/* Subroutine */ int zdrvpp_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *asav, doublecomplex *b, doublecomplex *bsav, doublecomplex *x, doublecomplex *xact, doublereal *s, doublecomplex *work, doublereal * rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char facts[1*3] = "F" "N" "E"; static char packs[1*2] = "C" "R"; static char equeds[1*2] = "N" "Y"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i1,\002, test(\002,i1,\002)=\002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N=\002,i5,\002, EQUED='\002,a1,\002', type \002,i1,\002" ", test(\002,i1,\002)=\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N=\002,i5,\002, type \002,i1,\002, test(\002,i1,\002)" "=\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5[2]; char ch__1[2]; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ integer i__, k, n, k1, in, kl, ku, nt, lda, npp; char fact[1]; integer ioff, mode; doublereal amax; char path[3]; integer imat, info; char dist[1], uplo[1], type__[1]; integer nrun, ifact, nfail, iseed[4], nfact; extern doublereal dget06_(doublereal *, doublereal *); extern logical lsame_(char *, char *); char equed[1]; doublereal roldc, rcond, scond; integer nimat; doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); logical equil; integer iuplo, izero, nerrs; extern /* Subroutine */ int zppt01_(char *, integer *, doublecomplex *, doublecomplex *, doublereal *, doublereal *), zppt02_( char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zppt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); char xtype[1]; extern /* Subroutine */ int zppsv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer * , integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); logical prefac; doublereal rcondc; logical nofact; char packit[1]; integer iequed; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); doublereal ainvnm; extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zlaqhp_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, char *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal result[6]; extern /* Subroutine */ int zppequ_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, integer *), zpptrf_(char *, integer *, doublecomplex *, integer *), zpptri_(char *, integer *, doublecomplex *, integer *), zerrvx_(char *, integer *), zppsvx_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, char *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); /* Fortran I/O blocks */ static cilist io___49 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZDRVPP tests the driver routines ZPPSV and -SVX. */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NRHS (input) INTEGER */ /* The number of right hand side vectors to be generated for */ /* each linear system. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */ /* AFAC (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */ /* ASAV (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* BSAV (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) */ /* S (workspace) DOUBLE PRECISION array, dimension (NMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(3,NRHS)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --rwork; --work; --s; --xact; --x; --bsav; --b; --asav; --afac; --a; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "PP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); npp = n * (n + 1) / 2; *(unsigned char *)xtype = 'N'; nimat = 9; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L130; } /* Skip types 3, 4, or 5 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 5; if (zerot && n < imat - 2) { goto L130; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; *(unsigned char *)packit = *(unsigned char *)&packs[iuplo - 1] ; /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); rcondc = 1. / cndnum; s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L120; } /* For types 3-5, zero one row and column of the matrix to */ /* test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } /* Set row and column IZERO of A to 0. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[1], &c__2, &c__1); } else { zlaipd_(&n, &a[1], &n, &c_n1); } /* Save a copy of the matrix A in ASAV. */ zcopy_(&npp, &a[1], &c__1, &asav[1], &c__1); for (iequed = 1; iequed <= 2; ++iequed) { *(unsigned char *)equed = *(unsigned char *)&equeds[ iequed - 1]; if (iequed == 1) { nfact = 3; } else { nfact = 1; } i__3 = nfact; for (ifact = 1; ifact <= i__3; ++ifact) { *(unsigned char *)fact = *(unsigned char *)&facts[ ifact - 1]; prefac = lsame_(fact, "F"); nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); if (zerot) { if (prefac) { goto L100; } rcondc = 0.; } else if (! lsame_(fact, "N")) { /* Compute the condition number for comparison with */ /* the value returned by ZPPSVX (FACT = 'N' reuses */ /* the condition number from the previous iteration */ /* with FACT = 'F'). */ zcopy_(&npp, &asav[1], &c__1, &afac[1], &c__1); if (equil || iequed > 1) { /* Compute row and column scale factors to */ /* equilibrate the matrix A. */ zppequ_(uplo, &n, &afac[1], &s[1], &scond, & amax, &info); if (info == 0 && n > 0) { if (iequed > 1) { scond = 0.; } /* Equilibrate the matrix. */ zlaqhp_(uplo, &n, &afac[1], &s[1], &scond, &amax, equed); } } /* Save the condition number of the */ /* non-equilibrated system for use in ZGET04. */ if (equil) { roldc = rcondc; } /* Compute the 1-norm of A. */ anorm = zlanhp_("1", uplo, &n, &afac[1], &rwork[1] ); /* Factor the matrix A. */ zpptrf_(uplo, &n, &afac[1], &info); /* Form the inverse of A. */ zcopy_(&npp, &afac[1], &c__1, &a[1], &c__1); zpptri_(uplo, &n, &a[1], &info); /* Compute the 1-norm condition number of A. */ ainvnm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Restore the matrix A. */ zcopy_(&npp, &asav[1], &c__1, &a[1], &c__1); /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen) 6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &a[1], &lda, &xact[1], &lda, &b[1], & lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, nrhs, &b[1], &lda, &bsav[1], &lda); if (nofact) { /* --- Test ZPPSV --- */ /* Compute the L*L' or U'*U factorization of the */ /* matrix and solve the system. */ zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], & lda); s_copy(srnamc_1.srnamt, "ZPPSV ", (ftnlen)6, ( ftnlen)6); zppsv_(uplo, &n, nrhs, &afac[1], &x[1], &lda, & info); /* Check error code from ZPPSV . */ if (info != izero) { alaerh_(path, "ZPPSV ", &info, &izero, uplo, & n, &n, &c_n1, &c_n1, nrhs, &imat, & nfail, &nerrs, nout); goto L70; } else if (info != 0) { goto L70; } /* Reconstruct matrix from factors and compute */ /* residual. */ zppt01_(uplo, &n, &a[1], &afac[1], &rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], & lda); zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[ 1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not */ /* pass the threshold. */ i__4 = nt; for (k = 1; k <= i__4; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, "ZPPSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); ++nfail; } /* L60: */ } nrun += nt; L70: ; } /* --- Test ZPPSVX --- */ if (! prefac && npp > 0) { zlaset_("Full", &npp, &c__1, &c_b63, &c_b63, & afac[1], &npp); } zlaset_("Full", &n, nrhs, &c_b63, &c_b63, &x[1], &lda); if (iequed > 1 && n > 0) { /* Equilibrate the matrix if FACT='F' and */ /* EQUED='Y'. */ zlaqhp_(uplo, &n, &a[1], &s[1], &scond, &amax, equed); } /* Solve the system and compute the condition number */ /* and error bounds using ZPPSVX. */ s_copy(srnamc_1.srnamt, "ZPPSVX", (ftnlen)6, (ftnlen) 6); zppsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], equed, &s[1], &b[1], &lda, &x[1], &lda, &rcond, & rwork[1], &rwork[*nrhs + 1], &work[1], &rwork[ (*nrhs << 1) + 1], &info); /* Check the error code from ZPPSVX. */ if (info != izero) { /* Writing concatenation */ i__5[0] = 1, a__1[0] = fact; i__5[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2); alaerh_(path, "ZPPSVX", &info, &izero, ch__1, &n, &n, &c_n1, &c_n1, nrhs, &imat, &nfail, & nerrs, nout); goto L90; } if (info == 0) { if (! prefac) { /* Reconstruct matrix from factors and compute */ /* residual. */ zppt01_(uplo, &n, &a[1], &afac[1], &rwork[(* nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &bsav[1], &lda, &work[1] , &lda); zppt02_(uplo, &n, nrhs, &asav[1], &x[1], &lda, & work[1], &lda, &rwork[(*nrhs << 1) + 1], & result[1]); /* Check solution from generated exact solution. */ if (nofact || prefac && lsame_(equed, "N")) { zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &result[2]); } else { zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &roldc, &result[2]); } /* Check the error bounds from iterative */ /* refinement. */ zppt05_(uplo, &n, nrhs, &asav[1], &b[1], &lda, &x[ 1], &lda, &xact[1], &lda, &rwork[1], & rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from ZPPSVX with the computed value */ /* in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } if (prefac) { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "ZPPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, equed, (ftnlen)1); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } else { io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, "ZPPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen) sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], ( ftnlen)sizeof(doublereal)); e_wsfe(); } ++nfail; } /* L80: */ } nrun = nrun + 7 - k1; L90: L100: ; } /* L110: */ } L120: ; } L130: ; } /* L140: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVPP */ } /* zdrvpp_ */
/* Subroutine */ int zchkhp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex * ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, " "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g" "12.5)"; /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, info; char path[3], dist[1]; integer irhs, nrhs; char uplo[1], type__[1]; integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); integer nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); extern logical lsame_(char *, char *); doublereal rcond; integer nimat; doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); integer iuplo, izero, nerrs; extern /* Subroutine */ int zppt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zppt03_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zppt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); char xtype[1]; extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); doublereal rcondc; char packit[1]; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); logical trfcon; extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zhpcon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer * , integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *), zhprfs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zhptrf_(char *, integer *, doublecomplex *, integer *, integer *); doublereal result[8]; extern /* Subroutine */ int zhptri_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zhptrs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zerrsy_(char *, integer *) ; /* Fortran I/O blocks */ static cilist io___38 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZCHKHP tests ZHPTRF, -TRI, -TRS, -RFS, and -CON */ /* Arguments */ /* ========= */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* The matrix types to be used for testing. Matrices of type j */ /* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */ /* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */ /* NN (input) INTEGER */ /* The number of values of N contained in the vector NVAL. */ /* NVAL (input) INTEGER array, dimension (NN) */ /* The values of the matrix dimension N. */ /* NNS (input) INTEGER */ /* The number of values of NRHS contained in the vector NSVAL. */ /* NSVAL (input) INTEGER array, dimension (NNS) */ /* The values of the number of right hand sides NRHS. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. */ /* TSTERR (input) LOGICAL */ /* Flag that indicates whether error exits are to be tested. */ /* NMAX (input) INTEGER */ /* The maximum value permitted for N, used in dimensioning the */ /* work arrays. */ /* A (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AFAC (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* AINV (workspace) COMPLEX*16 array, dimension */ /* (NMAX*(NMAX+1)/2) */ /* B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* where NSMAX is the largest entry in NSVAL. */ /* X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */ /* WORK (workspace) COMPLEX*16 array, dimension */ /* (NMAX*max(2,NSMAX)) */ /* RWORK (workspace) DOUBLE PRECISION array, */ /* dimension (NMAX+2*NSMAX) */ /* IWORK (workspace) INTEGER array, dimension (NMAX) */ /* NOUT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nsval; --nval; --dotype; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrsy_(path, nout); } infoc_1.infot = 0; /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); *(unsigned char *)xtype = 'N'; nimat = 10; if (n <= 0) { nimat = 1; } izero = 0; i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L160; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L160; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; if (lsame_(uplo, "U")) { *(unsigned char *)packit = 'C'; } else { *(unsigned char *)packit = 'R'; } /* Set up parameters with ZLATB4 and generate a test matrix */ /* with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L150; } /* For types 3-6, zero one or more rows and columns of */ /* the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { ioff = 0; if (iuplo == 1) { /* Set the first IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L60: */ } ioff += j; /* L70: */ } } else { /* Set the last IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L80: */ } ioff = ioff + n - j; /* L90: */ } } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[1], &c__2, &c__1); } else { zlaipd_(&n, &a[1], &n, &c_n1); } /* Compute the L*D*L' or U*D*U' factorization of the matrix. */ npp = n * (n + 1) / 2; zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); s_copy(srnamc_1.srnamt, "ZHPTRF", (ftnlen)6, (ftnlen)6); zhptrf_(uplo, &n, &afac[1], &iwork[1], &info); /* Adjust the expected value of INFO to account for */ /* pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from ZHPTRF. */ if (info != k) { alaerh_(path, "ZHPTRF", &info, &k, uplo, &n, &n, &c_n1, & c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } if (info != 0) { trfcon = TRUE_; } else { trfcon = FALSE_; } /* + TEST 1 */ /* Reconstruct matrix from factors and compute residual. */ zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, &rwork[1], result); nt = 1; /* + TEST 2 */ /* Form the inverse and compute the residual. */ if (! trfcon) { zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); s_copy(srnamc_1.srnamt, "ZHPTRI", (ftnlen)6, (ftnlen)6); zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info); /* Check error code from ZHPTRI. */ if (info != 0) { alaerh_(path, "ZHPTRI", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[ 1], &rcondc, &result[1]); nt = 2; } /* Print information about the tests that did not pass */ /* the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; /* Do only the condition estimate if INFO is not 0. */ if (trfcon) { rcondc = 0.; goto L140; } i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; /* + TEST 3 */ /* Solve and compute residual for A * X = B. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZHPTRS", (ftnlen)6, (ftnlen)6); zhptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, &info); /* Check error code from ZHPTRS. */ if (info != 0) { alaerh_(path, "ZHPTRS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda); zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], & lda, &rwork[1], &result[2]); /* + TEST 4 */ /* Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[3]); /* + TESTS 5, 6, and 7 */ /* Use iterative refinement to improve the solution. */ s_copy(srnamc_1.srnamt, "ZHPRFS", (ftnlen)6, (ftnlen)6); zhprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1] , &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from ZHPRFS. */ if (info != 0) { alaerh_(path, "ZHPRFS", &info, &c__0, uplo, &n, &n, & c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, & result[4]); zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], & result[5]); /* Print information about the tests that did not pass */ /* the threshold. */ for (k = 3; k <= 7; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___41.ciunit = *nout; s_wsfe(&io___41); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L120: */ } nrun += 5; /* L130: */ } /* + TEST 8 */ /* Get an estimate of RCOND = 1/CNDNUM. */ L140: anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]); s_copy(srnamc_1.srnamt, "ZHPCON", (ftnlen)6, (ftnlen)6); zhpcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[ 1], &info); /* Check error code from ZHPCON. */ if (info != 0) { alaerh_(path, "ZHPCON", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } result[7] = dget06_(&rcond, &rcondc); /* Print the test ratio if it is .GE. THRESH. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; L150: ; } L160: ; } /* L170: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKHP */ } /* zchkhp_ */
/* Subroutine */ int zhpev_(char *jobz, char *uplo, integer *n, doublecomplex *ap, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex * work, doublereal *rwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A. W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1)) RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2)) INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer inde; static doublereal anrm; static integer imax; static doublereal rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); static doublereal sigma; extern logical lsame_(char *, char *); static integer iinfo; static logical wantz; extern doublereal dlamch_(char *); static integer iscale; static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *); static doublereal bignum; static integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); static integer indrwk, indwrk; static doublereal smlnum; extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *), zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zupgtr_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal eps; #define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1 #define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)] --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, "V"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPEV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1].r; rwork[1] = 1.; if (wantz) { i__1 = z___subscr(1, 1); z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; zdscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ inde = 1; indtau = 1; zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call ZUPGTR to generate the orthogonal matrix, then call ZSTEQR. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { indwrk = indtau + *n; zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[ indwrk], &iinfo); indrwk = inde + *n; zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indrwk], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } return 0; /* End of ZHPEV */ } /* zhpev_ */
/* Subroutine */ int zhpevx_(char *jobz, char *range, char *uplo, integer *n, doublecomplex *ap, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex *work, doublereal * rwork, integer *iwork, integer *ifail, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1, i__2; doublereal d__1, d__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, jj; doublereal eps, vll, vuu, tmp1; integer indd, inde; doublereal anrm; integer imax; doublereal rmin, rmax; logical test; integer itmp1, indee; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer iinfo; char order[1]; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); logical wantz; extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); logical alleig, indeig; integer iscale, indibl; logical valeig; doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *); doublereal abstll, bignum; integer indiwk, indisp, indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), dstebz_(char *, char *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); integer indrwk, indwrk, nsplit; doublereal smlnum; extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *), zstein_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *, integer *), zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zupgtr_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zupmtr_(char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHPEVX computes selected eigenvalues and, optionally, eigenvectors */ /* of a complex Hermitian matrix A in packed storage. */ /* Eigenvalues/vectors can be selected by specifying either a range of */ /* values or a range of indices for the desired eigenvalues. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found; */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found; */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* On entry, the upper or lower triangle of the Hermitian matrix */ /* A, packed columnwise in a linear array. The j-th column of A */ /* is stored in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* On exit, AP is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the diagonal */ /* and first superdiagonal of the tridiagonal matrix T overwrite */ /* the corresponding elements of A, and if UPLO = 'L', the */ /* diagonal and first subdiagonal of T overwrite the */ /* corresponding elements of A. */ /* VL (input) DOUBLE PRECISION */ /* VU (input) DOUBLE PRECISION */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) DOUBLE PRECISION */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less than */ /* or equal to zero, then EPS*|T| will be used in its place, */ /* where |T| is the 1-norm of the tridiagonal matrix obtained */ /* by reducing AP to tridiagonal form. */ /* Eigenvalues will be computed most accurately when ABSTOL is */ /* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */ /* If this routine returns with INFO>0, indicating that some */ /* eigenvectors did not converge, try setting ABSTOL to */ /* 2*DLAMCH('S'). */ /* See "Computing Small Singular Values of Bidiagonal Matrices */ /* with Guaranteed High Relative Accuracy," by Demmel and */ /* Kahan, LAPACK Working Note #3. */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the selected eigenvalues in ascending order. */ /* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M)) */ /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ /* contain the orthonormal eigenvectors of the matrix A */ /* corresponding to the selected eigenvalues, with the i-th */ /* column of Z holding the eigenvector associated with W(i). */ /* If an eigenvector fails to converge, then that column of Z */ /* contains the latest approximation to the eigenvector, and */ /* the index of the eigenvector is returned in IFAIL. */ /* If JOBZ = 'N', then Z is not referenced. */ /* Note: the user must ensure that at least max(1,M) columns are */ /* supplied in the array Z; if RANGE = 'V', the exact value of M */ /* is not known in advance and an upper bound must be used. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (7*N) */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* IFAIL (output) INTEGER array, dimension (N) */ /* If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* indices of the eigenvectors that failed to converge. */ /* If JOBZ = 'N', then IFAIL is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, then i eigenvectors failed to converge. */ /* Their indices are stored in array IFAIL. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; --ifail; /* Function Body */ wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) { *info = -3; } else if (*n < 0) { *info = -4; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -7; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -8; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -9; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -14; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPEVX", &i__1); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } if (*n == 1) { if (alleig || indeig) { *m = 1; w[1] = ap[1].r; } else { if (*vl < ap[1].r && *vu >= ap[1].r) { *m = 1; w[1] = ap[1].r; } } if (wantz) { i__1 = z_dim1 + 1; z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); /* Computing MIN */ d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); rmax = min(d__1,d__2); /* Scale matrix to allowable range, if necessary. */ iscale = 0; abstll = *abstol; if (valeig) { vll = *vl; vuu = *vu; } else { vll = 0.; vuu = 0.; } anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]); if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; zdscal_(&i__1, &sigma, &ap[1], &c__1); if (*abstol > 0.) { abstll = *abstol * sigma; } if (valeig) { vll = *vl * sigma; vuu = *vu * sigma; } } /* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ indd = 1; inde = indd + *n; indrwk = inde + *n; indtau = 1; indwrk = indtau + *n; zhptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], & iinfo); /* If all eigenvalues are desired and ABSTOL is less than or equal */ /* to zero, then call DSTERF or ZUPGTR and ZSTEQR. If this fails */ /* for some eigenvalue, then try DSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && *abstol <= 0.) { dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1); indee = indrwk + (*n << 1); if (! wantz) { i__1 = *n - 1; dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1); dsterf_(n, &w[1], &rwork[indee], info); } else { zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, & work[indwrk], &iinfo); i__1 = *n - 1; dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1); zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, & rwork[indrwk], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ifail[i__] = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L20; } *info = 0; } /* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + *n; indiwk = indisp + *n; dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], & rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], & rwork[indrwk], &iwork[indiwk], info); if (wantz) { zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], & iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ indiwk], &ifail[1], info); /* Apply unitary matrix used in reduction to tridiagonal */ /* form to eigenvectors returned by ZSTEIN. */ indwrk = indtau + *n; zupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ L20: if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L30: */ } if (i__ != 0) { itmp1 = iwork[indibl + i__ - 1]; w[i__] = w[j]; iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); if (*info != 0) { itmp1 = ifail[i__]; ifail[i__] = ifail[j]; ifail[j] = itmp1; } } /* L40: */ } } return 0; /* End of ZHPEVX */ } /* zhpevx_ */
int zhpev_(char *jobz, char *uplo, int *n, doublecomplex *ap, double *w, doublecomplex *z__, int *ldz, doublecomplex * work, double *rwork, int *info) { /* System generated locals */ int z_dim1, z_offset, i__1; double d__1; /* Builtin functions */ double sqrt(double); /* Local variables */ double eps; int inde; double anrm; int imax; double rmin, rmax; extern int dscal_(int *, double *, double *, int *); double sigma; extern int lsame_(char *, char *); int iinfo; int wantz; extern double dlamch_(char *); int iscale; double safmin; extern int xerbla_(char *, int *), zdscal_( int *, double *, doublecomplex *, int *); double bignum; int indtau; extern int dsterf_(int *, double *, double *, int *); extern double zlanhp_(char *, char *, int *, doublecomplex *, double *); int indrwk, indwrk; double smlnum; extern int zhptrd_(char *, int *, doublecomplex *, double *, double *, doublecomplex *, int *), zsteqr_(char *, int *, double *, double *, doublecomplex *, int *, double *, int *), zupgtr_(char *, int *, doublecomplex *, doublecomplex *, doublecomplex *, int *, doublecomplex *, int *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a */ /* complex Hermitian matrix in packed storage. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* On entry, the upper or lower triangle of the Hermitian matrix */ /* A, packed columnwise in a linear array. The j-th column of A */ /* is stored in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* On exit, AP is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the diagonal */ /* and first superdiagonal of the tridiagonal matrix T overwrite */ /* the corresponding elements of A, and if UPLO = 'L', the */ /* diagonal and first subdiagonal of T overwrite the */ /* corresponding elements of A. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX*16 array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with W(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= MAX(1,N). */ /* WORK (workspace) COMPLEX*16 array, dimension (MAX(1, 2*N-1)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (MAX(1, 3*N-2)) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, "V"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPEV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1].r; rwork[1] = 1.; if (wantz) { i__1 = z_dim1 + 1; z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; zdscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ inde = 1; indtau = 1; zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call */ /* ZUPGTR to generate the orthogonal matrix, then call ZSTEQR. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { indwrk = indtau + *n; zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[ indwrk], &iinfo); indrwk = inde + *n; zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indrwk], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } return 0; /* End of ZHPEV */ } /* zhpev_ */
/* Subroutine */ int zhpt01_(char *uplo, integer *n, doublecomplex *a, doublecomplex *afac, integer *ipiv, doublecomplex *c__, integer *ldc, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1; doublecomplex z__1; /* Builtin functions */ double d_imag(doublecomplex *); /* Local variables */ integer i__, j, jc; doublereal eps; integer info; extern logical lsame_(char *, char *); doublereal anorm; extern doublereal dlamch_(char *), zlanhe_(char *, char *, integer *, doublecomplex *, integer *, doublereal *), zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlavhp_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its */ /* block L*D*L' or U*D*U' factorization and computes the residual */ /* norm( C - A ) / ( N * norm(A) * EPS ), */ /* where C is the reconstructed matrix, EPS is the machine epsilon, */ /* L' is the conjugate transpose of L, and U' is the conjugate transpose */ /* of U. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The original Hermitian matrix A, stored as a packed */ /* triangular matrix. */ /* AFAC (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The factored form of the matrix A, stored as a packed */ /* triangular matrix. AFAC contains the block diagonal matrix D */ /* and the multipliers used to obtain the factor L or U from the */ /* block L*D*L' or U*D*U' factorization as computed by ZHPTRF. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from ZHPTRF. */ /* C (workspace) COMPLEX*16 array, dimension (LDC,N) */ /* LDC (integer) INTEGER */ /* The leading dimension of the array C. LDC >= max(1,N). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) */ /* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ --a; --afac; --ipiv; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --rwork; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } /* Determine EPS and the norm of A. */ eps = dlamch_("Epsilon"); anorm = zlanhp_("1", uplo, n, &a[1], &rwork[1]); /* Check the imaginary parts of the diagonal elements and return with */ /* an error code if any are nonzero. */ jc = 1; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (d_imag(&afac[jc]) != 0.) { *resid = 1. / eps; return 0; } jc = jc + j + 1; /* L10: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (d_imag(&afac[jc]) != 0.) { *resid = 1. / eps; return 0; } jc = jc + *n - j + 1; /* L20: */ } } /* Initialize C to the identity matrix. */ zlaset_("Full", n, n, &c_b1, &c_b2, &c__[c_offset], ldc); /* Call ZLAVHP to form the product D * U' (or D * L' ). */ zlavhp_(uplo, "Conjugate", "Non-unit", n, n, &afac[1], &ipiv[1], &c__[ c_offset], ldc, &info); /* Call ZLAVHP again to multiply by U ( or L ). */ zlavhp_(uplo, "No transpose", "Unit", n, n, &afac[1], &ipiv[1], &c__[ c_offset], ldc, &info); /* Compute the difference C - A . */ if (lsame_(uplo, "U")) { jc = 0; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; i__5 = jc + i__; z__1.r = c__[i__4].r - a[i__5].r, z__1.i = c__[i__4].i - a[ i__5].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L30: */ } i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; i__4 = jc + j; d__1 = a[i__4].r; z__1.r = c__[i__3].r - d__1, z__1.i = c__[i__3].i; c__[i__2].r = z__1.r, c__[i__2].i = z__1.i; jc += j; /* L40: */ } } else { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j + j * c_dim1; i__3 = j + j * c_dim1; i__4 = jc; d__1 = a[i__4].r; z__1.r = c__[i__3].r - d__1, z__1.i = c__[i__3].i; c__[i__2].r = z__1.r, c__[i__2].i = z__1.i; i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * c_dim1; i__4 = i__ + j * c_dim1; i__5 = jc + i__ - j; z__1.r = c__[i__4].r - a[i__5].r, z__1.i = c__[i__4].i - a[ i__5].i; c__[i__3].r = z__1.r, c__[i__3].i = z__1.i; /* L50: */ } jc = jc + *n - j + 1; /* L60: */ } } /* Compute norm( C - A ) / ( N * norm(A) * EPS ) */ *resid = zlanhe_("1", uplo, n, &c__[c_offset], ldc, &rwork[1]); if (anorm <= 0.) { if (*resid != 0.) { *resid = 1. / eps; } } else { *resid = *resid / (doublereal) (*n) / anorm / eps; } return 0; /* End of ZHPT01 */ } /* zhpt01_ */
/* Subroutine */ int zhpsvx_(char *fact, char *uplo, integer *n, integer * nrhs, doublecomplex *ap, doublecomplex *afp, integer *ipiv, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *ferr, doublereal *berr, doublecomplex * work, doublereal *rwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or A = L*D*L**H to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided. Description =========== The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A as A = U * D * U**H, if UPLO = 'U', or A = L * D * L**H, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. 2. If some D(i,i)=0, so that D is exactly singular, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it. Arguments ========= FACT (input) CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AFP and IPIV contain the factored form of A. AFP and IPIV will not be modified. = 'N': The matrix A will be copied to AFP and factored. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) The upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. See below for further details. AFP (input or output) COMPLEX*16 array, dimension (N*(N+1)/2) If FACT = 'F', then AFP is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as a packed triangular matrix in the same storage format as A. If FACT = 'N', then AFP is an output argument and on exit contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as a packed triangular matrix in the same storage format as A. IPIV (input or output) INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by ZHPTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by ZHPTRF. B (input) COMPLEX*16 array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (output) COMPLEX*16 array, dimension (LDX,NRHS) If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). RCOND (output) DOUBLE PRECISION The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0. FERR (output) DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR (output) DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX*16 array, dimension (2*N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed but the factor D is exactly singular, so the solution and error bounds could not be computed. RCOND = 0 is returned. = N+1: D is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest. Further Details =============== The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Two-dimensional storage of the Hermitian matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); static doublereal anorm; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); static logical nofact; extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zhpcon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zhprfs_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zhptrf_(char *, integer *, doublecomplex *, integer *, integer *), zhptrs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); --ap; --afp; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldx < max(1,*n)) { *info = -11; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPSVX", &i__1); return 0; } if (nofact) { /* Compute the factorization A = U*D*U' or A = L*D*L'. */ i__1 = *n * (*n + 1) / 2; zcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1); zhptrf_(uplo, n, &afp[1], &ipiv[1], info); /* Return if INFO is non-zero. */ if (*info != 0) { if (*info > 0) { *rcond = 0.; } return 0; } } /* Compute the norm of the matrix A. */ anorm = zlanhp_("I", uplo, n, &ap[1], &rwork[1]); /* Compute the reciprocal of the condition number of A. */ zhpcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < dlamch_("Epsilon")) { *info = *n + 1; } /* Compute the solution vectors X. */ zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); zhptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and compute error bounds and backward error estimates for them. */ zhprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[ x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info); return 0; /* End of ZHPSVX */ } /* zhpsvx_ */
/* Subroutine */ int zhpevd_(char *jobz, char *uplo, integer *n, doublecomplex *ap, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork, integer * lrwork, integer *iwork, integer *liwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A. W (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least N. If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace/output) DOUBLE PRECISION array, dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. LRWORK (input) INTEGER The dimension of array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = 'N' and N > 1, LRWORK must be at least N. If JOBZ = 'V' and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the RWORK array, and no error message related to LRWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (LIWORK) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of array IWORK. If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer inde; static doublereal anrm; static integer imax; static doublereal rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); static doublereal sigma; extern logical lsame_(char *, char *); static integer iinfo, lwmin, llrwk, llwrk; static logical wantz; extern doublereal dlamch_(char *); static integer iscale; static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *); static doublereal bignum; static integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zstedc_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *, integer *, integer *); static integer indrwk, indwrk, liwmin, lrwmin; static doublereal smlnum; extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *); static logical lquery; extern /* Subroutine */ int zupmtr_(char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal eps; #define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1 #define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)] --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { lwmin = 1; liwmin = 1; lrwmin = 1; } else { if (wantz) { lwmin = *n << 1; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n; lrwmin = *n; liwmin = 1; } } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } else if (*lwork < lwmin && ! lquery) { *info = -9; } else if (*lrwork < lrwmin && ! lquery) { *info = -11; } else if (*liwork < liwmin && ! lquery) { *info = -13; } if (*info == 0) { work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPEVD", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1].r; if (wantz) { i__1 = z___subscr(1, 1); z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; zdscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ inde = 1; indtau = 1; indrwk = inde + *n; indwrk = indtau + *n; llwrk = *lwork - indwrk + 1; llrwk = *lrwork - indrwk + 1; zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call ZUPGTR to generate the orthogonal matrix, then call ZSTEDC. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { zstedc_("I", n, &w[1], &rwork[inde], &z__[z_offset], ldz, &work[ indwrk], &llwrk, &rwork[indrwk], &llrwk, &iwork[1], liwork, info); zupmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; return 0; /* End of ZHPEVD */ } /* zhpevd_ */
/* Subroutine */ int zppt01_(char *uplo, integer *n, doublecomplex *a, doublecomplex *afac, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; doublereal d__1; doublecomplex z__1; /* Builtin functions */ double d_imag(doublecomplex *); /* Local variables */ integer i__, k, kc; doublecomplex tc; doublereal tr, eps; extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *); extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZPPT01 reconstructs a Hermitian positive definite packed matrix A */ /* from its L*L' or U'*U factorization and computes the residual */ /* norm( L*L' - A ) / ( N * norm(A) * EPS ) or */ /* norm( U'*U - A ) / ( N * norm(A) * EPS ), */ /* where EPS is the machine epsilon, L' is the conjugate transpose of */ /* L, and U' is the conjugate transpose of U. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The original Hermitian matrix A, stored as a packed */ /* triangular matrix. */ /* AFAC (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* On entry, the factor L or U from the L*L' or U'*U */ /* factorization of A, stored as a packed triangular matrix. */ /* Overwritten with the reconstructed matrix, and then with the */ /* difference L*L' - A (or U'*U - A). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) */ /* If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 */ /* Parameter adjustments */ --rwork; --afac; --a; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = zlanhp_("1", uplo, n, &a[1], &rwork[1]); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Check the imaginary parts of the diagonal elements and return with */ /* an error code if any are nonzero. */ kc = 1; if (lsame_(uplo, "U")) { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (d_imag(&afac[kc]) != 0.) { *resid = 1. / eps; return 0; } kc = kc + k + 1; /* L10: */ } } else { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (d_imag(&afac[kc]) != 0.) { *resid = 1. / eps; return 0; } kc = kc + *n - k + 1; /* L20: */ } } /* Compute the product U'*U, overwriting U. */ if (lsame_(uplo, "U")) { kc = *n * (*n - 1) / 2 + 1; for (k = *n; k >= 1; --k) { /* Compute the (K,K) element of the result. */ zdotc_(&z__1, &k, &afac[kc], &c__1, &afac[kc], &c__1); tr = z__1.r; i__1 = kc + k - 1; afac[i__1].r = tr, afac[i__1].i = 0.; /* Compute the rest of column K. */ if (k > 1) { i__1 = k - 1; ztpmv_("Upper", "Conjugate", "Non-unit", &i__1, &afac[1], & afac[kc], &c__1); kc -= k - 1; } /* L30: */ } /* Compute the difference L*L' - A */ kc = 1; i__1 = *n; for (k = 1; k <= i__1; ++k) { i__2 = k - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = kc + i__ - 1; i__4 = kc + i__ - 1; i__5 = kc + i__ - 1; z__1.r = afac[i__4].r - a[i__5].r, z__1.i = afac[i__4].i - a[ i__5].i; afac[i__3].r = z__1.r, afac[i__3].i = z__1.i; /* L40: */ } i__2 = kc + k - 1; i__3 = kc + k - 1; i__4 = kc + k - 1; d__1 = a[i__4].r; z__1.r = afac[i__3].r - d__1, z__1.i = afac[i__3].i; afac[i__2].r = z__1.r, afac[i__2].i = z__1.i; kc += k; /* L50: */ } /* Compute the product L*L', overwriting L. */ } else { kc = *n * (*n + 1) / 2; for (k = *n; k >= 1; --k) { /* Add a multiple of column K of the factor L to each of */ /* columns K+1 through N. */ if (k < *n) { i__1 = *n - k; zhpr_("Lower", &i__1, &c_b19, &afac[kc + 1], &c__1, &afac[kc + *n - k + 1]); } /* Scale column K by the diagonal element. */ i__1 = kc; tc.r = afac[i__1].r, tc.i = afac[i__1].i; i__1 = *n - k + 1; zscal_(&i__1, &tc, &afac[kc], &c__1); kc -= *n - k + 2; /* L60: */ } /* Compute the difference U'*U - A */ kc = 1; i__1 = *n; for (k = 1; k <= i__1; ++k) { i__2 = kc; i__3 = kc; i__4 = kc; d__1 = a[i__4].r; z__1.r = afac[i__3].r - d__1, z__1.i = afac[i__3].i; afac[i__2].r = z__1.r, afac[i__2].i = z__1.i; i__2 = *n; for (i__ = k + 1; i__ <= i__2; ++i__) { i__3 = kc + i__ - k; i__4 = kc + i__ - k; i__5 = kc + i__ - k; z__1.r = afac[i__4].r - a[i__5].r, z__1.i = afac[i__4].i - a[ i__5].i; afac[i__3].r = z__1.r, afac[i__3].i = z__1.i; /* L70: */ } kc = kc + *n - k + 1; /* L80: */ } } /* Compute norm( L*U - A ) / ( N * norm(A) * EPS ) */ *resid = zlanhp_("1", uplo, n, &afac[1], &rwork[1]); *resid = *resid / (doublereal) (*n) / anorm / eps; return 0; /* End of ZPPT01 */ } /* zppt01_ */
/* Subroutine */ int zppt02_(char *uplo, integer *n, integer *nrhs, doublecomplex *a, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; doublecomplex z__1; /* Local variables */ integer j; doublereal eps, anorm, bnorm, xnorm; extern /* Subroutine */ int zhpmv_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *), dzasum_(integer *, doublecomplex *, integer *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZPPT02 computes the residual in the solution of a Hermitian system */ /* of linear equations A*x = b when packed storage is used for the */ /* coefficient matrix. The ratio computed is */ /* RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS), */ /* where EPS is the machine precision. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of columns of B, the matrix of right hand sides. */ /* NRHS >= 0. */ /* A (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The original Hermitian matrix A, stored as a packed */ /* triangular matrix. */ /* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */ /* The computed solution vectors for the system of linear */ /* equations. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ /* On entry, the right hand side vectors for the system of */ /* linear equations. */ /* On exit, B is overwritten with the difference B - A*X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESID (output) DOUBLE PRECISION */ /* The maximum over the number of right hand sides of */ /* norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0 or NRHS = 0. */ /* Parameter adjustments */ --a; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = zlanhp_("1", uplo, n, &a[1], &rwork[1]); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X for the matrix of right hand sides B. */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { z__1.r = -1., z__1.i = -0.; zhpmv_(uplo, n, &z__1, &a[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &b[j * b_dim1 + 1], &c__1); /* L10: */ } /* Compute the maximum over the number of right hand sides of */ /* norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dzasum_(n, &b[j * b_dim1 + 1], &c__1); xnorm = dzasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L20: */ } return 0; /* End of ZPPT02 */ } /* zppt02_ */
/* Subroutine */ int zhpt21_(integer *itype, char *uplo, integer *n, integer * kband, doublecomplex *ap, doublereal *d__, doublereal *e, doublecomplex *u, integer *ldu, doublecomplex *vp, doublecomplex *tau, doublecomplex *work, doublereal *rwork, doublereal *result) { /* System generated locals */ integer u_dim1, u_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1, d__2; doublecomplex z__1, z__2, z__3; /* Local variables */ static doublereal unfl; static doublecomplex temp; extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *, doublecomplex *, integer *, doublecomplex *), zhpr2_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *); static integer j; extern logical lsame_(char *, char *); static integer iinfo; static doublereal anorm; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); static char cuplo[1]; static doublecomplex vsave; extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static logical lower; static doublereal wnorm; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zhpmv_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zaxpy_( integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); static integer jp, jr; extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *), zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); static integer jp1; extern /* Subroutine */ int zupmtr_(char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); static integer lap; static doublereal ulp; #define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1 #define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZHPT21 generally checks a decomposition of the form A = U S U* where * means conjugate transpose, A is hermitian, U is unitary, and S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as a dense matrix, otherwise the U is expressed as a product of Householder transformations, whose vectors are stored in the array "V" and whose scaling constants are in "TAU"; we shall use the letter "V" to refer to the product of Householder transformations (which should be equal to U). Specifically, if ITYPE=1, then: RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* RESULT(2) = | I - UU* | / ( n ulp ) If ITYPE=2, then: RESULT(1) = | A - V S V* | / ( |A| n ulp ) If ITYPE=3, then: RESULT(1) = | I - UV* | / ( n ulp ) Packed storage means that, for example, if UPLO='U', then the columns of the upper triangle of A are stored one after another, so that A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if UPLO='L', then the columns of the lower triangle of A are stored one after another in AP, so that A(j+1,j+1) immediately follows A(n,j) in the array AP. This means that A(i,j) is stored in: AP( i + j*(j-1)/2 ) if UPLO='U' AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L' The array VP bears the same relation to the matrix V that A does to AP. For ITYPE > 1, the transformation U is expressed as a product of Householder transformations: If UPLO='U', then V = H(n-1)...H(1), where H(j) = I - tau(j) v(j) v(j)* and the first j-1 elements of v(j) are stored in V(1:j-1,j+1), (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ), the j-th element is 1, and the last n-j elements are 0. If UPLO='L', then V = H(1)...H(n-1), where H(j) = I - tau(j) v(j) v(j)* and the first j elements of v(j) are 0, the (j+1)-st is 1, and the (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e., in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .) Arguments ========= ITYPE (input) INTEGER Specifies the type of tests to be performed. 1: U expressed as a dense unitary matrix: RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* RESULT(2) = | I - UU* | / ( n ulp ) 2: U expressed as a product V of Housholder transformations: RESULT(1) = | A - V S V* | / ( |A| n ulp ) 3: U expressed both as a dense unitary matrix and as a product of Housholder transformations: RESULT(1) = | I - UV* | / ( n ulp ) UPLO (input) CHARACTER If UPLO='U', the upper triangle of A and V will be used and the (strictly) lower triangle will not be referenced. If UPLO='L', the lower triangle of A and V will be used and the (strictly) upper triangle will not be referenced. N (input) INTEGER The size of the matrix. If it is zero, ZHPT21 does nothing. It must be at least zero. KBAND (input) INTEGER The bandwidth of the matrix. It may only be zero or one. If zero, then S is diagonal, and E is not referenced. If one, then S is symmetric tri-diagonal. AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) The original (unfactored) matrix. It is assumed to be hermitian, and contains the columns of just the upper triangle (UPLO='U') or only the lower triangle (UPLO='L'), packed one after another. D (input) DOUBLE PRECISION array, dimension (N) The diagonal of the (symmetric tri-) diagonal matrix. E (input) DOUBLE PRECISION array, dimension (N) The off-diagonal of the (symmetric tri-) diagonal matrix. E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and (3,2) element, etc. Not referenced if KBAND=0. U (input) COMPLEX*16 array, dimension (LDU, N) If ITYPE=1 or 3, this contains the unitary matrix in the decomposition, expressed as a dense matrix. If ITYPE=2, then it is not referenced. LDU (input) INTEGER The leading dimension of U. LDU must be at least N and at least 1. VP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) If ITYPE=2 or 3, the columns of this array contain the Householder vectors used to describe the unitary matrix in the decomposition, as described in purpose. *NOTE* If ITYPE=2 or 3, V is modified and restored. The subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') is set to one, and later reset to its original value, during the course of the calculation. If ITYPE=1, then it is neither referenced nor modified. TAU (input) COMPLEX*16 array, dimension (N) If ITYPE >= 2, then TAU(j) is the scalar factor of v(j) v(j)* in the Householder transformation H(j) of the product U = H(1)...H(n-2) If ITYPE < 2, then TAU is not referenced. WORK (workspace) COMPLEX*16 array, dimension (N**2) Workspace. RWORK (workspace) DOUBLE PRECISION array, dimension (N) Workspace. RESULT (output) DOUBLE PRECISION array, dimension (2) The values computed by the two tests described above. The values are currently limited to 1/ulp, to avoid overflow. RESULT(1) is always modified. RESULT(2) is modified only if ITYPE=1. ===================================================================== Constants Parameter adjustments */ --ap; --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --vp; --tau; --work; --rwork; --result; /* Function Body */ result[1] = 0.; if (*itype == 1) { result[2] = 0.; } if (*n <= 0) { return 0; } lap = *n * (*n + 1) / 2; if (lsame_(uplo, "U")) { lower = FALSE_; *(unsigned char *)cuplo = 'U'; } else { lower = TRUE_; *(unsigned char *)cuplo = 'L'; } unfl = dlamch_("Safe minimum"); ulp = dlamch_("Epsilon") * dlamch_("Base"); /* Some Error Checks */ if (*itype < 1 || *itype > 3) { result[1] = 10. / ulp; return 0; } /* Do Test 1 Norm of A: */ if (*itype == 3) { anorm = 1.; } else { /* Computing MAX */ d__1 = zlanhp_("1", cuplo, n, &ap[1], &rwork[1]) ; anorm = max(d__1,unfl); } /* Compute error matrix: */ if (*itype == 1) { /* ITYPE=1: error = A - U S U* */ zlaset_("Full", n, n, &c_b1, &c_b1, &work[1], n); zcopy_(&lap, &ap[1], &c__1, &work[1], &c__1); i__1 = *n; for (j = 1; j <= i__1; ++j) { d__1 = -d__[j]; zhpr_(cuplo, n, &d__1, &u_ref(1, j), &c__1, &work[1]); /* L10: */ } if (*n > 1 && *kband == 1) { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = j; z__2.r = e[i__2], z__2.i = 0.; z__1.r = -z__2.r, z__1.i = -z__2.i; zhpr2_(cuplo, n, &z__1, &u_ref(1, j), &c__1, &u_ref(1, j - 1), &c__1, &work[1]); /* L20: */ } } wnorm = zlanhp_("1", cuplo, n, &work[1], &rwork[1]); } else if (*itype == 2) { /* ITYPE=2: error = V S V* - A */ zlaset_("Full", n, n, &c_b1, &c_b1, &work[1], n); if (lower) { i__1 = lap; i__2 = *n; work[i__1].r = d__[i__2], work[i__1].i = 0.; for (j = *n - 1; j >= 1; --j) { jp = ((*n << 1) - j) * (j - 1) / 2; jp1 = jp + *n - j; if (*kband == 1) { i__1 = jp + j + 1; i__2 = j; z__2.r = 1. - tau[i__2].r, z__2.i = 0. - tau[i__2].i; i__3 = j; z__1.r = e[i__3] * z__2.r, z__1.i = e[i__3] * z__2.i; work[i__1].r = z__1.r, work[i__1].i = z__1.i; i__1 = *n; for (jr = j + 2; jr <= i__1; ++jr) { i__2 = jp + jr; i__3 = j; z__3.r = -tau[i__3].r, z__3.i = -tau[i__3].i; i__4 = j; z__2.r = e[i__4] * z__3.r, z__2.i = e[i__4] * z__3.i; i__5 = jp + jr; z__1.r = z__2.r * vp[i__5].r - z__2.i * vp[i__5].i, z__1.i = z__2.r * vp[i__5].i + z__2.i * vp[ i__5].r; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L30: */ } } i__1 = j; if (tau[i__1].r != 0. || tau[i__1].i != 0.) { i__1 = jp + j + 1; vsave.r = vp[i__1].r, vsave.i = vp[i__1].i; i__1 = jp + j + 1; vp[i__1].r = 1., vp[i__1].i = 0.; i__1 = *n - j; zhpmv_("L", &i__1, &c_b2, &work[jp1 + j + 1], &vp[jp + j + 1], &c__1, &c_b1, &work[lap + 1], &c__1); i__1 = j; z__2.r = tau[i__1].r * -.5, z__2.i = tau[i__1].i * -.5; i__2 = *n - j; zdotc_(&z__3, &i__2, &work[lap + 1], &c__1, &vp[jp + j + 1], &c__1); z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i + z__2.i * z__3.r; temp.r = z__1.r, temp.i = z__1.i; i__1 = *n - j; zaxpy_(&i__1, &temp, &vp[jp + j + 1], &c__1, &work[lap + 1], &c__1); i__1 = *n - j; i__2 = j; z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i; zhpr2_("L", &i__1, &z__1, &vp[jp + j + 1], &c__1, &work[ lap + 1], &c__1, &work[jp1 + j + 1]); i__1 = jp + j + 1; vp[i__1].r = vsave.r, vp[i__1].i = vsave.i; } i__1 = jp + j; i__2 = j; work[i__1].r = d__[i__2], work[i__1].i = 0.; /* L40: */ } } else { work[1].r = d__[1], work[1].i = 0.; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { jp = j * (j - 1) / 2; jp1 = jp + j; if (*kband == 1) { i__2 = jp1 + j; i__3 = j; z__2.r = 1. - tau[i__3].r, z__2.i = 0. - tau[i__3].i; i__4 = j; z__1.r = e[i__4] * z__2.r, z__1.i = e[i__4] * z__2.i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; i__2 = j - 1; for (jr = 1; jr <= i__2; ++jr) { i__3 = jp1 + jr; i__4 = j; z__3.r = -tau[i__4].r, z__3.i = -tau[i__4].i; i__5 = j; z__2.r = e[i__5] * z__3.r, z__2.i = e[i__5] * z__3.i; i__6 = jp1 + jr; z__1.r = z__2.r * vp[i__6].r - z__2.i * vp[i__6].i, z__1.i = z__2.r * vp[i__6].i + z__2.i * vp[ i__6].r; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L50: */ } } i__2 = j; if (tau[i__2].r != 0. || tau[i__2].i != 0.) { i__2 = jp1 + j; vsave.r = vp[i__2].r, vsave.i = vp[i__2].i; i__2 = jp1 + j; vp[i__2].r = 1., vp[i__2].i = 0.; zhpmv_("U", &j, &c_b2, &work[1], &vp[jp1 + 1], &c__1, & c_b1, &work[lap + 1], &c__1); i__2 = j; z__2.r = tau[i__2].r * -.5, z__2.i = tau[i__2].i * -.5; zdotc_(&z__3, &j, &work[lap + 1], &c__1, &vp[jp1 + 1], & c__1); z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r * z__3.i + z__2.i * z__3.r; temp.r = z__1.r, temp.i = z__1.i; zaxpy_(&j, &temp, &vp[jp1 + 1], &c__1, &work[lap + 1], & c__1); i__2 = j; z__1.r = -tau[i__2].r, z__1.i = -tau[i__2].i; zhpr2_("U", &j, &z__1, &vp[jp1 + 1], &c__1, &work[lap + 1] , &c__1, &work[1]); i__2 = jp1 + j; vp[i__2].r = vsave.r, vp[i__2].i = vsave.i; } i__2 = jp1 + j + 1; i__3 = j + 1; work[i__2].r = d__[i__3], work[i__2].i = 0.; /* L60: */ } } i__1 = lap; for (j = 1; j <= i__1; ++j) { i__2 = j; i__3 = j; i__4 = j; z__1.r = work[i__3].r - ap[i__4].r, z__1.i = work[i__3].i - ap[ i__4].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L70: */ } wnorm = zlanhp_("1", cuplo, n, &work[1], &rwork[1]); } else if (*itype == 3) { /* ITYPE=3: error = U V* - I */ if (*n < 2) { return 0; } zlacpy_(" ", n, n, &u[u_offset], ldu, &work[1], n); /* Computing 2nd power */ i__1 = *n; zupmtr_("R", cuplo, "C", n, n, &vp[1], &tau[1], &work[1], n, &work[ i__1 * i__1 + 1], &iinfo); if (iinfo != 0) { result[1] = 10. / ulp; return 0; } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; z__1.r = work[i__3].r - 1., z__1.i = work[i__3].i + 0.; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L80: */ } wnorm = zlange_("1", n, n, &work[1], n, &rwork[1]); } if (anorm > wnorm) { result[1] = wnorm / anorm / (*n * ulp); } else { if (anorm < 1.) { /* Computing MIN */ d__1 = wnorm, d__2 = *n * anorm; result[1] = min(d__1,d__2) / anorm / (*n * ulp); } else { /* Computing MIN */ d__1 = wnorm / anorm, d__2 = (doublereal) (*n); result[1] = min(d__1,d__2) / (*n * ulp); } } /* Do Test 2 Compute UU* - I */ if (*itype == 1) { zgemm_("N", "C", n, n, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, &c_b1, &work[1], n); i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = (*n + 1) * (j - 1) + 1; i__3 = (*n + 1) * (j - 1) + 1; z__1.r = work[i__3].r - 1., z__1.i = work[i__3].i + 0.; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L90: */ } /* Computing MIN */ d__1 = zlange_("1", n, n, &work[1], n, &rwork[1]), d__2 = ( doublereal) (*n); result[2] = min(d__1,d__2) / (*n * ulp); } return 0; /* End of ZHPT21 */ } /* zhpt21_ */
/* Subroutine */ int zhpev_(char *jobz, char *uplo, integer *n, doublecomplex *ap, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex * work, doublereal *rwork, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal eps; integer inde; doublereal anrm; integer imax; doublereal rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer iinfo; logical wantz; extern doublereal dlamch_(char *); integer iscale; doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *); doublereal bignum; integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *); extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); integer indrwk, indwrk; doublereal smlnum; extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *), zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zupgtr_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, "V"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHPEV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1].r; rwork[1] = 1.; if (wantz) { i__1 = z_dim1 + 1; z__[i__1].r = 1.; z__[i__1].i = 0.; // , expr subst } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; zdscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ inde = 1; indtau = 1; zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call */ /* ZUPGTR to generate the orthogonal matrix, then call ZSTEQR. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { indwrk = indtau + *n; zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[ indwrk], &iinfo); indrwk = inde + *n; zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indrwk], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } return 0; /* End of ZHPEV */ }
/* Subroutine */ int zppt03_(char *uplo, integer *n, doublecomplex *a, doublecomplex *ainv, doublecomplex *work, integer *ldwork, doublereal *rwork, doublereal *rcond, doublereal *resid) { /* System generated locals */ integer work_dim1, work_offset, i__1, i__2, i__3; doublecomplex z__1; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, jj; doublereal eps; extern logical lsame_(char *, char *); doublereal anorm; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zhpmv_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal ainvnm; extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZPPT03 computes the residual for a Hermitian packed matrix times its */ /* inverse: */ /* norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), */ /* where EPS is the machine epsilon. */ /* Arguments */ /* ========== */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The number of rows and columns of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The original Hermitian matrix A, stored as a packed */ /* triangular matrix. */ /* AINV (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ /* The (Hermitian) inverse of the matrix A, stored as a packed */ /* triangular matrix. */ /* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N) */ /* LDWORK (input) INTEGER */ /* The leading dimension of the array WORK. LDWORK >= max(1,N). */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RCOND (output) DOUBLE PRECISION */ /* The reciprocal of the condition number of A, computed as */ /* ( 1/norm(A) ) / norm(AINV). */ /* RESID (output) DOUBLE PRECISION */ /* norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Quick exit if N = 0. */ /* Parameter adjustments */ --a; --ainv; work_dim1 = *ldwork; work_offset = 1 + work_dim1; work -= work_offset; --rwork; /* Function Body */ if (*n <= 0) { *rcond = 1.; *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = dlamch_("Epsilon"); anorm = zlanhp_("1", uplo, n, &a[1], &rwork[1]); ainvnm = zlanhp_("1", uplo, n, &ainv[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { *rcond = 0.; *resid = 1. / eps; return 0; } *rcond = 1. / anorm / ainvnm; /* UPLO = 'U': */ /* Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and */ /* expand it to a full matrix, then multiply by A one column at a */ /* time, moving the result one column to the left. */ if (lsame_(uplo, "U")) { /* Copy AINV */ jj = 1; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { zcopy_(&j, &ainv[jj], &c__1, &work[(j + 1) * work_dim1 + 1], & c__1); i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + (i__ + 1) * work_dim1; d_cnjg(&z__1, &ainv[jj + i__ - 1]); work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L10: */ } jj += j; /* L20: */ } jj = (*n - 1) * *n / 2 + 1; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n + (i__ + 1) * work_dim1; d_cnjg(&z__1, &ainv[jj + i__ - 1]); work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L30: */ } /* Multiply by A */ i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { z__1.r = -1., z__1.i = -0.; zhpmv_("Upper", n, &z__1, &a[1], &work[(j + 1) * work_dim1 + 1], & c__1, &c_b1, &work[j * work_dim1 + 1], &c__1); /* L40: */ } z__1.r = -1., z__1.i = -0.; zhpmv_("Upper", n, &z__1, &a[1], &ainv[jj], &c__1, &c_b1, &work[*n * work_dim1 + 1], &c__1); /* UPLO = 'L': */ /* Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1) */ /* and multiply by A, moving each column to the right. */ } else { /* Copy AINV */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ * work_dim1 + 1; d_cnjg(&z__1, &ainv[i__ + 1]); work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L50: */ } jj = *n + 1; i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = *n - j + 1; zcopy_(&i__2, &ainv[jj], &c__1, &work[j + (j - 1) * work_dim1], & c__1); i__2 = *n - j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = j + (j + i__ - 1) * work_dim1; d_cnjg(&z__1, &ainv[jj + i__]); work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L60: */ } jj = jj + *n - j + 1; /* L70: */ } /* Multiply by A */ for (j = *n; j >= 2; --j) { z__1.r = -1., z__1.i = -0.; zhpmv_("Lower", n, &z__1, &a[1], &work[(j - 1) * work_dim1 + 1], & c__1, &c_b1, &work[j * work_dim1 + 1], &c__1); /* L80: */ } z__1.r = -1., z__1.i = -0.; zhpmv_("Lower", n, &z__1, &a[1], &ainv[1], &c__1, &c_b1, &work[ work_dim1 + 1], &c__1); } /* Add the identity matrix to WORK . */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * work_dim1; i__3 = i__ + i__ * work_dim1; z__1.r = work[i__3].r + 1., z__1.i = work[i__3].i + 0.; work[i__2].r = z__1.r, work[i__2].i = z__1.i; /* L90: */ } /* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) */ *resid = zlange_("1", n, n, &work[work_offset], ldwork, &rwork[1]); *resid = *resid * *rcond / eps / (doublereal) (*n); return 0; /* End of ZPPT03 */ } /* zppt03_ */
/* Subroutine */ int zdrvhp_(logical *dotype, integer *nn, integer *nval, integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char facts[1*2] = "F" "N"; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5" ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)"; static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a" "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, " "ratio =\002,g12.5)"; /* System generated locals */ address a__1[2]; integer i__1, i__2, i__3, i__4, i__5, i__6[2]; char ch__1[2]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); /* Local variables */ static char fact[1]; static integer ioff, mode, imat, info; static char path[3], dist[1], uplo[1], type__[1]; static integer nrun, i__, j, k, n, ifact, nfail, iseed[4]; extern doublereal dget06_(doublereal *, doublereal *); static integer nbmin; static doublereal rcond; static integer nimat; static doublereal anorm; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *); static integer iuplo, izero, i1, i2, k1, nerrs; extern /* Subroutine */ int zppt02_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *), zppt05_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *); static logical zerot; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); static char xtype[1]; extern /* Subroutine */ int zhpsv_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *, integer *, integer *, doublereal *, integer *, doublereal *, char *), aladhd_(integer *, char *); static integer nb, in, kl; extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static integer ku, nt; static doublereal rcondc; static char packit[1]; extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer *, integer *); static doublereal cndnum; extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, integer *); static doublereal ainvnm; extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex * , integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal result[6]; extern /* Subroutine */ int zhptrf_(char *, integer *, doublecomplex *, integer *, integer *), zhptri_(char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zerrvx_(char *, integer *), zhpsvx_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *); static integer lda, npp; /* Fortran I/O blocks */ static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZDRVHP tests the driver routines ZHPSV and -SVX. Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix dimension N. NRHS (input) INTEGER The number of right hand side vectors to be generated for each linear system. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The maximum value permitted for N, used in dimensioning the work arrays. A (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) AFAC (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) AINV (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(2,NRHS)) RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) IWORK (workspace) INTEGER array, dimension (NMAX) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --iwork; --rwork; --work; --xact; --x; --b; --ainv; --afac; --a; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ *(unsigned char *)path = 'Z'; s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrvx_(path, nout); } infoc_1.infot = 0; /* Set the block size and minimum block size for testing. */ nb = 1; nbmin = 2; xlaenv_(&c__1, &nb); xlaenv_(&c__2, &nbmin); /* Do for each value of N in NVAL */ i__1 = *nn; for (in = 1; in <= i__1; ++in) { n = nval[in]; lda = max(n,1); npp = n * (n + 1) / 2; *(unsigned char *)xtype = 'N'; nimat = 10; if (n <= 0) { nimat = 1; } i__2 = nimat; for (imat = 1; imat <= i__2; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L170; } /* Skip types 3, 4, 5, or 6 if the matrix size is too small. */ zerot = imat >= 3 && imat <= 6; if (zerot && n < imat - 2) { goto L170; } /* Do first for UPLO = 'U', then for UPLO = 'L' */ for (iuplo = 1; iuplo <= 2; ++iuplo) { if (iuplo == 1) { *(unsigned char *)uplo = 'U'; *(unsigned char *)packit = 'C'; } else { *(unsigned char *)uplo = 'L'; *(unsigned char *)packit = 'R'; } /* Set up parameters with ZLATB4 and generate a test matrix with ZLATMS. */ zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, &cndnum, dist); s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6); zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, & cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[ 1], &info); /* Check error code from ZLATMS. */ if (info != 0) { alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); goto L160; } /* For types 3-6, zero one or more rows and columns of the matrix to test that INFO is returned correctly. */ if (zerot) { if (imat == 3) { izero = 1; } else if (imat == 4) { izero = n; } else { izero = n / 2 + 1; } if (imat < 6) { /* Set row and column IZERO to zero. */ if (iuplo == 1) { ioff = (izero - 1) * izero / 2; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L20: */ } ioff += izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff += i__; /* L30: */ } } else { ioff = izero; i__3 = izero - 1; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = ioff; a[i__4].r = 0., a[i__4].i = 0.; ioff = ioff + n - i__; /* L40: */ } ioff -= izero; i__3 = n; for (i__ = izero; i__ <= i__3; ++i__) { i__4 = ioff + i__; a[i__4].r = 0., a[i__4].i = 0.; /* L50: */ } } } else { ioff = 0; if (iuplo == 1) { /* Set the first IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i2 = min(j,izero); i__4 = i2; for (i__ = 1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L60: */ } ioff += j; /* L70: */ } } else { /* Set the last IZERO rows and columns to zero. */ i__3 = n; for (j = 1; j <= i__3; ++j) { i1 = max(j,izero); i__4 = n; for (i__ = i1; i__ <= i__4; ++i__) { i__5 = ioff + i__; a[i__5].r = 0., a[i__5].i = 0.; /* L80: */ } ioff = ioff + n - j; /* L90: */ } } } } else { izero = 0; } /* Set the imaginary part of the diagonals. */ if (iuplo == 1) { zlaipd_(&n, &a[1], &c__2, &c__1); } else { zlaipd_(&n, &a[1], &n, &c_n1); } for (ifact = 1; ifact <= 2; ++ifact) { /* Do first for FACT = 'F', then for other values. */ *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 1]; /* Compute the condition number for comparison with the value returned by ZHPSVX. */ if (zerot) { if (ifact == 1) { goto L150; } rcondc = 0.; } else if (ifact == 1) { /* Compute the 1-norm of A. */ anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]); /* Factor the matrix A. */ zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); zhptrf_(uplo, &n, &afac[1], &iwork[1], &info); /* Compute inv(A) and take its norm. */ zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1); zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], & info); ainvnm = zlanhp_("1", uplo, &n, &ainv[1], &rwork[1]); /* Compute the 1-norm condition number of A. */ if (anorm <= 0. || ainvnm <= 0.) { rcondc = 1.; } else { rcondc = 1. / anorm / ainvnm; } } /* Form an exact solution and set the right hand side. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6); zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, & a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, & info); *(unsigned char *)xtype = 'C'; /* --- Test ZHPSV --- */ if (ifact == 2) { zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1); zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda); /* Factor the matrix and solve the system using ZHPSV. */ s_copy(srnamc_1.srnamt, "ZHPSV ", (ftnlen)6, (ftnlen) 6); zhpsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], & lda, &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L100: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L100; } } else if (iwork[k] != k) { k = iwork[k]; goto L100; } } /* Check error code from ZHPSV . */ if (info != k) { alaerh_(path, "ZHPSV ", &info, &k, uplo, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L120; } else if (info != 0) { goto L120; } /* Reconstruct matrix from factors and compute residual. */ zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1] , &lda, &rwork[1], result); /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], &lda, &rwork[1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); nt = 3; /* Print information about the tests that did not pass the threshold. */ i__3 = nt; for (k = 1; k <= i__3; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "ZHPSV ", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L110: */ } nrun += nt; L120: ; } /* --- Test ZHPSVX --- */ if (ifact == 2 && npp > 0) { zlaset_("Full", &npp, &c__1, &c_b64, &c_b64, &afac[1], &npp); } zlaset_("Full", &n, nrhs, &c_b64, &c_b64, &x[1], &lda); /* Solve the system and compute the condition number and error bounds using ZHPSVX. */ s_copy(srnamc_1.srnamt, "ZHPSVX", (ftnlen)6, (ftnlen)6); zhpsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], & rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 1], &info); /* Adjust the expected value of INFO to account for pivoting. */ k = izero; if (k > 0) { L130: if (iwork[k] < 0) { if (iwork[k] != -k) { k = -iwork[k]; goto L130; } } else if (iwork[k] != k) { k = iwork[k]; goto L130; } } /* Check the error code from ZHPSVX. */ if (info != k) { /* Writing concatenation */ i__6[0] = 1, a__1[0] = fact; i__6[1] = 1, a__1[1] = uplo; s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2); alaerh_(path, "ZHPSVX", &info, &k, ch__1, &n, &n, & c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, nout); goto L150; } if (info == 0) { if (ifact >= 2) { /* Reconstruct matrix from factors and compute residual. */ zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], & ainv[1], &lda, &rwork[(*nrhs << 1) + 1], result); k1 = 1; } else { k1 = 2; } /* Compute residual of the computed solution. */ zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda); zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], &lda, &rwork[(*nrhs << 1) + 1], &result[1]); /* Check solution from generated exact solution. */ zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* Check the error bounds from iterative refinement. */ zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], & lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs + 1], &result[3]); } else { k1 = 6; } /* Compare RCOND from ZHPSVX with the computed value in RCONDC. */ result[5] = dget06_(&rcond, &rcondc); /* Print information about the tests that did not pass the threshold. */ for (k = k1; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { aladhd_(nout, path); } io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, "ZHPSVX", (ftnlen)6); do_fio(&c__1, fact, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L140: */ } nrun = nrun + 7 - k1; L150: ; } L160: ; } L170: ; } /* L180: */ } /* Print a summary of the results. */ alasvm_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZDRVHP */ } /* zdrvhp_ */