fails for berr[].");

    /* Save a copy of the matrix A. */
    zallocateA_dist(n, nnz, &a1, &asub1, &xa1);
    for (i = 0; i < nnz; ++i) { a1[i] = a[i]; asub1[i] = asub[i]; }
    for (i = 0; i < n+1; ++i) xa1[i] = xa[i];


    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME.
       ------------------------------------------------------------*/

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = METIS_AT_PLUS_A;
        options.RowPerm = LargeDiag;
        options.ReplaceTinyPivot = YES;
        options.Trans = NOTRANS;
        options.IterRefine = DOUBLE;
        options.SolveInitialized = NO;
        options.RefineInitialized = NO;
        options.PrintStat = YES;
     */
    set_default_options_dist(&options);

    if (!iam) {
	print_sp_ienv_dist(&options);
	print_options_dist(&options);
    }

    /* Initialize ScalePermstruct and LUstruct. */
    ScalePermstructInit(m, n, &ScalePermstruct);
    LUstructInit(n, &LUstruct);

    /* Initialize the statistics variables. */
    PStatInit(&stat);

    /* Call the linear equation solver: factorize and solve. */
    pzgssvx_ABglobal(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid,
		     &LUstruct, berr, &stat, &info);

    /* Check the accuracy of the solution. */
    if ( !iam ) {
	zinf_norm_error_dist(n, nrhs, b, ldb, xtrue, ldx, &grid);
    }
    
    PStatPrint(&options, &stat, &grid);        /* Print the statistics. */
    PStatFree(&stat);
    Destroy_CompCol_Matrix_dist(&A); /* Deallocate storage of matrix A.     */
    Destroy_LU(n, &grid, &LUstruct); /* Deallocate storage associated with 
					the L and U matrices.               */
    SUPERLU_FREE(b);                 /* Free storage of right-hand side.    */


    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM.
       ONLY THE SPARSITY PATTERN OF MATRIX A IS THE SAME.
       ------------------------------------------------------------*/
    options.Fact = SamePattern;
    PStatInit(&stat); /* Initialize the statistics variables. */

    /* Create compressed column matrix for A. */
    zCreate_CompCol_Matrix_dist(&A, m, n, nnz, a1, asub1, xa1,
				SLU_NC, SLU_Z, SLU_GE);

    /* Solve the linear system. */
    pzgssvx_ABglobal(&options, &A, &ScalePermstruct, b1, ldb, nrhs, &grid,
		     &LUstruct, berr, &stat, &info);

    /* Check the accuracy of the solution. */
    if ( !iam ) {
	printf("Solve the system with the same sparsity pattern.\n");
	zinf_norm_error_dist(n, nrhs, b1, ldb, xtrue, ldx, &grid);
    }

    /* Print the statistics. */
    PStatPrint(&options, &stat, &grid);

    /* ------------------------------------------------------------
       DEALLOCATE STORAGE.
       ------------------------------------------------------------*/
    PStatFree(&stat);
    Destroy_CompCol_Matrix_dist(&A); /* Deallocate storage of matrix A.     */
    Destroy_LU(n, &grid, &LUstruct); /* Deallocate storage associated with    
					the L and U matrices.               */
    ScalePermstructFree(&ScalePermstruct);
    LUstructFree(&LUstruct);         /* Deallocate the structure of L and U.*/
    SUPERLU_FREE(b1);	             /* Free storage of right-hand side.    */
    SUPERLU_FREE(xtrue);             /* Free storage of the exact solution. */
    SUPERLU_FREE(berr);


    /* ------------------------------------------------------------
       RELEASE THE SUPERLU PROCESS GRID.
       ------------------------------------------------------------*/
out:
    superlu_gridexit(&grid);

    /* ------------------------------------------------------------
       TERMINATES THE MPI EXECUTION ENVIRONMENT.
       ------------------------------------------------------------*/
    MPI_Finalize();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Exit main()");
#endif

}
コード例 #3
0
ファイル: superlu_dist.c プロジェクト: 00liujj/petsc
PetscErrorCode MatLUFactorNumeric_SuperLU_DIST(Mat F,Mat A,const MatFactorInfo *info)
{
  Mat              *tseq,A_seq = NULL;
  Mat_SeqAIJ       *aa,*bb;
  Mat_SuperLU_DIST *lu = (Mat_SuperLU_DIST*)(F)->spptr;
  PetscErrorCode   ierr;
  PetscInt         M=A->rmap->N,N=A->cmap->N,i,*ai,*aj,*bi,*bj,nz,rstart,*garray,
                   m=A->rmap->n, colA_start,j,jcol,jB,countA,countB,*bjj,*ajj;
  int              sinfo;   /* SuperLU_Dist info flag is always an int even with long long indices */
  PetscMPIInt      size;
  SuperLUStat_t    stat;
  double           *berr=0;
  IS               isrow;
  Mat              F_diag=NULL;
#if defined(PETSC_USE_COMPLEX)
  doublecomplex    *av, *bv;
#else
  double           *av, *bv;
#endif

  PetscFunctionBegin;
  ierr = MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);CHKERRQ(ierr);

  if (lu->MatInputMode == GLOBAL) { /* global mat input */
    if (size > 1) { /* convert mpi A to seq mat A */
      ierr = ISCreateStride(PETSC_COMM_SELF,M,0,1,&isrow);CHKERRQ(ierr);
      ierr = MatGetSubMatrices(A,1,&isrow,&isrow,MAT_INITIAL_MATRIX,&tseq);CHKERRQ(ierr);
      ierr = ISDestroy(&isrow);CHKERRQ(ierr);

      A_seq = *tseq;
      ierr  = PetscFree(tseq);CHKERRQ(ierr);
      aa    = (Mat_SeqAIJ*)A_seq->data;
    } else {
      PetscBool flg;
      ierr = PetscObjectTypeCompare((PetscObject)A,MATMPIAIJ,&flg);CHKERRQ(ierr);
      if (flg) {
        Mat_MPIAIJ *At = (Mat_MPIAIJ*)A->data;
        A = At->A;
      }
      aa =  (Mat_SeqAIJ*)A->data;
    }

    /* Convert Petsc NR matrix to SuperLU_DIST NC.
       Note: memories of lu->val, col and row are allocated by CompRow_to_CompCol_dist()! */
    if (lu->options.Fact != DOFACT) {/* successive numeric factorization, sparsity pattern is reused. */
      PetscStackCall("SuperLU_DIST:Destroy_CompCol_Matrix_dist",Destroy_CompCol_Matrix_dist(&lu->A_sup));
      if (lu->FactPattern == SamePattern_SameRowPerm) {
        lu->options.Fact = SamePattern_SameRowPerm; /* matrix has similar numerical values */
      } else { /* lu->FactPattern == SamePattern */
        PetscStackCall("SuperLU_DIST:Destroy_LU",Destroy_LU(N, &lu->grid, &lu->LUstruct));
        lu->options.Fact = SamePattern;
      }
    }
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:zCompRow_to_CompCol_dist",zCompRow_to_CompCol_dist(M,N,aa->nz,(doublecomplex*)aa->a,(int_t*)aa->j,(int_t*)aa->i,&lu->val,&lu->col, &lu->row));
#else
    PetscStackCall("SuperLU_DIST:dCompRow_to_CompCol_dist",dCompRow_to_CompCol_dist(M,N,aa->nz,aa->a,(int_t*)aa->j,(int_t*)aa->i,&lu->val, &lu->col, &lu->row));
#endif

    /* Create compressed column matrix A_sup. */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:zCreate_CompCol_Matrix_dist",zCreate_CompCol_Matrix_dist(&lu->A_sup, M, N, aa->nz, lu->val, lu->col, lu->row, SLU_NC, SLU_Z, SLU_GE));
#else
    PetscStackCall("SuperLU_DIST:dCreate_CompCol_Matrix_dist",dCreate_CompCol_Matrix_dist(&lu->A_sup, M, N, aa->nz, lu->val, lu->col, lu->row, SLU_NC, SLU_D, SLU_GE));
#endif
  } else { /* distributed mat input */
    Mat_MPIAIJ *mat = (Mat_MPIAIJ*)A->data;
    aa=(Mat_SeqAIJ*)(mat->A)->data;
    bb=(Mat_SeqAIJ*)(mat->B)->data;
    ai=aa->i; aj=aa->j;
    bi=bb->i; bj=bb->j;
#if defined(PETSC_USE_COMPLEX)
    av=(doublecomplex*)aa->a;
    bv=(doublecomplex*)bb->a;
#else
    av=aa->a;
    bv=bb->a;
#endif
    rstart = A->rmap->rstart;
    nz     = aa->nz + bb->nz;
    garray = mat->garray;

    if (lu->options.Fact == DOFACT) { /* first numeric factorization */
#if defined(PETSC_USE_COMPLEX)
      PetscStackCall("SuperLU_DIST:zallocateA_dist",zallocateA_dist(m, nz, &lu->val, &lu->col, &lu->row));
#else
      PetscStackCall("SuperLU_DIST:dallocateA_dist",dallocateA_dist(m, nz, &lu->val, &lu->col, &lu->row));
#endif
    } else { /* successive numeric factorization, sparsity pattern and perm_c are reused. */
      /* Destroy_CompRowLoc_Matrix_dist(&lu->A_sup); */ /* this leads to crash! However, see SuperLU_DIST_2.5/EXAMPLE/pzdrive2.c */
      if (lu->FactPattern == SamePattern_SameRowPerm) {
        lu->options.Fact = SamePattern_SameRowPerm; /* matrix has similar numerical values */
      } else {
        PetscStackCall("SuperLU_DIST:Destroy_LU",Destroy_LU(N, &lu->grid, &lu->LUstruct)); /* Deallocate storage associated with the L and U matrices. */
        lu->options.Fact = SamePattern;
      }
    }
    nz = 0;
    for (i=0; i<m; i++) {
      lu->row[i] = nz;
      countA     = ai[i+1] - ai[i];
      countB     = bi[i+1] - bi[i];
      ajj        = aj + ai[i]; /* ptr to the beginning of this row */
      bjj        = bj + bi[i];

      /* B part, smaller col index */
      colA_start = rstart + ajj[0]; /* the smallest global col index of A */
      jB         = 0;
      for (j=0; j<countB; j++) {
        jcol = garray[bjj[j]];
        if (jcol > colA_start) {
          jB = j;
          break;
        }
        lu->col[nz]   = jcol;
        lu->val[nz++] = *bv++;
        if (j==countB-1) jB = countB;
      }

      /* A part */
      for (j=0; j<countA; j++) {
        lu->col[nz]   = rstart + ajj[j];
        lu->val[nz++] = *av++;
      }

      /* B part, larger col index */
      for (j=jB; j<countB; j++) {
        lu->col[nz]   = garray[bjj[j]];
        lu->val[nz++] = *bv++;
      }
    }
    lu->row[m] = nz;
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:zCreate_CompRowLoc_Matrix_dist",zCreate_CompRowLoc_Matrix_dist(&lu->A_sup, M, N, nz, m, rstart,lu->val, lu->col, lu->row, SLU_NR_loc, SLU_Z, SLU_GE));
#else
    PetscStackCall("SuperLU_DIST:dCreate_CompRowLoc_Matrix_dist",dCreate_CompRowLoc_Matrix_dist(&lu->A_sup, M, N, nz, m, rstart,lu->val, lu->col, lu->row, SLU_NR_loc, SLU_D, SLU_GE));
#endif
  }

  /* Factor the matrix. */
  PetscStackCall("SuperLU_DIST:PStatInit",PStatInit(&stat));   /* Initialize the statistics variables. */
  if (lu->MatInputMode == GLOBAL) { /* global mat input */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:pzgssvx_ABglobal",pzgssvx_ABglobal(&lu->options, &lu->A_sup, &lu->ScalePermstruct, 0, M, 0,&lu->grid, &lu->LUstruct, berr, &stat, &sinfo));
#else
    PetscStackCall("SuperLU_DIST:pdgssvx_ABglobal",pdgssvx_ABglobal(&lu->options, &lu->A_sup, &lu->ScalePermstruct, 0, M, 0,&lu->grid, &lu->LUstruct, berr, &stat, &sinfo));
#endif
  } else { /* distributed mat input */
#if defined(PETSC_USE_COMPLEX)
    PetscStackCall("SuperLU_DIST:pzgssvx",pzgssvx(&lu->options, &lu->A_sup, &lu->ScalePermstruct, 0, m, 0, &lu->grid,&lu->LUstruct, &lu->SOLVEstruct, berr, &stat, &sinfo));
    if (sinfo) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"pzgssvx fails, info: %d\n",sinfo);
#else
    PetscStackCall("SuperLU_DIST:pdgssvx",pdgssvx(&lu->options, &lu->A_sup, &lu->ScalePermstruct, 0, m, 0, &lu->grid,&lu->LUstruct, &lu->SOLVEstruct, berr, &stat, &sinfo));
    if (sinfo) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"pdgssvx fails, info: %d\n",sinfo);
#endif
  }

  if (lu->MatInputMode == GLOBAL && size > 1) {
    ierr = MatDestroy(&A_seq);CHKERRQ(ierr);
  }

  if (lu->options.PrintStat) {
    PStatPrint(&lu->options, &stat, &lu->grid);  /* Print the statistics. */
  }
  PStatFree(&stat);
  if (size > 1) {
    F_diag            = ((Mat_MPIAIJ*)(F)->data)->A;
    F_diag->assembled = PETSC_TRUE;
  }
  (F)->assembled    = PETSC_TRUE;
  (F)->preallocated = PETSC_TRUE;
  lu->options.Fact  = FACTORED; /* The factored form of A is supplied. Local option used by this func. only */
  PetscFunctionReturn(0);
}
コード例 #4
0
int zcreate_dist_matrix(SuperMatrix *A, int_t m, int_t n, int_t nnz,
			doublecomplex *nzval_g, int_t *rowind_g, int_t *colptr_g,
			gridinfo_t *grid)
{
    SuperMatrix GA;              /* global A */
    int_t    *rowind, *colptr;	 /* global */
    doublecomplex   *nzval;             /* global */
    doublecomplex   *nzval_loc;         /* local */
    int_t    *colind, *rowptr;	 /* local */
    int_t    m_loc, fst_row, nnz_loc;
    int_t    m_loc_fst; /* Record m_loc of the first p-1 processors,
			   when mod(m, p) is not zero. */ 
    int_t    iam, row, col, i, j, relpos;
    char     trans[1];
    int_t    *marker;

    iam = grid->iam;

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC(iam, "Enter zcreate_dist_matrix()");
#endif
 
    if ( !iam ) {

        /* Allocate storage for compressed column representation. */
        zallocateA_dist(n, nnz, &nzval, &rowind, &colptr);

	/* Copy the global matrix. */
#if 0
	/* and ADJUST to 0-based indexing 
           which is required by the C routines.*/
#endif
        for(i=0; i<nnz; i++){
	  nzval[i]=nzval_g[i];
	  rowind[i]=rowind_g[i]; /* - 1;*/
        }
        for(i=0; i<n+1; i++)
	  colptr[i]=colptr_g[i]; /* - 1;*/


	/* Broadcast matrix A to the other PEs. */
	MPI_Bcast( &m,     1,   mpi_int_t,  0, grid->comm );
	MPI_Bcast( &n,     1,   mpi_int_t,  0, grid->comm );
	MPI_Bcast( &nnz,   1,   mpi_int_t,  0, grid->comm );
	MPI_Bcast( nzval,  nnz, SuperLU_MPI_DOUBLE_COMPLEX, 0, grid->comm );
	MPI_Bcast( rowind, nnz, mpi_int_t,  0, grid->comm );
	MPI_Bcast( colptr, n+1, mpi_int_t,  0, grid->comm );
    } else {
	/* Receive matrix A from PE 0. */
	MPI_Bcast( &m,   1,   mpi_int_t,  0, grid->comm );
	MPI_Bcast( &n,   1,   mpi_int_t,  0, grid->comm );
	MPI_Bcast( &nnz, 1,   mpi_int_t,  0, grid->comm );

	/* Allocate storage for compressed column representation. */
	zallocateA_dist(n, nnz, &nzval, &rowind, &colptr);

	MPI_Bcast( nzval,   nnz, SuperLU_MPI_DOUBLE_COMPLEX, 0, grid->comm );
	MPI_Bcast( rowind,  nnz, mpi_int_t,  0, grid->comm );
	MPI_Bcast( colptr,  n+1, mpi_int_t,  0, grid->comm );
    }

#if 0
    nzval[0]=0.1;
#endif

    /* Compute the number of rows to be distributed to local process */
    m_loc = m / (grid->nprow * grid->npcol); 
    m_loc_fst = m_loc;
    /* When m / procs is not an integer */
    if ((m_loc * grid->nprow * grid->npcol) != m) {
      m_loc = m_loc+1;
      m_loc_fst = m_loc;
      if (iam == (grid->nprow * grid->npcol - 1)) 
	m_loc = m - m_loc_fst * (grid->nprow * grid->npcol - 1);
    }

    /* Create compressed column matrix for GA. */
    zCreate_CompCol_Matrix_dist(&GA, m, n, nnz, nzval, rowind, colptr,
				SLU_NC, SLU_Z, SLU_GE);


    /*************************************************
     * Change GA to a local A with NR_loc format     *
     *************************************************/

    rowptr = (int_t *) intMalloc_dist(m_loc+1);
    marker = (int_t *) intCalloc_dist(n);

    /* Get counts of each row of GA */
    for (i = 0; i < n; ++i)
      for (j = colptr[i]; j < colptr[i+1]; ++j) ++marker[rowind[j]];
    /* Set up row pointers */
    rowptr[0] = 0;
    fst_row = iam * m_loc_fst;
    nnz_loc = 0;
    for (j = 0; j < m_loc; ++j) {
      row = fst_row + j;
      rowptr[j+1] = rowptr[j] + marker[row];
      marker[j] = rowptr[j];
    }
    nnz_loc = rowptr[m_loc];

    nzval_loc = (doublecomplex *) doublecomplexMalloc_dist(nnz_loc);
    colind = (int_t *) intMalloc_dist(nnz_loc);

    /* Transfer the matrix into the compressed row storage */
    for (i = 0; i < n; ++i) {
      for (j = colptr[i]; j < colptr[i+1]; ++j) {
	row = rowind[j];
	if ( (row>=fst_row) && (row<fst_row+m_loc) ) {
	  row = row - fst_row;
	  relpos = marker[row];
	  colind[relpos] = i;
	  nzval_loc[relpos] = nzval[j];
	  ++marker[row];
	}
      }
    }

#if ( DEBUGlevel>=1 )
    if ( !iam ) dPrint_CompCol_Matrix_dist(&GA);
#endif   


    /* Destroy GA */
    Destroy_CompCol_Matrix_dist(&GA);


    /******************************************************/
    /* Change GA to a local A with NR_loc format */
    /******************************************************/

    /* Set up the local A in NR_loc format */
    zCreate_CompRowLoc_Matrix_dist(A, m, n, nnz_loc, m_loc, fst_row,
				   nzval_loc, colind, rowptr,
				   SLU_NR_loc, SLU_Z, SLU_GE);
    
    SUPERLU_FREE(marker);

#if ( DEBUGlevel>=1 )
    printf("sizeof(NRforamt_loc) %d\n", sizeof(NRformat_loc));
    CHECK_MALLOC(iam, "Exit dcreate_dist_matrix()");
#endif
    return 0;
}