コード例 #1
0
ファイル: zgeqrf.c プロジェクト: 3deggi/levmar-ndk
/* Subroutine */ int zgeqrf_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork, 
	 integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(
	    char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    integer ldwork;
    extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEQRF computes a QR factorization of a complex M-by-N matrix A: */
/*  A = Q * R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the unitary matrix Q as a */
/*          product of min(m,n) elementary reflectors (see Further */
/*          Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,N). */
/*          For optimum performance LWORK >= N*NB, where NB is */
/*          the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a complex scalar, and v is a complex vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
    lwkopt = *n * nb;
    work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQRF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    k = min(*m,*n);
    if (k == 0) {
	work[1].r = 1., work[1].i = 0.;
	return 0;
    }

    nbmin = 2;
    nx = 0;
    iws = *n;
    if (nb > 1 && nb < k) {

/*        Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
	i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
	nx = max(i__1,i__2);
	if (nx < k) {

/*           Determine if workspace is large enough for blocked code. */

	    ldwork = *n;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduce NB and */
/*              determine the minimum value of NB. */

		nb = *lwork / ldwork;
/* Computing MAX */
		i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", m, n, &c_n1, &
			c_n1);
		nbmin = max(i__1,i__2);
	    }
	}
    }

    if (nb >= nbmin && nb < k && nx < k) {

/*        Use blocked code initially */

	i__1 = k - nx;
	i__2 = nb;
	for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__3 = k - i__ + 1;
	    ib = min(i__3,nb);

/*           Compute the QR factorization of the current block */
/*           A(i:m,i:i+ib-1) */

	    i__3 = *m - i__ + 1;
	    zgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
		    1], &iinfo);
	    if (i__ + ib <= *n) {

/*              Form the triangular factor of the block reflector */
/*              H = H(i) H(i+1) . . . H(i+ib-1) */

		i__3 = *m - i__ + 1;
		zlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ * 
			a_dim1], lda, &tau[i__], &work[1], &ldwork);

/*              Apply H' to A(i:m,i+ib:n) from the left */

		i__3 = *m - i__ + 1;
		i__4 = *n - i__ - ib + 1;
		zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise"
, &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &
			work[1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda, 
			&work[ib + 1], &ldwork);
	    }
/* L10: */
	}
    } else {
	i__ = 1;
    }

/*     Use unblocked code to factor the last or only block. */

    if (i__ <= k) {
	i__2 = *m - i__ + 1;
	i__1 = *n - i__ + 1;
	zgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
, &iinfo);
    }

    work[1].r = (doublereal) iws, work[1].i = 0.;
    return 0;

/*     End of ZGEQRF */

} /* zgeqrf_ */
コード例 #2
0
/* Subroutine */ int zgeqpf_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work, 
	doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Local variables */
    integer i__, j, ma, mn;
    doublecomplex aii;
    integer pvt;
    doublereal temp, temp2, tol3z;
    integer itemp;

/*  -- LAPACK deprecated driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine ZGEQP3. */

/*  ZGEQPF computes a QR factorization with column pivoting of a */
/*  complex M-by-N matrix A: A*P = Q*R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. N >= 0 */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the upper triangle of the array contains the */
/*          min(M,N)-by-N upper triangular matrix R; the elements */
/*          below the diagonal, together with the array TAU, */
/*          represent the unitary matrix Q as a product of */
/*          min(m,n) elementary reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/*          to the front of A*P (a leading column); if JPVT(i) = 0, */
/*          the i-th column of A is a free column. */
/*          On exit, if JPVT(i) = k, then the i-th column of A*P */
/*          was the k-th column of A. */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors. */

/*  WORK    (workspace) COMPLEX*16 array, dimension (N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(n) */

/*  Each H(i) has the form */

/*     H = I - tau * v * v' */

/*  where tau is a complex scalar, and v is a complex vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */

/*  The matrix P is represented in jpvt as follows: If */
/*     jpvt(j) = i */
/*  then the jth column of P is the ith canonical unit vector. */

/*  Partial column norm updating strategy modified by */
/*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
/*    University of Zagreb, Croatia. */
/*    June 2006. */
/*  For more details see LAPACK Working Note 176. */

/*  ===================================================================== */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --jpvt;
    --tau;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQPF", &i__1);
	return 0;
    }

    mn = min(*m,*n);
    tol3z = sqrt(dlamch_("Epsilon"));

/*     Move initial columns up front */

    itemp = 1;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (jpvt[i__] != 0) {
	    if (i__ != itemp) {
		zswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1], 
			 &c__1);
		jpvt[i__] = jpvt[itemp];
		jpvt[itemp] = i__;
	    } else {
		jpvt[i__] = i__;
	    }
	    ++itemp;
	} else {
	    jpvt[i__] = i__;
	}
    }
    --itemp;

/*     Compute the QR factorization and update remaining columns */

    if (itemp > 0) {
	ma = min(itemp,*m);
	zgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
	if (ma < *n) {
	    i__1 = *n - ma;
	    zunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &a[a_offset]
, lda, &tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], 
		    info);
	}
    }

    if (itemp < mn) {

/*        Initialize partial column norms. The first n elements of */
/*        work store the exact column norms. */

	i__1 = *n;
	for (i__ = itemp + 1; i__ <= i__1; ++i__) {
	    i__2 = *m - itemp;
	    rwork[i__] = dznrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
	    rwork[*n + i__] = rwork[i__];
	}

/*        Compute factorization */

	i__1 = mn;
	for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/*           Determine ith pivot column and swap if necessary */

	    i__2 = *n - i__ + 1;
	    pvt = i__ - 1 + idamax_(&i__2, &rwork[i__], &c__1);

	    if (pvt != i__) {
		zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
			c__1);
		itemp = jpvt[pvt];
		jpvt[pvt] = jpvt[i__];
		jpvt[i__] = itemp;
		rwork[pvt] = rwork[i__];
		rwork[*n + pvt] = rwork[*n + i__];
	    }

/*           Generate elementary reflector H(i) */

	    i__2 = i__ + i__ * a_dim1;
	    aii.r = a[i__2].r, aii.i = a[i__2].i;
	    i__2 = *m - i__ + 1;
/* Computing MIN */
	    i__3 = i__ + 1;
	    zlarfp_(&i__2, &aii, &a[min(i__3, *m)+ i__ * a_dim1], &c__1, &tau[
		    i__]);
	    i__2 = i__ + i__ * a_dim1;
	    a[i__2].r = aii.r, a[i__2].i = aii.i;

	    if (i__ < *n) {

/*              Apply H(i) to A(i:m,i+1:n) from the left */

		i__2 = i__ + i__ * a_dim1;
		aii.r = a[i__2].r, aii.i = a[i__2].i;
		i__2 = i__ + i__ * a_dim1;
		a[i__2].r = 1., a[i__2].i = 0.;
		i__2 = *m - i__ + 1;
		i__3 = *n - i__;
		d_cnjg(&z__1, &tau[i__]);
		zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
			z__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
		i__2 = i__ + i__ * a_dim1;
		a[i__2].r = aii.r, a[i__2].i = aii.i;
	    }

/*           Update partial column norms */

	    i__2 = *n;
	    for (j = i__ + 1; j <= i__2; ++j) {
		if (rwork[j] != 0.) {

/*                 NOTE: The following 4 lines follow from the analysis in */
/*                 Lapack Working Note 176. */

		    temp = z_abs(&a[i__ + j * a_dim1]) / rwork[j];
/* Computing MAX */
		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);
		    temp = max(d__1,d__2);
/* Computing 2nd power */
		    d__1 = rwork[j] / rwork[*n + j];
		    temp2 = temp * (d__1 * d__1);
		    if (temp2 <= tol3z) {
			if (*m - i__ > 0) {
			    i__3 = *m - i__;
			    rwork[j] = dznrm2_(&i__3, &a[i__ + 1 + j * a_dim1]
, &c__1);
			    rwork[*n + j] = rwork[j];
			} else {
			    rwork[j] = 0.;
			    rwork[*n + j] = 0.;
			}
		    } else {
			rwork[j] *= sqrt(temp);
		    }
		}
	    }

	}
    }
    return 0;

/*     End of ZGEQPF */

} /* zgeqpf_ */
コード例 #3
0
ファイル: zqrt14.c プロジェクト: zangel/uquad
doublereal zqrt14_(char *trans, integer *m, integer *n, integer *nrhs, 
	doublecomplex *a, integer *lda, doublecomplex *x, integer *ldx, 
	doublecomplex *work, integer *lwork)
{
    /* System generated locals */
    integer a_dim1, a_offset, x_dim1, x_offset, i__1, i__2, i__3;
    doublereal ret_val, d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    double z_abs(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    static integer info;
    static doublereal anrm;
    static logical tpsd;
    static doublereal xnrm;
    static integer i__, j;
    extern logical lsame_(char *, char *);
    static doublereal rwork[1];
    extern /* Subroutine */ int zgelq2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *), zgeqr2_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int zlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublecomplex *,
	     integer *, integer *);
    static integer ldwork;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal err;


#define x_subscr(a_1,a_2) (a_2)*x_dim1 + a_1
#define x_ref(a_1,a_2) x[x_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    ZQRT14 checks whether X is in the row space of A or A'.  It does so   
    by scaling both X and A such that their norms are in the range   
    [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]   
    (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'),   
    and returning the norm of the trailing triangle, scaled by   
    MAX(M,N,NRHS)*eps.   

    Arguments   
    =========   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, check for X in the row space of A   
            = 'C':  Conjugate transpose, check for X in row space of A'.   

    M       (input) INTEGER   
            The number of rows of the matrix A.   

    N       (input) INTEGER   
            The number of columns of the matrix A.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of X.   

    A       (input) COMPLEX*16 array, dimension (LDA,N)   
            The M-by-N matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   

    X       (input) COMPLEX*16 array, dimension (LDX,NRHS)   
            If TRANS = 'N', the N-by-NRHS matrix X.   
            IF TRANS = 'C', the M-by-NRHS matrix X.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.   

    WORK    (workspace) COMPLEX*16 array dimension (LWORK)   

    LWORK   (input) INTEGER   
            length of workspace array required   
            If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);   
            if TRANS = 'C', LWORK >= (N+NRHS)*(M+2).   

    =====================================================================   


       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    --work;

    /* Function Body */
    ret_val = 0.;
    if (lsame_(trans, "N")) {
	ldwork = *m + *nrhs;
	tpsd = FALSE_;
	if (*lwork < (*m + *nrhs) * (*n + 2)) {
	    xerbla_("ZQRT14", &c__10);
	    return ret_val;
	} else if (*n <= 0 || *nrhs <= 0) {
	    return ret_val;
	}
    } else if (lsame_(trans, "C")) {
	ldwork = *m;
	tpsd = TRUE_;
	if (*lwork < (*n + *nrhs) * (*m + 2)) {
	    xerbla_("ZQRT14", &c__10);
	    return ret_val;
	} else if (*m <= 0 || *nrhs <= 0) {
	    return ret_val;
	}
    } else {
	xerbla_("ZQRT14", &c__1);
	return ret_val;
    }

/*     Copy and scale A */

    zlacpy_("All", m, n, &a[a_offset], lda, &work[1], &ldwork);
    anrm = zlange_("M", m, n, &work[1], &ldwork, rwork);
    if (anrm != 0.) {
	zlascl_("G", &c__0, &c__0, &anrm, &c_b15, m, n, &work[1], &ldwork, &
		info);
    }

/*     Copy X or X' into the right place and scale it */

    if (tpsd) {

/*        Copy X into columns n+1:n+nrhs of work */

	zlacpy_("All", m, nrhs, &x[x_offset], ldx, &work[*n * ldwork + 1], &
		ldwork);
	xnrm = zlange_("M", m, nrhs, &work[*n * ldwork + 1], &ldwork, rwork);
	if (xnrm != 0.) {
	    zlascl_("G", &c__0, &c__0, &xnrm, &c_b15, m, nrhs, &work[*n * 
		    ldwork + 1], &ldwork, &info);
	}
	i__1 = *n + *nrhs;
	anrm = zlange_("One-norm", m, &i__1, &work[1], &ldwork, rwork);

/*        Compute QR factorization of X */

	i__1 = *n + *nrhs;
/* Computing MIN */
	i__2 = *m, i__3 = *n + *nrhs;
	zgeqr2_(m, &i__1, &work[1], &ldwork, &work[ldwork * (*n + *nrhs) + 1],
		 &work[ldwork * (*n + *nrhs) + min(i__2,i__3) + 1], &info);

/*        Compute largest entry in upper triangle of   
          work(n+1:m,n+1:n+nrhs) */

	err = 0.;
	i__1 = *n + *nrhs;
	for (j = *n + 1; j <= i__1; ++j) {
	    i__2 = min(*m,j);
	    for (i__ = *n + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		d__1 = err, d__2 = z_abs(&work[i__ + (j - 1) * *m]);
		err = max(d__1,d__2);
/* L10: */
	    }
/* L20: */
	}

    } else {

/*        Copy X' into rows m+1:m+nrhs of work */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *nrhs;
	    for (j = 1; j <= i__2; ++j) {
		i__3 = *m + j + (i__ - 1) * ldwork;
		d_cnjg(&z__1, &x_ref(i__, j));
		work[i__3].r = z__1.r, work[i__3].i = z__1.i;
/* L30: */
	    }
/* L40: */
	}

	xnrm = zlange_("M", nrhs, n, &work[*m + 1], &ldwork, rwork)
		;
	if (xnrm != 0.) {
	    zlascl_("G", &c__0, &c__0, &xnrm, &c_b15, nrhs, n, &work[*m + 1], 
		    &ldwork, &info);
	}

/*        Compute LQ factorization of work */

	zgelq2_(&ldwork, n, &work[1], &ldwork, &work[ldwork * *n + 1], &work[
		ldwork * (*n + 1) + 1], &info);

/*        Compute largest entry in lower triangle in   
          work(m+1:m+nrhs,m+1:n) */

	err = 0.;
	i__1 = *n;
	for (j = *m + 1; j <= i__1; ++j) {
	    i__2 = ldwork;
	    for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
		d__1 = err, d__2 = z_abs(&work[i__ + (j - 1) * ldwork]);
		err = max(d__1,d__2);
/* L50: */
	    }
/* L60: */
	}

    }

/* Computing MAX */
    i__1 = max(*m,*n);
    ret_val = err / ((doublereal) max(i__1,*nrhs) * dlamch_("Epsilon"));

    return ret_val;

/*     End of ZQRT14 */

} /* zqrt14_ */
コード例 #4
0
ファイル: zgeqpf.c プロジェクト: Electrostatics/FETK
/* Subroutine */ int zgeqpf_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work, 
	doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;
    doublecomplex z__1;

    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    static integer i__, j, ma, mn;
    static doublecomplex aii;
    static integer pvt;
    static doublereal temp, temp2;
    static integer itemp;
    extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, ftnlen), zswap_(integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zgeqr2_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, ftnlen, 
	    ftnlen);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zlarfg_(
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *);


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine ZGEQP3. */

/*  ZGEQPF computes a QR factorization with column pivoting of a */
/*  complex M-by-N matrix A: A*P = Q*R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. N >= 0 */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the upper triangle of the array contains the */
/*          min(M,N)-by-N upper triangular matrix R; the elements */
/*          below the diagonal, together with the array TAU, */
/*          represent the unitary matrix Q as a product of */
/*          min(m,n) elementary reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/*          to the front of A*P (a leading column); if JPVT(i) = 0, */
/*          the i-th column of A is a free column. */
/*          On exit, if JPVT(i) = k, then the i-th column of A*P */
/*          was the k-th column of A. */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors. */

/*  WORK    (workspace) COMPLEX*16 array, dimension (N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(n) */

/*  Each H(i) has the form */

/*     H = I - tau * v * v' */

/*  where tau is a complex scalar, and v is a complex vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */

/*  The matrix P is represented in jpvt as follows: If */
/*     jpvt(j) = i */
/*  then the jth column of P is the ith canonical unit vector. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --jpvt;
    --tau;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQPF", &i__1, (ftnlen)6);
	return 0;
    }

    mn = min(*m,*n);

/*     Move initial columns up front */

    itemp = 1;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (jpvt[i__] != 0) {
	    if (i__ != itemp) {
		zswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
			 &c__1);
		jpvt[i__] = jpvt[itemp];
		jpvt[itemp] = i__;
	    } else {
		jpvt[i__] = i__;
	    }
	    ++itemp;
	} else {
	    jpvt[i__] = i__;
	}
/* L10: */
    }
    --itemp;

/*     Compute the QR factorization and update remaining columns */

    if (itemp > 0) {
	ma = min(itemp,*m);
	zgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
	if (ma < *n) {
	    i__1 = *n - ma;
	    zunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &a[a_offset]
		    , lda, &tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], 
		    info, (ftnlen)4, (ftnlen)19);
	}
    }

    if (itemp < mn) {

/*        Initialize partial column norms. The first n elements of */
/*        work store the exact column norms. */

	i__1 = *n;
	for (i__ = itemp + 1; i__ <= i__1; ++i__) {
	    i__2 = *m - itemp;
	    rwork[i__] = dznrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
	    rwork[*n + i__] = rwork[i__];
/* L20: */
	}

/*        Compute factorization */

	i__1 = mn;
	for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/*           Determine ith pivot column and swap if necessary */

	    i__2 = *n - i__ + 1;
	    pvt = i__ - 1 + idamax_(&i__2, &rwork[i__], &c__1);

	    if (pvt != i__) {
		zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
			c__1);
		itemp = jpvt[pvt];
		jpvt[pvt] = jpvt[i__];
		jpvt[i__] = itemp;
		rwork[pvt] = rwork[i__];
		rwork[*n + pvt] = rwork[*n + i__];
	    }

/*           Generate elementary reflector H(i) */

	    i__2 = i__ + i__ * a_dim1;
	    aii.r = a[i__2].r, aii.i = a[i__2].i;
	    i__2 = *m - i__ + 1;
/* Computing MIN */
	    i__3 = i__ + 1;
	    zlarfg_(&i__2, &aii, &a[min(i__3,*m) + i__ * a_dim1], &c__1, &tau[
		    i__]);
	    i__2 = i__ + i__ * a_dim1;
	    a[i__2].r = aii.r, a[i__2].i = aii.i;

	    if (i__ < *n) {

/*              Apply H(i) to A(i:m,i+1:n) from the left */

		i__2 = i__ + i__ * a_dim1;
		aii.r = a[i__2].r, aii.i = a[i__2].i;
		i__2 = i__ + i__ * a_dim1;
		a[i__2].r = 1., a[i__2].i = 0.;
		i__2 = *m - i__ + 1;
		i__3 = *n - i__;
		d_cnjg(&z__1, &tau[i__]);
		zlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
			z__1, &a[i__ + (i__ + 1) * a_dim1], lda, &work[1], (
			ftnlen)4);
		i__2 = i__ + i__ * a_dim1;
		a[i__2].r = aii.r, a[i__2].i = aii.i;
	    }

/*           Update partial column norms */

	    i__2 = *n;
	    for (j = i__ + 1; j <= i__2; ++j) {
		if (rwork[j] != 0.) {
/* Computing 2nd power */
		    d__1 = z_abs(&a[i__ + j * a_dim1]) / rwork[j];
		    temp = 1. - d__1 * d__1;
		    temp = max(temp,0.);
/* Computing 2nd power */
		    d__1 = rwork[j] / rwork[*n + j];
		    temp2 = temp * .05 * (d__1 * d__1) + 1.;
		    if (temp2 == 1.) {
			if (*m - i__ > 0) {
			    i__3 = *m - i__;
			    rwork[j] = dznrm2_(&i__3, &a[i__ + 1 + j * a_dim1]
				    , &c__1);
			    rwork[*n + j] = rwork[j];
			} else {
			    rwork[j] = 0.;
			    rwork[*n + j] = 0.;
			}
		    } else {
			rwork[j] *= sqrt(temp);
		    }
		}
/* L30: */
	    }

/* L40: */
	}
    }
    return 0;

/*     End of ZGEQPF */

} /* zgeqpf_ */
コード例 #5
0
ファイル: zchktz.c プロジェクト: zangel/uquad
/* Subroutine */ int zchktz_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, doublereal *thresh, logical *tsterr, 
	doublecomplex *a, doublecomplex *copya, doublereal *s, doublereal *
	copys, doublecomplex *tau, doublecomplex *work, doublereal *rwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type"
	    " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer mode, info;
    static char path[3];
    static integer nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, m, n, nfail, iseed[4], imode, mnmin, nerrs, lwork;
    extern doublereal zqrt12_(integer *, integer *, doublecomplex *, integer *
	    , doublereal *, doublecomplex *, integer *, doublereal *), 
	    zrzt01_(integer *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *), zrzt02_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *), ztzt01_(integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *), ztzt02_(integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *);
    static integer im, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, 
	    integer *), alasum_(char *, integer *, integer *, integer 
	    *, integer *), zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *), zlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zerrtz_(char *, integer *), ztzrqf_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *), ztzrzf_(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;
    static integer lda;
    static doublereal eps;

    /* Fortran I/O blocks */
    static cilist io___21 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZCHKTZ tests ZTZRQF and ZTZRZF.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    A       (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)   
            where MMAX is the maximum value of M in MVAL and NMAX is the   
            maximum value of N in NVAL.   

    COPYA   (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)   

    S       (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    COPYS   (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    TAU     (workspace) COMPLEX*16 array, dimension (MMAX)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (MMAX*NMAX + 4*NMAX + MMAX)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --rwork;
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Test the error exits */

    if (*tsterr) {
	zerrtz_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL for which M .LE. N. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = n * n + (m << 2) + n;
	    lwork = max(i__3,i__4);

	    if (m <= n) {
		for (imode = 1; imode <= 3; ++imode) {

/*                 Do for each type of singular value distribution.   
                      0:  zero matrix   
                      1:  one small singular value   
                      2:  exponential distribution */

		    mode = imode - 1;

/*                 Test ZTZRQF   

                   Generate test matrix of size m by n using   
                   singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L20: */
			}
		    } else {
			d__1 = 1. / eps;
			zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    zlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call ZTZRQF to reduce the upper trapezoidal matrix to   
                   upper triangular form. */

		    s_copy(srnamc_1.srnamt, "ZTZRQF", (ftnlen)6, (ftnlen)6);
		    ztzrqf_(&m, &n, &a[1], &lda, &tau[1], &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = zqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A - R*Q ) */

		    result[1] = ztzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[2] = ztzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
			    , &lwork);

/*                 Test ZTZRZF   

                   Generate test matrix of size m by n using   
                   singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L30: */
			}
		    } else {
			d__1 = 1. / eps;
			zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    zlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call ZTZRZF to reduce the upper trapezoidal matrix to   
                   upper triangular form. */

		    s_copy(srnamc_1.srnamt, "ZTZRZF", (ftnlen)6, (ftnlen)6);
		    ztzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, &
			    info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[3] = zqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A - R*Q ) */

		    result[4] = zrzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[5] = zrzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
			    , &lwork);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = 1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___21.ciunit = *nout;
			    s_wsfe(&io___21);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L40: */
		    }
		    nrun += 6;
/* L50: */
		}
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End if ZCHKTZ */

    return 0;
} /* zchktz_ */
コード例 #6
0
/* Subroutine */ int zggsvp_(char *jobu, char *jobv, char *jobq, integer *m, 
	integer *p, integer *n, doublecomplex *a, integer *lda, doublecomplex 
	*b, integer *ldb, doublereal *tola, doublereal *tolb, integer *k, 
	integer *l, doublecomplex *u, integer *ldu, doublecomplex *v, integer 
	*ldv, doublecomplex *q, integer *ldq, integer *iwork, doublereal *
	rwork, doublecomplex *tau, doublecomplex *work, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZGGSVP computes unitary matrices U, V and Q such that   

                     N-K-L  K    L   
     U'*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;   
                  L ( 0     0   A23 )   
              M-K-L ( 0     0    0  )   

                     N-K-L  K    L   
            =     K ( 0    A12  A13 )  if M-K-L < 0;   
                M-K ( 0     0   A23 )   

                   N-K-L  K    L   
     V'*B*Q =   L ( 0     0   B13 )   
              P-L ( 0     0    0  )   

    where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular   
    upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,   
    otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective   
    numerical rank of the (M+P)-by-N matrix (A',B')'.  Z' denotes the   
    conjugate transpose of Z.   

    This decomposition is the preprocessing step for computing the   
    Generalized Singular Value Decomposition (GSVD), see subroutine   
    ZGGSVD.   

    Arguments   
    =========   

    JOBU    (input) CHARACTER*1   
            = 'U':  Unitary matrix U is computed;   
            = 'N':  U is not computed.   

    JOBV    (input) CHARACTER*1   
            = 'V':  Unitary matrix V is computed;   
            = 'N':  V is not computed.   

    JOBQ    (input) CHARACTER*1   
            = 'Q':  Unitary matrix Q is computed;   
            = 'N':  Q is not computed.   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    P       (input) INTEGER   
            The number of rows of the matrix B.  P >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrices A and B.  N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A contains the triangular (or trapezoidal) matrix   
            described in the Purpose section.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,M).   

    B       (input/output) COMPLEX*16 array, dimension (LDB,N)   
            On entry, the P-by-N matrix B.   
            On exit, B contains the triangular matrix described in   
            the Purpose section.   

    LDB     (input) INTEGER   
            The leading dimension of the array B. LDB >= max(1,P).   

    TOLA    (input) DOUBLE PRECISION   
    TOLB    (input) DOUBLE PRECISION   
            TOLA and TOLB are the thresholds to determine the effective   
            numerical rank of matrix B and a subblock of A. Generally,   
            they are set to   
               TOLA = MAX(M,N)*norm(A)*MAZHEPS,   
               TOLB = MAX(P,N)*norm(B)*MAZHEPS.   
            The size of TOLA and TOLB may affect the size of backward   
            errors of the decomposition.   

    K       (output) INTEGER   
    L       (output) INTEGER   
            On exit, K and L specify the dimension of the subblocks   
            described in Purpose section.   
            K + L = effective numerical rank of (A',B')'.   

    U       (output) COMPLEX*16 array, dimension (LDU,M)   
            If JOBU = 'U', U contains the unitary matrix U.   
            If JOBU = 'N', U is not referenced.   

    LDU     (input) INTEGER   
            The leading dimension of the array U. LDU >= max(1,M) if   
            JOBU = 'U'; LDU >= 1 otherwise.   

    V       (output) COMPLEX*16 array, dimension (LDV,M)   
            If JOBV = 'V', V contains the unitary matrix V.   
            If JOBV = 'N', V is not referenced.   

    LDV     (input) INTEGER   
            The leading dimension of the array V. LDV >= max(1,P) if   
            JOBV = 'V'; LDV >= 1 otherwise.   

    Q       (output) COMPLEX*16 array, dimension (LDQ,N)   
            If JOBQ = 'Q', Q contains the unitary matrix Q.   
            If JOBQ = 'N', Q is not referenced.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q. LDQ >= max(1,N) if   
            JOBQ = 'Q'; LDQ >= 1 otherwise.   

    IWORK   (workspace) INTEGER array, dimension (N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)   

    TAU     (workspace) COMPLEX*16 array, dimension (N)   

    WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P))   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization   
    with column pivoting to detect the effective numerical rank of the   
    a matrix. It may be replaced by a better rank determination strategy.   

    =====================================================================   


       Test the input parameters   

       Parameter adjustments */
    /* Table of constant values */
    static doublecomplex c_b1 = {0.,0.};
    static doublecomplex c_b2 = {1.,0.};
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, 
	    u_offset, v_dim1, v_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;
    /* Builtin functions */
    double d_imag(doublecomplex *);
    /* Local variables */
    static integer i__, j;
    extern logical lsame_(char *, char *);
    static logical wantq, wantu, wantv;
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *), zgerq2_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *), zung2r_(integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *), zunm2r_(char *, char *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *, doublecomplex *, integer *), zunmr2_(char *, char *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), xerbla_(
	    char *, integer *), zgeqpf_(integer *, integer *, 
	    doublecomplex *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublereal *, integer *), zlacpy_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *);
    static logical forwrd;
    extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlapmt_(logical *, integer *, integer *, doublecomplex *,
	     integer *, integer *);
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]
#define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1
#define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)]
#define v_subscr(a_1,a_2) (a_2)*v_dim1 + a_1
#define v_ref(a_1,a_2) v[v_subscr(a_1,a_2)]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1 * 1;
    v -= v_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --iwork;
    --rwork;
    --tau;
    --work;

    /* Function Body */
    wantu = lsame_(jobu, "U");
    wantv = lsame_(jobv, "V");
    wantq = lsame_(jobq, "Q");
    forwrd = TRUE_;

    *info = 0;
    if (! (wantu || lsame_(jobu, "N"))) {
	*info = -1;
    } else if (! (wantv || lsame_(jobv, "N"))) {
	*info = -2;
    } else if (! (wantq || lsame_(jobq, "N"))) {
	*info = -3;
    } else if (*m < 0) {
	*info = -4;
    } else if (*p < 0) {
	*info = -5;
    } else if (*n < 0) {
	*info = -6;
    } else if (*lda < max(1,*m)) {
	*info = -8;
    } else if (*ldb < max(1,*p)) {
	*info = -10;
    } else if (*ldu < 1 || wantu && *ldu < *m) {
	*info = -16;
    } else if (*ldv < 1 || wantv && *ldv < *p) {
	*info = -18;
    } else if (*ldq < 1 || wantq && *ldq < *n) {
	*info = -20;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGGSVP", &i__1);
	return 0;
    }

/*     QR with column pivoting of B: B*P = V*( S11 S12 )   
                                             (  0   0  ) */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	iwork[i__] = 0;
/* L10: */
    }
    zgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &rwork[1], 
	    info);

/*     Update A := A*P */

    zlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);

/*     Determine the effective rank of matrix B. */

    *l = 0;
    i__1 = min(*p,*n);
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = b_subscr(i__, i__);
	if ((d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b_ref(i__, i__)), 
		abs(d__2)) > *tolb) {
	    ++(*l);
	}
/* L20: */
    }

    if (wantv) {

/*        Copy the details of V, and form V. */

	zlaset_("Full", p, p, &c_b1, &c_b1, &v[v_offset], ldv);
	if (*p > 1) {
	    i__1 = *p - 1;
	    zlacpy_("Lower", &i__1, n, &b_ref(2, 1), ldb, &v_ref(2, 1), ldv);
	}
	i__1 = min(*p,*n);
	zung2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
    }

/*     Clean up B */

    i__1 = *l - 1;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *l;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    i__3 = b_subscr(i__, j);
	    b[i__3].r = 0., b[i__3].i = 0.;
/* L30: */
	}
/* L40: */
    }
    if (*p > *l) {
	i__1 = *p - *l;
	zlaset_("Full", &i__1, n, &c_b1, &c_b1, &b_ref(*l + 1, 1), ldb);
    }

    if (wantq) {

/*        Set Q = I and Update Q := Q*P */

	zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
	zlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
    }

    if (*p >= *l && *n != *l) {

/*        RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z */

	zgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);

/*        Update A := A*Z' */

	zunmr2_("Right", "Conjugate transpose", m, n, l, &b[b_offset], ldb, &
		tau[1], &a[a_offset], lda, &work[1], info);
	if (wantq) {

/*           Update Q := Q*Z' */

	    zunmr2_("Right", "Conjugate transpose", n, n, l, &b[b_offset], 
		    ldb, &tau[1], &q[q_offset], ldq, &work[1], info);
	}

/*        Clean up B */

	i__1 = *n - *l;
	zlaset_("Full", l, &i__1, &c_b1, &c_b1, &b[b_offset], ldb);
	i__1 = *n;
	for (j = *n - *l + 1; j <= i__1; ++j) {
	    i__2 = *l;
	    for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
		i__3 = b_subscr(i__, j);
		b[i__3].r = 0., b[i__3].i = 0.;
/* L50: */
	    }
/* L60: */
	}

    }

/*     Let              N-L     L   
                  A = ( A11    A12 ) M,   

       then the following does the complete QR decomposition of A11:   

                A11 = U*(  0  T12 )*P1'   
                        (  0   0  ) */

    i__1 = *n - *l;
    for (i__ = 1; i__ <= i__1; ++i__) {
	iwork[i__] = 0;
/* L70: */
    }
    i__1 = *n - *l;
    zgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &rwork[
	    1], info);

/*     Determine the effective rank of A11 */

    *k = 0;
/* Computing MIN */
    i__2 = *m, i__3 = *n - *l;
    i__1 = min(i__2,i__3);
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = a_subscr(i__, i__);
	if ((d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a_ref(i__, i__)), 
		abs(d__2)) > *tola) {
	    ++(*k);
	}
/* L80: */
    }

/*     Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N )   

   Computing MIN */
    i__2 = *m, i__3 = *n - *l;
    i__1 = min(i__2,i__3);
    zunm2r_("Left", "Conjugate transpose", m, l, &i__1, &a[a_offset], lda, &
	    tau[1], &a_ref(1, *n - *l + 1), lda, &work[1], info);

    if (wantu) {

/*        Copy the details of U, and form U */

	zlaset_("Full", m, m, &c_b1, &c_b1, &u[u_offset], ldu);
	if (*m > 1) {
	    i__1 = *m - 1;
	    i__2 = *n - *l;
	    zlacpy_("Lower", &i__1, &i__2, &a_ref(2, 1), lda, &u_ref(2, 1), 
		    ldu);
	}
/* Computing MIN */
	i__2 = *m, i__3 = *n - *l;
	i__1 = min(i__2,i__3);
	zung2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
    }

    if (wantq) {

/*        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1 */

	i__1 = *n - *l;
	zlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
    }

/*     Clean up A: set the strictly lower triangular part of   
       A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */

    i__1 = *k - 1;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    i__3 = a_subscr(i__, j);
	    a[i__3].r = 0., a[i__3].i = 0.;
/* L90: */
	}
/* L100: */
    }
    if (*m > *k) {
	i__1 = *m - *k;
	i__2 = *n - *l;
	zlaset_("Full", &i__1, &i__2, &c_b1, &c_b1, &a_ref(*k + 1, 1), lda);
    }

    if (*n - *l > *k) {

/*        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */

	i__1 = *n - *l;
	zgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);

	if (wantq) {

/*           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1' */

	    i__1 = *n - *l;
	    zunmr2_("Right", "Conjugate transpose", n, &i__1, k, &a[a_offset],
		     lda, &tau[1], &q[q_offset], ldq, &work[1], info);
	}

/*        Clean up A */

	i__1 = *n - *l - *k;
	zlaset_("Full", k, &i__1, &c_b1, &c_b1, &a[a_offset], lda);
	i__1 = *n - *l;
	for (j = *n - *l - *k + 1; j <= i__1; ++j) {
	    i__2 = *k;
	    for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
		i__3 = a_subscr(i__, j);
		a[i__3].r = 0., a[i__3].i = 0.;
/* L110: */
	    }
/* L120: */
	}

    }

    if (*m > *k) {

/*        QR factorization of A( K+1:M,N-L+1:N ) */

	i__1 = *m - *k;
	zgeqr2_(&i__1, l, &a_ref(*k + 1, *n - *l + 1), lda, &tau[1], &work[1],
		 info);

	if (wantu) {

/*           Update U(:,K+1:M) := U(:,K+1:M)*U1 */

	    i__1 = *m - *k;
/* Computing MIN */
	    i__3 = *m - *k;
	    i__2 = min(i__3,*l);
	    zunm2r_("Right", "No transpose", m, &i__1, &i__2, &a_ref(*k + 1, *
		    n - *l + 1), lda, &tau[1], &u_ref(1, *k + 1), ldu, &work[
		    1], info);
	}

/*        Clean up */

	i__1 = *n;
	for (j = *n - *l + 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
		i__3 = a_subscr(i__, j);
		a[i__3].r = 0., a[i__3].i = 0.;
/* L130: */
	    }
/* L140: */
	}

    }

    return 0;

/*     End of ZGGSVP */

} /* zggsvp_ */
コード例 #7
0
ファイル: zgeqrf.c プロジェクト: 0u812/roadrunner-backup
/* Subroutine */ int zgeqrf_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork, 
	 integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    real r__1;

    /* Local variables */
    integer i__, j, k, ib, nb, nt, nx, iws;
    extern doublereal sceil_(real *);
    integer nbmin, iinfo;
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(
	    char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    integer lbwork;
    extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    integer llwork, lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     March 2008 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEQRF computes a QR factorization of a real M-by-N matrix A: */
/*  A = Q * R. */

/*  This is the left-looking Level 3 BLAS version of the algorithm. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a */
/*          product of min(m,n) elementary reflectors (see Further */
/*          Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */

/*          The dimension of the array WORK. The dimension can be divided into three parts. */

/*          1) The part for the triangular factor T. If the very last T is not bigger */
/*             than any of the rest, then this part is NB x ceiling(K/NB), otherwise, */
/*             NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T */

/*          2) The part for the very last T when T is bigger than any of the rest T. */
/*             The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB, */
/*             where K = min(M,N), NX is calculated by */
/*                   NX = MAX( 0, ILAENV( 3, 'ZGEQRF', ' ', M, N, -1, -1 ) ) */

/*          3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB) */

/*          So LWORK = part1 + part2 + part3 */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    nbmin = 2;
    nx = 0;
    iws = *n;
    k = min(*m,*n);
    nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
    if (nb > 1 && nb < k) {

/*        Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
	i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
	nx = max(i__1,i__2);
    }

/*     Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.: */

/*            NB=3     2NB=6       K=10 */
/*            |        |           | */
/*      1--2--3--4--5--6--7--8--9--10 */
/*                  |     \________/ */
/*               K-NX=5      NT=4 */

/*     So here 4 x 4 is the last T stored in the workspace */

    r__1 = (real) (k - nx) / (real) nb;
    nt = k - sceil_(&r__1) * nb;

/*     optimal workspace = space for dlarfb + space for normal T's + space for the last T */

/* Computing MAX */
/* Computing MAX */
    i__3 = (*n - *m) * k, i__4 = (*n - *m) * nb;
/* Computing MAX */
    i__5 = k * nb, i__6 = nb * nb;
    i__1 = max(i__3,i__4), i__2 = max(i__5,i__6);
    llwork = max(i__1,i__2);
    r__1 = (real) llwork / (real) nb;
    llwork = sceil_(&r__1);
    if (nt > nb) {
	lbwork = k - nt;

/*         Optimal workspace for dlarfb = MAX(1,N)*NT */

	lwkopt = (lbwork + llwork) * nb;
	i__1 = lwkopt + nt * nt;
	work[1].r = (doublereal) i__1, work[1].i = 0.;
    } else {
	r__1 = (real) k / (real) nb;
	lbwork = sceil_(&r__1) * nb;
	lwkopt = (lbwork + llwork - nb) * nb;
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    }

/*     Test the input arguments */

    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    } else if (*lwork < max(1,*n) && ! lquery) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQRF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (k == 0) {
	work[1].r = 1., work[1].i = 0.;
	return 0;
    }

    if (nb > 1 && nb < k) {
	if (nx < k) {

/*           Determine if workspace is large enough for blocked code. */

	    if (nt <= nb) {
		iws = (lbwork + llwork - nb) * nb;
	    } else {
		iws = (lbwork + llwork) * nb + nt * nt;
	    }
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduce NB and */
/*              determine the minimum value of NB. */

		if (nt <= nb) {
		    nb = *lwork / (llwork + (lbwork - nb));
		} else {
		    nb = (*lwork - nt * nt) / (lbwork + llwork);
		}
/* Computing MAX */
		i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", m, n, &c_n1, &
			c_n1);
		nbmin = max(i__1,i__2);
	    }
	}
    }

    if (nb >= nbmin && nb < k && nx < k) {

/*        Use blocked code initially */

	i__1 = k - nx;
	i__2 = nb;
	for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__3 = k - i__ + 1;
	    ib = min(i__3,nb);

/*           Update the current column using old T's */

	    i__3 = i__ - nb;
	    i__4 = nb;
	    for (j = 1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {

/*              Apply H' to A(J:M,I:I+IB-1) from the left */

		i__5 = *m - j + 1;
		zlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__5, &
			ib, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, &
			a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * nt 
			+ 1], &ib);
/* L20: */
	    }

/*           Compute the QR factorization of the current block */
/*           A(I:M,I:I+IB-1) */

	    i__4 = *m - i__ + 1;
	    zgeqr2_(&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
		    lbwork * nb + nt * nt + 1], &iinfo);
	    if (i__ + ib <= *n) {

/*              Form the triangular factor of the block reflector */
/*              H = H(i) H(i+1) . . . H(i+ib-1) */

		i__4 = *m - i__ + 1;
		zlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * 
			a_dim1], lda, &tau[i__], &work[i__], &lbwork);

	    }
/* L10: */
	}
    } else {
	i__ = 1;
    }

/*     Use unblocked code to factor the last or only block. */

    if (i__ <= k) {
	if (i__ != 1) {
	    i__2 = i__ - nb;
	    i__1 = nb;
	    for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {

/*                Apply H' to A(J:M,I:K) from the left */

		i__4 = *m - j + 1;
		i__3 = k - i__ + 1;
		i__5 = k - i__ + 1;
		zlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, &
			i__3, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, 
			 &a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * 
			nt + 1], &i__5);
/* L30: */
	    }
	    i__1 = *m - i__ + 1;
	    i__2 = k - i__ + 1;
	    zgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
		    work[lbwork * nb + nt * nt + 1], &iinfo);
	} else {

/*        Use unblocked code to factor the last or only block. */

	    i__1 = *m - i__ + 1;
	    i__2 = *n - i__ + 1;
	    zgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
		    work[1], &iinfo);
	}
    }

/*     Apply update to the column M+1:N when N > M */

    if (*m < *n && i__ != 1) {

/*         Form the last triangular factor of the block reflector */
/*         H = H(i) H(i+1) . . . H(i+ib-1) */

	if (nt <= nb) {
	    i__1 = *m - i__ + 1;
	    i__2 = k - i__ + 1;
	    zlarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * 
		    a_dim1], lda, &tau[i__], &work[i__], &lbwork);
	} else {
	    i__1 = *m - i__ + 1;
	    i__2 = k - i__ + 1;
	    zlarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * 
		    a_dim1], lda, &tau[i__], &work[lbwork * nb + 1], &nt);
	}

/*         Apply H' to A(1:M,M+1:N) from the left */

	i__1 = k - nx;
	i__2 = nb;
	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__4 = k - j + 1;
	    ib = min(i__4,nb);
	    i__4 = *m - j + 1;
	    i__3 = *n - *m;
	    i__5 = *n - *m;
	    zlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, &
		    i__3, &ib, &a[j + j * a_dim1], lda, &work[j], &lbwork, &a[
		    j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt 
		    + 1], &i__5);
/* L40: */
	}
	if (nt <= nb) {
	    i__2 = *m - j + 1;
	    i__1 = *n - *m;
	    i__4 = k - j + 1;
	    i__3 = *n - *m;
	    zlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, &
		    i__1, &i__4, &a[j + j * a_dim1], lda, &work[j], &lbwork, &
		    a[j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * 
		    nt + 1], &i__3);
	} else {
	    i__2 = *m - j + 1;
	    i__1 = *n - *m;
	    i__4 = k - j + 1;
	    i__3 = *n - *m;
	    zlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, &
		    i__1, &i__4, &a[j + j * a_dim1], lda, &work[lbwork * nb + 
		    1], &nt, &a[j + (*m + 1) * a_dim1], lda, &work[lbwork * 
		    nb + nt * nt + 1], &i__3);
	}
    }
    work[1].r = (doublereal) iws, work[1].i = 0.;
    return 0;

/*     End of ZGEQRF */

} /* zgeqrf_ */
コード例 #8
0
ファイル: zgeqpf.c プロジェクト: deepakantony/vispack
/* Subroutine */ int zgeqpf_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work, 
	doublereal *rwork, integer *info)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZGEQPF computes a QR factorization with column pivoting of a   
    complex M-by-N matrix A: A*P = Q*R.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A. N >= 0   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, the upper triangle of the array contains the   
            min(M,N)-by-N upper triangular matrix R; the elements   
            below the diagonal, together with the array TAU,   
            represent the orthogonal matrix Q as a product of   
            min(m,n) elementary reflectors.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,M).   

    JPVT    (input/output) INTEGER array, dimension (N)   
            On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted 
  
            to the front of A*P (a leading column); if JPVT(i) = 0,   
            the i-th column of A is a free column.   
            On exit, if JPVT(i) = k, then the i-th column of A*P   
            was the k-th column of A.   

    TAU     (output) COMPLEX*16 array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors.   

    WORK    (workspace) COMPLEX*16 array, dimension (N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(n)   

    Each H(i) has the form   

       H = I - tau * v * v'   

    where tau is a complex scalar, and v is a complex vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). 
  

    The matrix P is represented in jpvt as follows: If   
       jpvt(j) = i   
    then the jth column of P is the ith canonical unit vector.   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;
    doublecomplex z__1;
    /* Builtin functions */
    void d_cnjg(doublecomplex *, doublecomplex *);
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static doublereal temp, temp2;
    static integer i, j, itemp;
    extern /* Subroutine */ int zlarf_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *), zswap_(integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zgeqr2_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
    static integer ma, mn;
    extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *), zlarfg_(
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *);
    static doublecomplex aii;
    static integer pvt;



#define JPVT(I) jpvt[(I)-1]
#define TAU(I) tau[(I)-1]
#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQPF", &i__1);
	return 0;
    }

    mn = min(*m,*n);

/*     Move initial columns up front */

    itemp = 1;
    i__1 = *n;
    for (i = 1; i <= *n; ++i) {
	if (JPVT(i) != 0) {
	    if (i != itemp) {
		zswap_(m, &A(1,i), &c__1, &A(1,itemp), &
			c__1);
		JPVT(i) = JPVT(itemp);
		JPVT(itemp) = i;
	    } else {
		JPVT(i) = i;
	    }
	    ++itemp;
	} else {
	    JPVT(i) = i;
	}
/* L10: */
    }
    --itemp;

/*     Compute the QR factorization and update remaining columns */

    if (itemp > 0) {
	ma = min(itemp,*m);
	zgeqr2_(m, &ma, &A(1,1), lda, &TAU(1), &WORK(1), info);
	if (ma < *n) {
	    i__1 = *n - ma;
	    zunm2r_("Left", "Conjugate transpose", m, &i__1, &ma, &A(1,1)
		    , lda, &TAU(1), &A(1,ma+1), lda, &WORK(1), 
		    info);
	}
    }

    if (itemp < mn) {

/*        Initialize partial column norms. The first n elements of   
          work store the exact column norms. */

	i__1 = *n;
	for (i = itemp + 1; i <= *n; ++i) {
	    i__2 = *m - itemp;
	    RWORK(i) = dznrm2_(&i__2, &A(itemp+1,i), &c__1);
	    RWORK(*n + i) = RWORK(i);
/* L20: */
	}

/*        Compute factorization */

	i__1 = mn;
	for (i = itemp + 1; i <= mn; ++i) {

/*           Determine ith pivot column and swap if necessary */

	    i__2 = *n - i + 1;
	    pvt = i - 1 + idamax_(&i__2, &RWORK(i), &c__1);

	    if (pvt != i) {
		zswap_(m, &A(1,pvt), &c__1, &A(1,i), &
			c__1);
		itemp = JPVT(pvt);
		JPVT(pvt) = JPVT(i);
		JPVT(i) = itemp;
		RWORK(pvt) = RWORK(i);
		RWORK(*n + pvt) = RWORK(*n + i);
	    }

/*           Generate elementary reflector H(i) */

	    i__2 = i + i * a_dim1;
	    aii.r = A(i,i).r, aii.i = A(i,i).i;
	    i__2 = *m - i + 1;
/* Computing MIN */
	    i__3 = i + 1;
	    zlarfg_(&i__2, &aii, &A(min(i+1,*m),i), &c__1, &TAU(i)
		    );
	    i__2 = i + i * a_dim1;
	    A(i,i).r = aii.r, A(i,i).i = aii.i;

	    if (i < *n) {

/*              Apply H(i) to A(i:m,i+1:n) from the left */

		i__2 = i + i * a_dim1;
		aii.r = A(i,i).r, aii.i = A(i,i).i;
		i__2 = i + i * a_dim1;
		A(i,i).r = 1., A(i,i).i = 0.;
		i__2 = *m - i + 1;
		i__3 = *n - i;
		d_cnjg(&z__1, &TAU(i));
		zlarf_("Left", &i__2, &i__3, &A(i,i), &c__1, &z__1,
			 &A(i,i+1), lda, &WORK(1));
		i__2 = i + i * a_dim1;
		A(i,i).r = aii.r, A(i,i).i = aii.i;
	    }

/*           Update partial column norms */

	    i__2 = *n;
	    for (j = i + 1; j <= *n; ++j) {
		if (RWORK(j) != 0.) {
/* Computing 2nd power */
		    d__1 = z_abs(&A(i,j)) / RWORK(j);
		    temp = 1. - d__1 * d__1;
		    temp = max(temp,0.);
/* Computing 2nd power */
		    d__1 = RWORK(j) / RWORK(*n + j);
		    temp2 = temp * .05 * (d__1 * d__1) + 1.;
		    if (temp2 == 1.) {
			if (*m - i > 0) {
			    i__3 = *m - i;
			    RWORK(j) = dznrm2_(&i__3, &A(i+1,j), 
				    &c__1);
			    RWORK(*n + j) = RWORK(j);
			} else {
			    RWORK(j) = 0.;
			    RWORK(*n + j) = 0.;
			}
		    } else {
			RWORK(j) *= sqrt(temp);
		    }
		}
/* L30: */
	    }

/* L40: */
	}
    }
    return 0;

/*     End of ZGEQPF */

} /* zgeqpf_ */
コード例 #9
0
ファイル: zneupd.c プロジェクト: Electrostatics/FETK
/* ----------------------------------------------------------------------- */
/* Subroutine */ int zneupd_(logical *rvec, char *howmny, logical *select, 
	doublecomplex *d__, doublecomplex *z__, integer *ldz, doublecomplex *
	sigma, doublecomplex *workev, char *bmat, integer *n, char *which, 
	integer *nev, doublereal *tol, doublecomplex *resid, integer *ncv, 
	doublecomplex *v, integer *ldv, integer *iparam, integer *ipntr, 
	doublecomplex *workd, doublecomplex *workl, integer *lworkl, 
	doublereal *rwork, integer *info, ftnlen howmny_len, ftnlen bmat_len, 
	ftnlen which_len)
{
    /* System generated locals */
    integer v_dim1, v_offset, z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double pow_dd(doublereal *, doublereal *);
    integer s_cmp(char *, char *, ftnlen, ftnlen);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    double d_imag(doublecomplex *);
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);

    /* Local variables */
    static integer j, k, ih, jj, iq, np;
    static doublecomplex vl[1];
    static integer wr, ibd, ldh, ldq;
    static doublereal sep;
    static integer irz, mode;
    static doublereal eps23;
    static integer ierr;
    static doublecomplex temp;
    static integer iwev;
    static char type__[6];
    static integer ritz, iheig, ihbds;
    static doublereal conds;
    static logical reord;
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *, 
	    doublecomplex *, integer *);
    static integer nconv;
    extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal rtemp;
    static doublecomplex rnorm;
    extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zcopy_(integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), ivout_(integer *, integer 
	    *, integer *, integer *, char *, ftnlen), ztrmm_(char *, char *, 
	    char *, char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, ftnlen, 
	    ftnlen, ftnlen, ftnlen), zmout_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, integer *, char *, ftnlen), zvout_(
	    integer *, integer *, doublecomplex *, integer *, char *, ftnlen);
    extern doublereal dlapy2_(doublereal *, doublereal *);
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
	    char *, ftnlen);
    extern /* Subroutine */ int zunm2r_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, ftnlen, 
	    ftnlen);
    static integer bounds, invsub, iuptri, msglvl, outncv, numcnv, ishift;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, ftnlen), 
	    zlahqr_(logical *, logical *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *,
	     doublecomplex *, integer *, integer *), zngets_(integer *, char *
	    , integer *, integer *, doublecomplex *, doublecomplex *, ftnlen),
	     zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *, ftnlen), ztrsen_(
	    char *, char *, logical *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, integer *, integer *,
	     ftnlen, ftnlen), ztrevc_(char *, char *, logical *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, doublecomplex *,
	     doublereal *, integer *, ftnlen, ftnlen), zdscal_(integer *, 
	    doublereal *, doublecomplex *, integer *);


/*     %----------------------------------------------------% */
/*     | Include files for debugging and timing information | */
/*     %----------------------------------------------------% */


/* \SCCS Information: @(#) */
/* FILE: debug.h   SID: 2.3   DATE OF SID: 11/16/95   RELEASE: 2 */

/*     %---------------------------------% */
/*     | See debug.doc for documentation | */
/*     %---------------------------------% */

/*     %------------------% */
/*     | Scalar Arguments | */
/*     %------------------% */

/*     %--------------------------------% */
/*     | See stat.doc for documentation | */
/*     %--------------------------------% */

/* \SCCS Information: @(#) */
/* FILE: stat.h   SID: 2.2   DATE OF SID: 11/16/95   RELEASE: 2 */



/*     %-----------------% */
/*     | Array Arguments | */
/*     %-----------------% */


/*     %------------% */
/*     | Parameters | */
/*     %------------% */


/*     %---------------% */
/*     | Local Scalars | */
/*     %---------------% */


/*     %----------------------% */
/*     | External Subroutines | */
/*     %----------------------% */


/*     %--------------------% */
/*     | External Functions | */
/*     %--------------------% */



/*     %-----------------------% */
/*     | Executable Statements | */
/*     %-----------------------% */

/*     %------------------------% */
/*     | Set default parameters | */
/*     %------------------------% */

    /* Parameter adjustments */
    --workd;
    --resid;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --d__;
    --rwork;
    --workev;
    --select;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;
    --iparam;
    --ipntr;
    --workl;

    /* Function Body */
    msglvl = debug_1.mceupd;
    mode = iparam[7];
    nconv = iparam[5];
    *info = 0;


/*     %---------------------------------% */
/*     | Get machine dependent constant. | */
/*     %---------------------------------% */

    eps23 = dlamch_("Epsilon-Machine", (ftnlen)15);
    eps23 = pow_dd(&eps23, &c_b5);

/*     %-------------------------------% */
/*     | Quick return                  | */
/*     | Check for incompatible input  | */
/*     %-------------------------------% */

    ierr = 0;

    if (nconv <= 0) {
	ierr = -14;
    } else if (*n <= 0) {
	ierr = -1;
    } else if (*nev <= 0) {
	ierr = -2;
    } else if (*ncv <= *nev || *ncv > *n) {
	ierr = -3;
    } else if (s_cmp(which, "LM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, 
	    "SM", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, "LR", (ftnlen)2, 
	    (ftnlen)2) != 0 && s_cmp(which, "SR", (ftnlen)2, (ftnlen)2) != 0 
	    && s_cmp(which, "LI", (ftnlen)2, (ftnlen)2) != 0 && s_cmp(which, 
	    "SI", (ftnlen)2, (ftnlen)2) != 0) {
	ierr = -5;
    } else if (*(unsigned char *)bmat != 'I' && *(unsigned char *)bmat != 'G')
	     {
	ierr = -6;
    } else /* if(complicated condition) */ {
/* Computing 2nd power */
	i__1 = *ncv;
	if (*lworkl < i__1 * i__1 * 3 + (*ncv << 2)) {
	    ierr = -7;
	} else if (*(unsigned char *)howmny != 'A' && *(unsigned char *)
		howmny != 'P' && *(unsigned char *)howmny != 'S' && *rvec) {
	    ierr = -13;
	} else if (*(unsigned char *)howmny == 'S') {
	    ierr = -12;
	}
    }

    if (mode == 1 || mode == 2) {
	s_copy(type__, "REGULR", (ftnlen)6, (ftnlen)6);
    } else if (mode == 3) {
	s_copy(type__, "SHIFTI", (ftnlen)6, (ftnlen)6);
    } else {
	ierr = -10;
    }
    if (mode == 1 && *(unsigned char *)bmat == 'G') {
	ierr = -11;
    }

/*     %------------% */
/*     | Error Exit | */
/*     %------------% */

    if (ierr != 0) {
	*info = ierr;
	goto L9000;
    }

/*     %--------------------------------------------------------% */
/*     | Pointer into WORKL for address of H, RITZ, WORKEV, Q   | */
/*     | etc... and the remaining workspace.                    | */
/*     | Also update pointer to be used on output.              | */
/*     | Memory is laid out as follows:                         | */
/*     | workl(1:ncv*ncv) := generated Hessenberg matrix        | */
/*     | workl(ncv*ncv+1:ncv*ncv+ncv) := ritz values            | */
/*     | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv) := error bounds     | */
/*     %--------------------------------------------------------% */

/*     %-----------------------------------------------------------% */
/*     | The following is used and set by ZNEUPD.                 | */
/*     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := The untransformed | */
/*     |                                      Ritz values.         | */
/*     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed | */
/*     |                                      error bounds of      | */
/*     |                                      the Ritz values      | */
/*     | workl(ncv*ncv+4*ncv+1:2*ncv*ncv+4*ncv) := Holds the upper | */
/*     |                                      triangular matrix    | */
/*     |                                      for H.               | */
/*     | workl(2*ncv*ncv+4*ncv+1: 3*ncv*ncv+4*ncv) := Holds the    | */
/*     |                                      associated matrix    | */
/*     |                                      representation of    | */
/*     |                                      the invariant        | */
/*     |                                      subspace for H.      | */
/*     | GRAND total of NCV * ( 3 * NCV + 4 ) locations.           | */
/*     %-----------------------------------------------------------% */

    ih = ipntr[5];
    ritz = ipntr[6];
    iq = ipntr[7];
    bounds = ipntr[8];
    ldh = *ncv;
    ldq = *ncv;
    iheig = bounds + ldh;
    ihbds = iheig + ldh;
    iuptri = ihbds + ldh;
    invsub = iuptri + ldh * *ncv;
    ipntr[9] = iheig;
    ipntr[11] = ihbds;
    ipntr[12] = iuptri;
    ipntr[13] = invsub;
    wr = 1;
    iwev = wr + *ncv;

/*     %-----------------------------------------% */
/*     | irz points to the Ritz values computed  | */
/*     |     by _neigh before exiting _naup2.    | */
/*     | ibd points to the Ritz estimates        | */
/*     |     computed by _neigh before exiting   | */
/*     |     _naup2.                             | */
/*     %-----------------------------------------% */

    irz = ipntr[14] + *ncv * *ncv;
    ibd = irz + *ncv;

/*     %------------------------------------% */
/*     | RNORM is B-norm of the RESID(1:N). | */
/*     %------------------------------------% */

    i__1 = ih + 2;
    rnorm.r = workl[i__1].r, rnorm.i = workl[i__1].i;
    i__1 = ih + 2;
    workl[i__1].r = 0., workl[i__1].i = 0.;

    if (msglvl > 2) {
	zvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_neupd: "
		"Ritz values passed in from _NAUPD.", (ftnlen)42);
	zvout_(&debug_1.logfil, ncv, &workl[ibd], &debug_1.ndigit, "_neupd: "
		"Ritz estimates passed in from _NAUPD.", (ftnlen)45);
    }

    if (*rvec) {

	reord = FALSE_;

/*        %---------------------------------------------------% */
/*        | Use the temporary bounds array to store indices   | */
/*        | These will be used to mark the select array later | */
/*        %---------------------------------------------------% */

	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = bounds + j - 1;
	    workl[i__2].r = (doublereal) j, workl[i__2].i = 0.;
	    select[j] = FALSE_;
/* L10: */
	}

/*        %-------------------------------------% */
/*        | Select the wanted Ritz values.      | */
/*        | Sort the Ritz values so that the    | */
/*        | wanted ones appear at the tailing   | */
/*        | NEV positions of workl(irr) and     | */
/*        | workl(iri).  Move the corresponding | */
/*        | error estimates in workl(ibd)       | */
/*        | accordingly.                        | */
/*        %-------------------------------------% */

	np = *ncv - *nev;
	ishift = 0;
	zngets_(&ishift, which, nev, &np, &workl[irz], &workl[bounds], (
		ftnlen)2);

	if (msglvl > 2) {
	    zvout_(&debug_1.logfil, ncv, &workl[irz], &debug_1.ndigit, "_neu"
		    "pd: Ritz values after calling _NGETS.", (ftnlen)41);
	    zvout_(&debug_1.logfil, ncv, &workl[bounds], &debug_1.ndigit, 
		    "_neupd: Ritz value indices after calling _NGETS.", (
		    ftnlen)48);
	}

/*        %-----------------------------------------------------% */
/*        | Record indices of the converged wanted Ritz values  | */
/*        | Mark the select array for possible reordering       | */
/*        %-----------------------------------------------------% */

	numcnv = 0;
	i__1 = *ncv;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = irz + *ncv - j;
	    d__3 = workl[i__2].r;
	    d__4 = d_imag(&workl[irz + *ncv - j]);
	    d__1 = eps23, d__2 = dlapy2_(&d__3, &d__4);
	    rtemp = max(d__1,d__2);
	    i__2 = bounds + *ncv - j;
	    jj = (integer) workl[i__2].r;
	    i__2 = ibd + jj - 1;
	    d__1 = workl[i__2].r;
	    d__2 = d_imag(&workl[ibd + jj - 1]);
	    if (numcnv < nconv && dlapy2_(&d__1, &d__2) <= *tol * rtemp) {
		select[jj] = TRUE_;
		++numcnv;
		if (jj > *nev) {
		    reord = TRUE_;
		}
	    }
/* L11: */
	}

/*        %-----------------------------------------------------------% */
/*        | Check the count (numcnv) of converged Ritz values with    | */
/*        | the number (nconv) reported by dnaupd.  If these two      | */
/*        | are different then there has probably been an error       | */
/*        | caused by incorrect passing of the dnaupd data.           | */
/*        %-----------------------------------------------------------% */

	if (msglvl > 2) {
	    ivout_(&debug_1.logfil, &c__1, &numcnv, &debug_1.ndigit, "_neupd"
		    ": Number of specified eigenvalues", (ftnlen)39);
	    ivout_(&debug_1.logfil, &c__1, &nconv, &debug_1.ndigit, "_neupd:"
		    " Number of \"converged\" eigenvalues", (ftnlen)41);
	}

	if (numcnv != nconv) {
	    *info = -15;
	    goto L9000;
	}

/*        %-------------------------------------------------------% */
/*        | Call LAPACK routine zlahqr to compute the Schur form | */
/*        | of the upper Hessenberg matrix returned by ZNAUPD.   | */
/*        | Make a copy of the upper Hessenberg matrix.           | */
/*        | Initialize the Schur vector matrix Q to the identity. | */
/*        %-------------------------------------------------------% */

	i__1 = ldh * *ncv;
	zcopy_(&i__1, &workl[ih], &c__1, &workl[iuptri], &c__1);
	zlaset_("All", ncv, ncv, &c_b2, &c_b1, &workl[invsub], &ldq, (ftnlen)
		3);
	zlahqr_(&c_true, &c_true, ncv, &c__1, ncv, &workl[iuptri], &ldh, &
		workl[iheig], &c__1, ncv, &workl[invsub], &ldq, &ierr);
	zcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1);

	if (ierr != 0) {
	    *info = -8;
	    goto L9000;
	}

	if (msglvl > 1) {
	    zvout_(&debug_1.logfil, ncv, &workl[iheig], &debug_1.ndigit, 
		    "_neupd: Eigenvalues of H", (ftnlen)24);
	    zvout_(&debug_1.logfil, ncv, &workl[ihbds], &debug_1.ndigit, 
		    "_neupd: Last row of the Schur vector matrix", (ftnlen)43)
		    ;
	    if (msglvl > 3) {
		zmout_(&debug_1.logfil, ncv, ncv, &workl[iuptri], &ldh, &
			debug_1.ndigit, "_neupd: The upper triangular matrix "
			, (ftnlen)36);
	    }
	}

	if (reord) {

/*           %-----------------------------------------------% */
/*           | Reorder the computed upper triangular matrix. | */
/*           %-----------------------------------------------% */

	    ztrsen_("None", "V", &select[1], ncv, &workl[iuptri], &ldh, &
		    workl[invsub], &ldq, &workl[iheig], &nconv, &conds, &sep, 
		    &workev[1], ncv, &ierr, (ftnlen)4, (ftnlen)1);

	    if (ierr == 1) {
		*info = 1;
		goto L9000;
	    }

	    if (msglvl > 2) {
		zvout_(&debug_1.logfil, ncv, &workl[iheig], &debug_1.ndigit, 
			"_neupd: Eigenvalues of H--reordered", (ftnlen)35);
		if (msglvl > 3) {
		    zmout_(&debug_1.logfil, ncv, ncv, &workl[iuptri], &ldq, &
			    debug_1.ndigit, "_neupd: Triangular matrix after"
			    " re-ordering", (ftnlen)43);
		}
	    }

	}

/*        %---------------------------------------------% */
/*        | Copy the last row of the Schur basis matrix | */
/*        | to workl(ihbds).  This vector will be used  | */
/*        | to compute the Ritz estimates of converged  | */
/*        | Ritz values.                                | */
/*        %---------------------------------------------% */

	zcopy_(ncv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds], &c__1);

/*        %--------------------------------------------% */
/*        | Place the computed eigenvalues of H into D | */
/*        | if a spectral transformation was not used. | */
/*        %--------------------------------------------% */

	if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {
	    zcopy_(&nconv, &workl[iheig], &c__1, &d__[1], &c__1);
	}

/*        %----------------------------------------------------------% */
/*        | Compute the QR factorization of the matrix representing  | */
/*        | the wanted invariant subspace located in the first NCONV | */
/*        | columns of workl(invsub,ldq).                            | */
/*        %----------------------------------------------------------% */

	zgeqr2_(ncv, &nconv, &workl[invsub], &ldq, &workev[1], &workev[*ncv + 
		1], &ierr);

/*        %--------------------------------------------------------% */
/*        | * Postmultiply V by Q using zunm2r.                    | */
/*        | * Copy the first NCONV columns of VQ into Z.           | */
/*        | * Postmultiply Z by R.                                 | */
/*        | The N by NCONV matrix Z is now a matrix representation | */
/*        | of the approximate invariant subspace associated with  | */
/*        | the Ritz values in workl(iheig). The first NCONV       | */
/*        | columns of V are now approximate Schur vectors         | */
/*        | associated with the upper triangular matrix of order   | */
/*        | NCONV in workl(iuptri).                                | */
/*        %--------------------------------------------------------% */

	zunm2r_("Right", "Notranspose", n, ncv, &nconv, &workl[invsub], &ldq, 
		&workev[1], &v[v_offset], ldv, &workd[*n + 1], &ierr, (ftnlen)
		5, (ftnlen)11);
	zlacpy_("All", n, &nconv, &v[v_offset], ldv, &z__[z_offset], ldz, (
		ftnlen)3);

	i__1 = nconv;
	for (j = 1; j <= i__1; ++j) {

/*           %---------------------------------------------------% */
/*           | Perform both a column and row scaling if the      | */
/*           | diagonal element of workl(invsub,ldq) is negative | */
/*           | I'm lazy and don't take advantage of the upper    | */
/*           | triangular form of workl(iuptri,ldq).             | */
/*           | Note that since Q is orthogonal, R is a diagonal  | */
/*           | matrix consisting of plus or minus ones.          | */
/*           %---------------------------------------------------% */

	    i__2 = invsub + (j - 1) * ldq + j - 1;
	    if (workl[i__2].r < 0.) {
		z__1.r = -1., z__1.i = -0.;
		zscal_(&nconv, &z__1, &workl[iuptri + j - 1], &ldq);
		z__1.r = -1., z__1.i = -0.;
		zscal_(&nconv, &z__1, &workl[iuptri + (j - 1) * ldq], &c__1);
	    }

/* L20: */
	}

	if (*(unsigned char *)howmny == 'A') {

/*           %--------------------------------------------% */
/*           | Compute the NCONV wanted eigenvectors of T | */
/*           | located in workl(iuptri,ldq).              | */
/*           %--------------------------------------------% */

	    i__1 = *ncv;
	    for (j = 1; j <= i__1; ++j) {
		if (j <= nconv) {
		    select[j] = TRUE_;
		} else {
		    select[j] = FALSE_;
		}
/* L30: */
	    }

	    ztrevc_("Right", "Select", &select[1], ncv, &workl[iuptri], &ldq, 
		    vl, &c__1, &workl[invsub], &ldq, ncv, &outncv, &workev[1],
		     &rwork[1], &ierr, (ftnlen)5, (ftnlen)6);

	    if (ierr != 0) {
		*info = -9;
		goto L9000;
	    }

/*           %------------------------------------------------% */
/*           | Scale the returning eigenvectors so that their | */
/*           | Euclidean norms are all one. LAPACK subroutine | */
/*           | ztrevc returns each eigenvector normalized so  | */
/*           | that the element of largest magnitude has      | */
/*           | magnitude 1.                                   | */
/*           %------------------------------------------------% */

	    i__1 = nconv;
	    for (j = 1; j <= i__1; ++j) {
		rtemp = dznrm2_(ncv, &workl[invsub + (j - 1) * ldq], &c__1);
		rtemp = 1. / rtemp;
		zdscal_(ncv, &rtemp, &workl[invsub + (j - 1) * ldq], &c__1);

/*                 %------------------------------------------% */
/*                 | Ritz estimates can be obtained by taking | */
/*                 | the inner product of the last row of the | */
/*                 | Schur basis of H with eigenvectors of T. | */
/*                 | Note that the eigenvector matrix of T is | */
/*                 | upper triangular, thus the length of the | */
/*                 | inner product can be set to j.           | */
/*                 %------------------------------------------% */

		i__2 = j;
		zdotc_(&z__1, &j, &workl[ihbds], &c__1, &workl[invsub + (j - 
			1) * ldq], &c__1);
		workev[i__2].r = z__1.r, workev[i__2].i = z__1.i;
/* L40: */
	    }

	    if (msglvl > 2) {
		zcopy_(&nconv, &workl[invsub + *ncv - 1], &ldq, &workl[ihbds],
			 &c__1);
		zvout_(&debug_1.logfil, &nconv, &workl[ihbds], &
			debug_1.ndigit, "_neupd: Last row of the eigenvector"
			" matrix for T", (ftnlen)48);
		if (msglvl > 3) {
		    zmout_(&debug_1.logfil, ncv, ncv, &workl[invsub], &ldq, &
			    debug_1.ndigit, "_neupd: The eigenvector matrix "
			    "for T", (ftnlen)36);
		}
	    }

/*           %---------------------------------------% */
/*           | Copy Ritz estimates into workl(ihbds) | */
/*           %---------------------------------------% */

	    zcopy_(&nconv, &workev[1], &c__1, &workl[ihbds], &c__1);

/*           %----------------------------------------------% */
/*           | The eigenvector matrix Q of T is triangular. | */
/*           | Form Z*Q.                                    | */
/*           %----------------------------------------------% */

	    ztrmm_("Right", "Upper", "No transpose", "Non-unit", n, &nconv, &
		    c_b1, &workl[invsub], &ldq, &z__[z_offset], ldz, (ftnlen)
		    5, (ftnlen)5, (ftnlen)12, (ftnlen)8);
	}

    } else {

/*        %--------------------------------------------------% */
/*        | An approximate invariant subspace is not needed. | */
/*        | Place the Ritz values computed ZNAUPD into D.    | */
/*        %--------------------------------------------------% */

	zcopy_(&nconv, &workl[ritz], &c__1, &d__[1], &c__1);
	zcopy_(&nconv, &workl[ritz], &c__1, &workl[iheig], &c__1);
	zcopy_(&nconv, &workl[bounds], &c__1, &workl[ihbds], &c__1);

    }

/*     %------------------------------------------------% */
/*     | Transform the Ritz values and possibly vectors | */
/*     | and corresponding error bounds of OP to those  | */
/*     | of A*x = lambda*B*x.                           | */
/*     %------------------------------------------------% */

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) == 0) {

	if (*rvec) {
	    zscal_(ncv, &rnorm, &workl[ihbds], &c__1);
	}

    } else {

/*        %---------------------------------------% */
/*        |   A spectral transformation was used. | */
/*        | * Determine the Ritz estimates of the | */
/*        |   Ritz values in the original system. | */
/*        %---------------------------------------% */

	if (*rvec) {
	    zscal_(ncv, &rnorm, &workl[ihbds], &c__1);
	}

	i__1 = *ncv;
	for (k = 1; k <= i__1; ++k) {
	    i__2 = iheig + k - 1;
	    temp.r = workl[i__2].r, temp.i = workl[i__2].i;
	    i__2 = ihbds + k - 1;
	    z_div(&z__2, &workl[ihbds + k - 1], &temp);
	    z_div(&z__1, &z__2, &temp);
	    workl[i__2].r = z__1.r, workl[i__2].i = z__1.i;
/* L50: */
	}

    }

/*     %-----------------------------------------------------------% */
/*     | *  Transform the Ritz values back to the original system. | */
/*     |    For TYPE = 'SHIFTI' the transformation is              | */
/*     |             lambda = 1/theta + sigma                      | */
/*     | NOTES:                                                    | */
/*     | *The Ritz vectors are not affected by the transformation. | */
/*     %-----------------------------------------------------------% */

    if (s_cmp(type__, "SHIFTI", (ftnlen)6, (ftnlen)6) == 0) {
	i__1 = nconv;
	for (k = 1; k <= i__1; ++k) {
	    i__2 = k;
	    z_div(&z__2, &c_b1, &workl[iheig + k - 1]);
	    z__1.r = z__2.r + sigma->r, z__1.i = z__2.i + sigma->i;
	    d__[i__2].r = z__1.r, d__[i__2].i = z__1.i;
/* L60: */
	}
    }

    if (s_cmp(type__, "REGULR", (ftnlen)6, (ftnlen)6) != 0 && msglvl > 1) {
	zvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_neupd: U"
		"ntransformed Ritz values.", (ftnlen)34);
	zvout_(&debug_1.logfil, &nconv, &workl[ihbds], &debug_1.ndigit, "_ne"
		"upd: Ritz estimates of the untransformed Ritz values.", (
		ftnlen)56);
    } else if (msglvl > 1) {
	zvout_(&debug_1.logfil, &nconv, &d__[1], &debug_1.ndigit, "_neupd: C"
		"onverged Ritz values.", (ftnlen)30);
	zvout_(&debug_1.logfil, &nconv, &workl[ihbds], &debug_1.ndigit, "_ne"
		"upd: Associated Ritz estimates.", (ftnlen)34);
    }

/*     %-------------------------------------------------% */
/*     | Eigenvector Purification step. Formally perform | */
/*     | one of inverse subspace iteration. Only used    | */
/*     | for MODE = 3. See reference 3.                  | */
/*     %-------------------------------------------------% */

    if (*rvec && *(unsigned char *)howmny == 'A' && s_cmp(type__, "SHIFTI", (
	    ftnlen)6, (ftnlen)6) == 0) {

/*        %------------------------------------------------% */
/*        | Purify the computed Ritz vectors by adding a   | */
/*        | little bit of the residual vector:             | */
/*        |                      T                         | */
/*        |          resid(:)*( e    s ) / theta           | */
/*        |                      NCV                       | */
/*        | where H s = s theta.                           | */
/*        %------------------------------------------------% */

	i__1 = nconv;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = iheig + j - 1;
	    if (workl[i__2].r != 0. || workl[i__2].i != 0.) {
		i__2 = j;
		z_div(&z__1, &workl[invsub + (j - 1) * ldq + *ncv - 1], &
			workl[iheig + j - 1]);
		workev[i__2].r = z__1.r, workev[i__2].i = z__1.i;
	    }
/* L100: */
	}
/*        %---------------------------------------% */
/*        | Perform a rank one update to Z and    | */
/*        | purify all the Ritz vectors together. | */
/*        %---------------------------------------% */

	zgeru_(n, &nconv, &c_b1, &resid[1], &c__1, &workev[1], &c__1, &z__[
		z_offset], ldz);

    }

L9000:

    return 0;

/*     %---------------% */
/*     | End of zneupd| */
/*     %---------------% */

} /* zneupd_ */
コード例 #10
0
ファイル: zgeqrf.c プロジェクト: 151706061/ITK
/*<       SUBROUTINE ZGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) >*/
/* Subroutine */ int zgeqrf_(integer *m, integer *n, doublecomplex *a,
        integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork,
         integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
             integer *, doublecomplex *, doublecomplex *, integer *), xerbla_(
            char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
            integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *,
            integer *, integer *, integer *, doublecomplex *, integer *,
            doublecomplex *, integer *, doublecomplex *, integer *,
            doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
    integer ldwork;
    extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *,
            doublecomplex *, integer *, doublecomplex *, doublecomplex *,
            integer *, ftnlen, ftnlen);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.2) -- */
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INFO, LDA, LWORK, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEQRF computes a QR factorization of a complex M-by-N matrix A: */
/*  A = Q * R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the unitary matrix Q as a */
/*          product of min(m,n) elementary reflectors (see Further */
/*          Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,N). */
/*          For optimum performance LWORK >= N*NB, where NB is */
/*          the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a complex scalar, and v is a complex vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*<       LOGICAL            LQUERY >*/
/*<    >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           XERBLA, ZGEQR2, ZLARFB, ZLARFT >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MAX, MIN >*/
/*     .. */
/*     .. External Functions .. */
/*<       INTEGER            ILAENV >*/
/*<       EXTERNAL           ILAENV >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
/*<       NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 ) >*/
    nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
            1);
/*<       LWKOPT = N*NB >*/
    lwkopt = *n * nb;
/*<       WORK( 1 ) = LWKOPT >*/
    work[1].r = (doublereal) lwkopt, work[1].i = 0.;
/*<       LQUERY = ( LWORK.EQ.-1 ) >*/
    lquery = *lwork == -1;
/*<       IF( M.LT.0 ) THEN >*/
    if (*m < 0) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
    } else if (*lda < max(1,*m)) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN >*/
    } else if (*lwork < max(1,*n) && ! lquery) {
/*<          INFO = -7 >*/
        *info = -7;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'ZGEQRF', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("ZGEQRF", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       ELSE IF( LQUERY ) THEN >*/
    } else if (lquery) {
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Quick return if possible */

/*<       K = MIN( M, N ) >*/
    k = min(*m,*n);
/*<       IF( K.EQ.0 ) THEN >*/
    if (k == 0) {
/*<          WORK( 1 ) = 1 >*/
        work[1].r = 1., work[1].i = 0.;
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       NBMIN = 2 >*/
    nbmin = 2;
/*<       NX = 0 >*/
    nx = 0;
/*<       IWS = N >*/
    iws = *n;
/*<       IF( NB.GT.1 .AND. NB.LT.K ) THEN >*/
    if (nb > 1 && nb < k) {

/*        Determine when to cross over from blocked to unblocked code. */

/*<          NX = MAX( 0, ILAENV( 3, 'ZGEQRF', ' ', M, N, -1, -1 ) ) >*/
/* Computing MAX */
        i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (
                ftnlen)6, (ftnlen)1);
        nx = max(i__1,i__2);
/*<          IF( NX.LT.K ) THEN >*/
        if (nx < k) {

/*           Determine if workspace is large enough for blocked code. */

/*<             LDWORK = N >*/
            ldwork = *n;
/*<             IWS = LDWORK*NB >*/
            iws = ldwork * nb;
/*<             IF( LWORK.LT.IWS ) THEN >*/
            if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduce NB and */
/*              determine the minimum value of NB. */

/*<                NB = LWORK / LDWORK >*/
                nb = *lwork / ldwork;
/*<    >*/
/* Computing MAX */
                i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", m, n, &c_n1, &
                        c_n1, (ftnlen)6, (ftnlen)1);
                nbmin = max(i__1,i__2);
/*<             END IF >*/
            }
/*<          END IF >*/
        }
/*<       END IF >*/
    }

/*<       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN >*/
    if (nb >= nbmin && nb < k && nx < k) {

/*        Use blocked code initially */

/*<          DO 10 I = 1, K - NX, NB >*/
        i__1 = k - nx;
        i__2 = nb;
        for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/*<             IB = MIN( K-I+1, NB ) >*/
/* Computing MIN */
            i__3 = k - i__ + 1;
            ib = min(i__3,nb);

/*           Compute the QR factorization of the current block */
/*           A(i:m,i:i+ib-1) */

/*<    >*/
            i__3 = *m - i__ + 1;
            zgeqr2_(&i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
                    1], &iinfo);
/*<             IF( I+IB.LE.N ) THEN >*/
            if (i__ + ib <= *n) {

/*              Form the triangular factor of the block reflector */
/*              H = H(i) H(i+1) . . . H(i+ib-1) */

/*<    >*/
                i__3 = *m - i__ + 1;
                zlarft_("Forward", "Columnwise", &i__3, &ib, &a[i__ + i__ *
                        a_dim1], lda, &tau[i__], &work[1], &ldwork, (ftnlen)7,
                         (ftnlen)10);

/*              Apply H' to A(i:m,i+ib:n) from the left */

/*<    >*/
                i__3 = *m - i__ + 1;
                i__4 = *n - i__ - ib + 1;
                zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise"
                        , &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &
                        work[1], &ldwork, &a[i__ + (i__ + ib) * a_dim1], lda,
                        &work[ib + 1], &ldwork, (ftnlen)4, (ftnlen)19, (
                        ftnlen)7, (ftnlen)10);
/*<             END IF >*/
            }
/*<    10    CONTINUE >*/
/* L10: */
        }
/*<       ELSE >*/
    } else {
/*<          I = 1 >*/
        i__ = 1;
/*<       END IF >*/
    }

/*     Use unblocked code to factor the last or only block. */

/*<    >*/
    if (i__ <= k) {
        i__2 = *m - i__ + 1;
        i__1 = *n - i__ + 1;
        zgeqr2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
                , &iinfo);
    }

/*<       WORK( 1 ) = IWS >*/
    work[1].r = (doublereal) iws, work[1].i = 0.;
/*<       RETURN >*/
    return 0;

/*     End of ZGEQRF */

/*<       END >*/
} /* zgeqrf_ */
コード例 #11
0
ファイル: zgeqrf.c プロジェクト: deepakantony/vispack
/* Subroutine */ int zgeqrf_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, doublecomplex *tau, doublecomplex *work, integer *lwork,
	 integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZGEQRF computes a QR factorization of a complex M-by-N matrix A:   
    A = Q * R.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, the elements on and above the diagonal of the array 
  
            contain the min(M,N)-by-N upper trapezoidal matrix R (R is   
            upper triangular if m >= n); the elements below the diagonal, 
  
            with the array TAU, represent the unitary matrix Q as a   
            product of min(m,n) elementary reflectors (see Further   
            Details).   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    TAU     (output) COMPLEX*16 array, dimension (min(M,N))   
            The scalar factors of the elementary reflectors (see Further 
  
            Details).   

    WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,N).   
            For optimum performance LWORK >= N*NB, where NB is   
            the optimal blocksize.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    The matrix Q is represented as a product of elementary reflectors   

       Q = H(1) H(2) . . . H(k), where k = min(m,n).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a complex scalar, and v is a complex vector with   
    v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), 
  
    and tau in TAU(i).   

    ===================================================================== 
  


       Test the input arguments   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c_n1 = -1;
    static integer c__3 = 3;
    static integer c__2 = 2;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    /* Local variables */
    static integer i, k, nbmin, iinfo;
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *);
    static integer ib, nb, nx;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    static integer ldwork;
    extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    static integer iws;



#define TAU(I) tau[(I)-1]
#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    } else if (*lwork < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQRF", &i__1);
	return 0;
    }

/*     Quick return if possible */

    k = min(*m,*n);
    if (k == 0) {
	WORK(1).r = 1., WORK(1).i = 0.;
	return 0;
    }

/*     Determine the block size. */

    nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, 6L, 1L);
    nbmin = 2;
    nx = 0;
    iws = *n;
    if (nb > 1 && nb < k) {

/*        Determine when to cross over from blocked to unblocked code.
   

   Computing MAX */
	i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", m, n, &c_n1, &c_n1, 6L,
		 1L);
	nx = max(i__1,i__2);
	if (nx < k) {

/*           Determine if workspace is large enough for blocked co
de. */

	    ldwork = *n;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduc
e NB and   
                determine the minimum value of NB. */

		nb = *lwork / ldwork;
/* Computing MAX */
		i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", m, n, &c_n1, &
			c_n1, 6L, 1L);
		nbmin = max(i__1,i__2);
	    }
	}
    }

    if (nb >= nbmin && nb < k && nx < k) {

/*        Use blocked code initially */

	i__1 = k - nx;
	i__2 = nb;
	for (i = 1; nb < 0 ? i >= k-nx : i <= k-nx; i += nb) {
/* Computing MIN */
	    i__3 = k - i + 1;
	    ib = min(i__3,nb);

/*           Compute the QR factorization of the current block   
             A(i:m,i:i+ib-1) */

	    i__3 = *m - i + 1;
	    zgeqr2_(&i__3, &ib, &A(i,i), lda, &TAU(i), &WORK(1), &
		    iinfo);
	    if (i + ib <= *n) {

/*              Form the triangular factor of the block reflec
tor   
                H = H(i) H(i+1) . . . H(i+ib-1) */

		i__3 = *m - i + 1;
		zlarft_("Forward", "Columnwise", &i__3, &ib, &A(i,i), lda, &TAU(i), &WORK(1), &ldwork);

/*              Apply H' to A(i:m,i+ib:n) from the left */

		i__3 = *m - i + 1;
		i__4 = *n - i - ib + 1;
		zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise"
			, &i__3, &i__4, &ib, &A(i,i), lda, &WORK(1)
			, &ldwork, &A(i,i+ib), lda, &WORK(ib + 
			1), &ldwork);
	    }
/* L10: */
	}
    } else {
	i = 1;
    }

/*     Use unblocked code to factor the last or only block. */

    if (i <= k) {
	i__2 = *m - i + 1;
	i__1 = *n - i + 1;
	zgeqr2_(&i__2, &i__1, &A(i,i), lda, &TAU(i), &WORK(1), &
		iinfo);
    }

    WORK(1).r = (doublereal) iws, WORK(1).i = 0.;
    return 0;

/*     End of ZGEQRF */

} /* zgeqrf_ */
コード例 #12
0
ファイル: zerrqr.c プロジェクト: zangel/uquad
/* Subroutine */ int zerrqr_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublecomplex a[4]	/* was [2][2] */, b[2];
    static integer i__, j;
    static doublecomplex w[2], x[2], af[4]	/* was [2][2] */;
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
                                        integer *, doublecomplex *, doublecomplex *, integer *), zung2r_(
                                            integer *, integer *, integer *, doublecomplex *, integer *,
                                            doublecomplex *, doublecomplex *, integer *), zunm2r_(char *,
                                                    char *, integer *, integer *, integer *, doublecomplex *, integer
                                                    *, doublecomplex *, doublecomplex *, integer *, doublecomplex *,
                                                    integer *), alaesm_(char *, logical *, integer *), chkxer_(char *, integer *, integer *, logical *, logical
                                                            *), zgeqrf_(integer *, integer *, doublecomplex *,
                                                                    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
    , zgeqrs_(integer *, integer *, integer *, doublecomplex *,
              integer *, doublecomplex *, doublecomplex *, integer *,
              doublecomplex *, integer *, integer *), zungqr_(integer *,
                      integer *, integer *, doublecomplex *, integer *, doublecomplex *,
                      doublecomplex *, integer *, integer *), zunmqr_(char *, char *,
                              integer *, integer *, integer *, doublecomplex *, integer *,
                              doublecomplex *, doublecomplex *, integer *, doublecomplex *,
                              integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_subscr(a_1,a_2) (a_2)*2 + a_1 - 3
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define af_subscr(a_1,a_2) (a_2)*2 + a_1 - 3
#define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)]


    /*  -- LAPACK test routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           February 29, 1992


        Purpose
        =======

        ZERRQR tests the error exits for the COMPLEX*16 routines
        that use the QR decomposition of a general matrix.

        Arguments
        =========

        PATH    (input) CHARACTER*3
                The LAPACK path name for the routines to be tested.

        NUNIT   (input) INTEGER
                The unit number for output.

        ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

    /*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
        for (i__ = 1; i__ <= 2; ++i__) {
            i__1 = a_subscr(i__, j);
            d__1 = 1. / (doublereal) (i__ + j);
            d__2 = -1. / (doublereal) (i__ + j);
            z__1.r = d__1, z__1.i = d__2;
            a[i__1].r = z__1.r, a[i__1].i = z__1.i;
            i__1 = af_subscr(i__, j);
            d__1 = 1. / (doublereal) (i__ + j);
            d__2 = -1. / (doublereal) (i__ + j);
            z__1.r = d__1, z__1.i = d__2;
            af[i__1].r = z__1.r, af[i__1].i = z__1.i;
            /* L10: */
        }
        i__1 = j - 1;
        b[i__1].r = 0., b[i__1].i = 0.;
        i__1 = j - 1;
        w[i__1].r = 0., w[i__1].i = 0.;
        i__1 = j - 1;
        x[i__1].r = 0., x[i__1].i = 0.;
        /* L20: */
    }
    infoc_1.ok = TRUE_;

    /*     Error exits for QR factorization

           ZGEQRF */

    s_copy(srnamc_1.srnamt, "ZGEQRF", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("ZGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("ZGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 4;
    zgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info);
    chkxer_("ZGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 7;
    zgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info);
    chkxer_("ZGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     ZGEQR2 */

    s_copy(srnamc_1.srnamt, "ZGEQR2", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("ZGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("ZGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 4;
    zgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("ZGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     ZGEQRS */

    s_copy(srnamc_1.srnamt, "ZGEQRS", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 8;
    zgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 10;
    zgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("ZGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     ZUNGQR */

    s_copy(srnamc_1.srnamt, "ZUNGQR", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zungqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zungqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zungqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zungqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zungqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zungqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 8;
    zungqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("ZUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     ZUNG2R */

    s_copy(srnamc_1.srnamt, "ZUNG2R", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zung2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zung2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zung2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zung2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("ZUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zung2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info);
    chkxer_("ZUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zung2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info);
    chkxer_("ZUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     ZUNMQR */

    s_copy(srnamc_1.srnamt, "ZUNMQR", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zunmqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zunmqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zunmqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 4;
    zunmqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zunmqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zunmqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zunmqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 7;
    zunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 7;
    zunmqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 10;
    zunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 12;
    zunmqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 12;
    zunmqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
            info);
    chkxer_("ZUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     ZUNM2R */

    s_copy(srnamc_1.srnamt, "ZUNM2R", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    zunm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 2;
    zunm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 3;
    zunm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 4;
    zunm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zunm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zunm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 5;
    zunm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 7;
    zunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 7;
    zunm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);
    infoc_1.infot = 10;
    zunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info);
    chkxer_("ZUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
            infoc_1.ok);

    /*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

    /*     End of ZERRQR */

} /* zerrqr_ */