コード例 #1
0
int main(void)
{
    /* Local scalars */
    char uplo, uplo_i;
    lapack_int n, n_i;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_double *ap = NULL, *ap_i = NULL;
    lapack_int *ipiv = NULL, *ipiv_i = NULL;
    lapack_complex_double *work = NULL, *work_i = NULL;
    lapack_complex_double *ap_save = NULL;
    lapack_complex_double *ap_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_zhptri( &uplo, &n );
    uplo_i = uplo;
    n_i = n;

    /* Allocate memory for the LAPACK routine arrays */
    ap = (lapack_complex_double *)
         LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_double) );
    ipiv = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );
    work = (lapack_complex_double *)
           LAPACKE_malloc( n * sizeof(lapack_complex_double) );

    /* Allocate memory for the C interface function arrays */
    ap_i = (lapack_complex_double *)
           LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_double) );
    ipiv_i = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );
    work_i = (lapack_complex_double *)
             LAPACKE_malloc( n * sizeof(lapack_complex_double) );

    /* Allocate memory for the backup arrays */
    ap_save = (lapack_complex_double *)
              LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_double) );

    /* Allocate memory for the row-major arrays */
    ap_r = (lapack_complex_double *)
           LAPACKE_malloc( n*(n+1)/2 * sizeof(lapack_complex_double) );

    /* Initialize input arrays */
    init_ap( (n*(n+1)/2), ap );
    init_ipiv( n, ipiv );
    init_work( n, work );

    /* Backup the ouptut arrays */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_save[i] = ap[i];
    }

    /* Call the LAPACK routine */
    zhptri_( &uplo, &n, ap, ipiv, work, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < n; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zhptri_work( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i, ipiv_i,
                                  work_i );

    failed = compare_zhptri( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to zhptri\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to zhptri\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < n; i++ ) {
        work_i[i] = work[i];
    }
    info_i = LAPACKE_zhptri( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i, ipiv_i );

    failed = compare_zhptri( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to zhptri\n" );
    } else {
        printf( "FAILED: column-major high-level interface to zhptri\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < n; i++ ) {
        work_i[i] = work[i];
    }

    LAPACKE_zpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_zhptri_work( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r, ipiv_i,
                                  work_i );

    LAPACKE_zpp_trans( LAPACK_ROW_MAJOR, uplo, n, ap_r, ap_i );

    failed = compare_zhptri( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to zhptri\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to zhptri\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv[i];
    }
    for( i = 0; i < n; i++ ) {
        work_i[i] = work[i];
    }

    /* Init row_major arrays */
    LAPACKE_zpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_zhptri( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r, ipiv_i );

    LAPACKE_zpp_trans( LAPACK_ROW_MAJOR, uplo, n, ap_r, ap_i );

    failed = compare_zhptri( ap, ap_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to zhptri\n" );
    } else {
        printf( "FAILED: row-major high-level interface to zhptri\n" );
    }

    /* Release memory */
    if( ap != NULL ) {
        LAPACKE_free( ap );
    }
    if( ap_i != NULL ) {
        LAPACKE_free( ap_i );
    }
    if( ap_r != NULL ) {
        LAPACKE_free( ap_r );
    }
    if( ap_save != NULL ) {
        LAPACKE_free( ap_save );
    }
    if( ipiv != NULL ) {
        LAPACKE_free( ipiv );
    }
    if( ipiv_i != NULL ) {
        LAPACKE_free( ipiv_i );
    }
    if( work != NULL ) {
        LAPACKE_free( work );
    }
    if( work_i != NULL ) {
        LAPACKE_free( work_i );
    }

    return 0;
}
コード例 #2
0
ファイル: zchkhp.c プロジェクト: kstraube/hysim
/* Subroutine */ int zchkhp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, 
	integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *
	ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    extern logical lsame_(char *, char *);
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int zppt02_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *), zppt03_(char *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublereal *);
    logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zppt05_(char *, integer *, integer *, 
	     doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublereal *);
    char xtype[1];
    extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), alaerh_(char *, 
	    char *, integer *, integer *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *);
    doublereal rcondc;
    char packit[1];
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, 
	     integer *);
    logical trfcon;
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zhpcon_(char *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), zlarhs_(char *, 
	    char *, char *, char *, integer *, integer *, integer *, integer *
, integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, 
	    integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, char *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), 
	    zhprfs_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zhptrf_(char *, 
	     integer *, doublecomplex *, integer *, integer *);
    doublereal result[8];
    extern /* Subroutine */ int zhptri_(char *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), zhptrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zerrsy_(char *, integer *)
	    ;

    /* Fortran I/O blocks */
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZCHKHP tests ZHPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(2,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, */
/*                                 dimension (NMAX+2*NSMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrsy_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L160;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L160;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		if (lsame_(uplo, "U")) {
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with ZLATB4 and generate a test matrix */
/*              with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L150;
		}

/*              For types 3-6, zero one or more rows and columns of */
/*              the matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    zlaipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    zlaipd_(&n, &a[1], &n, &c_n1);
		}

/*              Compute the L*D*L' or U*D*U' factorization of the matrix. */

		npp = n * (n + 1) / 2;
		zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "ZHPTRF", (ftnlen)6, (ftnlen)6);
		zhptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*              Adjust the expected value of INFO to account for */
/*              pivoting. */

		k = izero;
		if (k > 0) {
L100:
		    if (iwork[k] < 0) {
			if (iwork[k] != -k) {
			    k = -iwork[k];
			    goto L100;
			}
		    } else if (iwork[k] != k) {
			k = iwork[k];
			goto L100;
		    }
		}

/*              Check error code from ZHPTRF. */

		if (info != k) {
		    alaerh_(path, "ZHPTRF", &info, &k, uplo, &n, &n, &c_n1, &
			    c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}
		if (info != 0) {
		    trfcon = TRUE_;
		} else {
		    trfcon = FALSE_;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, 
			&rwork[1], result);
		nt = 1;

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		if (! trfcon) {
		    zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		    s_copy(srnamc_1.srnamt, "ZHPTRI", (ftnlen)6, (ftnlen)6);
		    zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info);

/*              Check error code from ZHPTRI. */

		    if (info != 0) {
			alaerh_(path, "ZHPTRI", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[
			    1], &rcondc, &result[1]);
		    nt = 2;
		}

/*              Print information about the tests that did not pass */
/*              the threshold. */

		i__3 = nt;
		for (k = 1; k <= i__3; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L110: */
		}
		nrun += nt;

/*              Do only the condition estimate if INFO is not 0. */

		if (trfcon) {
		    rcondc = 0.;
		    goto L140;
		}

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';
		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "ZHPTRS", (ftnlen)6, (ftnlen)6);
		    zhptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, 
			     &info);

/*              Check error code from ZHPTRS. */

		    if (info != 0) {
			alaerh_(path, "ZHPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "ZHPRFS", (ftnlen)6, (ftnlen)6);
		    zhprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1]
, &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], 
			    &work[1], &rwork[(nrhs << 1) + 1], &info);

/*              Check error code from ZHPRFS. */

		    if (info != 0) {
			alaerh_(path, "ZHPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L120: */
		    }
		    nrun += 5;
/* L130: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

L140:
		anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "ZHPCON", (ftnlen)6, (ftnlen)6);
		zhpcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[
			1], &info);

/*              Check error code from ZHPCON. */

		if (info != 0) {
		    alaerh_(path, "ZHPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = dget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
L150:
		;
	    }
L160:
	    ;
	}
/* L170: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZCHKHP */

} /* zchkhp_ */
コード例 #3
0
ファイル: zdrvhp.c プロジェクト: zangel/uquad
/* Subroutine */ int zdrvhp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, 
	doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact, nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer nbmin;
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    ), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    static integer iuplo, izero, i1, i2, k1, nerrs;
    extern /* Subroutine */ int zppt02_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *), zppt05_(char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    static char xtype[1];
    extern /* Subroutine */ int zhpsv_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    char *), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static doublereal rcondc;
    static char packit[1];
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *,
	     integer *);
    static doublereal ainvnm;
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, char *, doublecomplex *, integer *, doublecomplex *, 
	    integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zhptrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zhptri_(char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zerrvx_(char *, integer *), zhpsvx_(char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
	    doublereal *, integer *);
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZDRVHP tests the driver routines ZHPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AINV    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    *(unsigned char *)path = 'Z';
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with ZLATB4 and generate a test matrix   
                with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1,
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of the   
                matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    zlaipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    zlaipd_(&n, &a[1], &n, &c_n1);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by ZHPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zhptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = zlanhp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test ZHPSV  --- */

		    if (ifact == 2) {
			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using ZHPSV. */

			s_copy(srnamc_1.srnamt, "ZHPSV ", (ftnlen)6, (ftnlen)
				6);
			zhpsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from ZHPSV . */

			if (info != k) {
			    alaerh_(path, "ZHPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
				, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "ZHPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test ZHPSVX --- */

		    if (ifact == 2 && npp > 0) {
			zlaset_("Full", &npp, &c__1, &c_b64, &c_b64, &afac[1],
				 &npp);
		    }
		    zlaset_("Full", &n, nrhs, &c_b64, &c_b64, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using ZHPSVX. */

		    s_copy(srnamc_1.srnamt, "ZHPSVX", (ftnlen)6, (ftnlen)6);
		    zhpsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 
			    1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from ZHPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "ZHPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from ZHPSVX with the computed value   
                   in RCONDC. */

		    result[5] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "ZHPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVHP */

} /* zdrvhp_ */