/* Subroutine */ int zgbbrd_(char *vect, integer *m, integer *n, integer *ncc, integer *kl, integer *ku, doublecomplex *ab, integer *ldab, doublereal *d__, doublereal *e, doublecomplex *q, integer *ldq, doublecomplex *pt, integer *ldpt, doublecomplex *c__, integer *ldc, doublecomplex *work, doublereal *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublecomplex z__1, z__2, z__3; /* Local variables */ integer i__, j, l; doublecomplex t; integer j1, j2, kb; doublecomplex ra, rb; doublereal rc; integer kk, ml, nr, mu; doublecomplex rs; integer kb1, ml0, mu0, klm, kun, nrt, klu1, inca; doublereal abst; logical wantb, wantc; integer minmn; logical wantq; logical wantpt; /* -- LAPACK routine (version 3.2) -- */ /* November 2006 */ /* Purpose */ /* ======= */ /* ZGBBRD reduces a complex general m-by-n band matrix A to real upper */ /* bidiagonal form B by a unitary transformation: Q' * A * P = B. */ /* The routine computes B, and optionally forms Q or P', or computes */ /* Q'*C for a given matrix C. */ /* Arguments */ /* ========= */ /* VECT (input) CHARACTER*1 */ /* Specifies whether or not the matrices Q and P' are to be */ /* formed. */ /* = 'N': do not form Q or P'; */ /* = 'Q': form Q only; */ /* = 'P': form P' only; */ /* = 'B': form both. */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* NCC (input) INTEGER */ /* The number of columns of the matrix C. NCC >= 0. */ /* KL (input) INTEGER */ /* The number of subdiagonals of the matrix A. KL >= 0. */ /* KU (input) INTEGER */ /* The number of superdiagonals of the matrix A. KU >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */ /* On entry, the m-by-n band matrix A, stored in rows 1 to */ /* KL+KU+1. The j-th column of A is stored in the j-th column of */ /* the array AB as follows: */ /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */ /* On exit, A is overwritten by values generated during the */ /* reduction. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array A. LDAB >= KL+KU+1. */ /* D (output) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The diagonal elements of the bidiagonal matrix B. */ /* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */ /* The superdiagonal elements of the bidiagonal matrix B. */ /* Q (output) COMPLEX*16 array, dimension (LDQ,M) */ /* If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */ /* If VECT = 'N' or 'P', the array Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. */ /* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */ /* PT (output) COMPLEX*16 array, dimension (LDPT,N) */ /* If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */ /* If VECT = 'N' or 'Q', the array PT is not referenced. */ /* LDPT (input) INTEGER */ /* The leading dimension of the array PT. */ /* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */ /* C (input/output) COMPLEX*16 array, dimension (LDC,NCC) */ /* On entry, an m-by-ncc matrix C. */ /* On exit, C is overwritten by Q'*C. */ /* C is not referenced if NCC = 0. */ /* LDC (input) INTEGER */ /* The leading dimension of the array C. */ /* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */ /* WORK (workspace) COMPLEX*16 array, dimension (max(M,N)) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,N)) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* ===================================================================== */ /* Test the input parameters */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --d__; --e; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; pt_dim1 = *ldpt; pt_offset = 1 + pt_dim1; pt -= pt_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; --rwork; /* Function Body */ wantb = lsame_(vect, "B"); wantq = lsame_(vect, "Q") || wantb; wantpt = lsame_(vect, "P") || wantb; wantc = *ncc > 0; klu1 = *kl + *ku + 1; *info = 0; if (! wantq && ! wantpt && ! lsame_(vect, "N")) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ncc < 0) { *info = -4; } else if (*kl < 0) { *info = -5; } else if (*ku < 0) { *info = -6; } else if (*ldab < klu1) { *info = -8; } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) { *info = -12; } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) { *info = -14; } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGBBRD", &i__1); return 0; } /* Initialize Q and P' to the unit matrix, if needed */ if (wantq) { zlaset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq); } if (wantpt) { zlaset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt); } /* Quick return if possible. */ if (*m == 0 || *n == 0) { return 0; } minmn = min(*m,*n); if (*kl + *ku > 1) { /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */ /* first to lower bidiagonal form and then transform to upper */ /* bidiagonal */ if (*ku > 0) { ml0 = 1; mu0 = 2; } else { ml0 = 2; mu0 = 1; } /* Wherever possible, plane rotations are generated and applied in */ /* vector operations of length NR over the index set J1:J2:KLU1. */ /* The complex sines of the plane rotations are stored in WORK, */ /* and the real cosines in RWORK. */ /* Computing MIN */ i__1 = *m - 1; klm = min(i__1,*kl); /* Computing MIN */ i__1 = *n - 1; kun = min(i__1,*ku); kb = klm + kun; kb1 = kb + 1; inca = kb1 * *ldab; nr = 0; j1 = klm + 2; j2 = 1 - kun; i__1 = minmn; for (i__ = 1; i__ <= i__1; ++i__) { /* Reduce i-th column and i-th row of matrix to bidiagonal form */ ml = klm + 1; mu = kun + 1; i__2 = kb; for (kk = 1; kk <= i__2; ++kk) { j1 += kb; j2 += kb; /* generate plane rotations to annihilate nonzero elements */ /* which have been created below the band */ if (nr > 0) { zlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca, &work[j1], &kb1, &rwork[j1], &kb1); } /* apply plane rotations from the left */ i__3 = kb; for (l = 1; l <= i__3; ++l) { if (j2 - klm + l - 1 > *n) { nrt = nr - 1; } else { nrt = nr; } if (nrt > 0) { zlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) * ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm + l - 1) * ab_dim1], &inca, &rwork[j1], &work[ j1], &kb1); } } if (ml > ml0) { if (ml <= *m - i__ + 1) { /* generate plane rotation to annihilate a(i+ml-1,i) */ /* within the band, and apply rotation from the left */ zlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku + ml + i__ * ab_dim1], &rwork[i__ + ml - 1], & work[i__ + ml - 1], &ra); i__3 = *ku + ml - 1 + i__ * ab_dim1; ab[i__3].r = ra.r, ab[i__3].i = ra.i; if (i__ < *n) { /* Computing MIN */ i__4 = *ku + ml - 2, i__5 = *n - i__; i__3 = min(i__4,i__5); i__6 = *ldab - 1; i__7 = *ldab - 1; zrot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) * ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__ + 1) * ab_dim1], &i__7, &rwork[i__ + ml - 1], &work[i__ + ml - 1]); } } ++nr; j1 -= kb1; } if (wantq) { /* accumulate product of plane rotations in Q */ i__3 = j2; i__4 = kb1; for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { d_cnjg(&z__1, &work[j]); zrot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j * q_dim1 + 1], &c__1, &rwork[j], &z__1); } } if (wantc) { /* apply plane rotations to C */ i__4 = j2; i__3 = kb1; for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { zrot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1] , ldc, &rwork[j], &work[j]); } } if (j2 + kun > *n) { /* adjust J2 to keep within the bounds of the matrix */ --nr; j2 -= kb1; } i__3 = j2; i__4 = kb1; for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { /* create nonzero element a(j-1,j+ku) above the band */ /* and store it in WORK(n+1:2*n) */ i__5 = j + kun; i__6 = j; i__7 = (j + kun) * ab_dim1 + 1; z__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[ i__7].i, z__1.i = work[i__6].r * ab[i__7].i + work[i__6].i * ab[i__7].r; work[i__5].r = z__1.r, work[i__5].i = z__1.i; i__5 = (j + kun) * ab_dim1 + 1; i__6 = j; i__7 = (j + kun) * ab_dim1 + 1; z__1.r = rwork[i__6] * ab[i__7].r, z__1.i = rwork[i__6] * ab[i__7].i; ab[i__5].r = z__1.r, ab[i__5].i = z__1.i; } /* generate plane rotations to annihilate nonzero elements */ /* which have been generated above the band */ if (nr > 0) { zlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, & work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1); } /* apply plane rotations from the right */ i__4 = kb; for (l = 1; l <= i__4; ++l) { if (j2 + l - 1 > *m) { nrt = nr - 1; } else { nrt = nr; } if (nrt > 0) { zlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], & inca, &ab[l + (j1 + kun) * ab_dim1], &inca, & rwork[j1 + kun], &work[j1 + kun], &kb1); } } if (ml == ml0 && mu > mu0) { if (mu <= *n - i__ + 1) { /* generate plane rotation to annihilate a(i,i+mu-1) */ /* within the band, and apply rotation from the right */ zlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1], &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1], &rwork[i__ + mu - 1], &work[i__ + mu - 1], & ra); i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1; ab[i__4].r = ra.r, ab[i__4].i = ra.i; /* Computing MIN */ i__3 = *kl + mu - 2, i__5 = *m - i__; i__4 = min(i__3,i__5); zrot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) * ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu - 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1], &work[i__ + mu - 1]); } ++nr; j1 -= kb1; } if (wantpt) { /* accumulate product of plane rotations in P' */ i__4 = j2; i__3 = kb1; for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) { d_cnjg(&z__1, &work[j + kun]); zrot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j + kun + pt_dim1], ldpt, &rwork[j + kun], &z__1); } } if (j2 + kb > *m) { /* adjust J2 to keep within the bounds of the matrix */ --nr; j2 -= kb1; } i__3 = j2; i__4 = kb1; for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { /* create nonzero element a(j+kl+ku,j+ku-1) below the */ /* band and store it in WORK(1:n) */ i__5 = j + kb; i__6 = j + kun; i__7 = klu1 + (j + kun) * ab_dim1; z__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[ i__7].i, z__1.i = work[i__6].r * ab[i__7].i + work[i__6].i * ab[i__7].r; work[i__5].r = z__1.r, work[i__5].i = z__1.i; i__5 = klu1 + (j + kun) * ab_dim1; i__6 = j + kun; i__7 = klu1 + (j + kun) * ab_dim1; z__1.r = rwork[i__6] * ab[i__7].r, z__1.i = rwork[i__6] * ab[i__7].i; ab[i__5].r = z__1.r, ab[i__5].i = z__1.i; } if (ml > ml0) { --ml; } else { --mu; } } } } if (*ku == 0 && *kl > 0) { /* A has been reduced to complex lower bidiagonal form */ /* Transform lower bidiagonal form to upper bidiagonal by applying */ /* plane rotations from the left, overwriting superdiagonal */ /* elements on subdiagonal elements */ /* Computing MIN */ i__2 = *m - 1; i__1 = min(i__2,*n); for (i__ = 1; i__ <= i__1; ++i__) { zlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs, &ra); i__2 = i__ * ab_dim1 + 1; ab[i__2].r = ra.r, ab[i__2].i = ra.i; if (i__ < *n) { i__2 = i__ * ab_dim1 + 2; i__4 = (i__ + 1) * ab_dim1 + 1; z__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, z__1.i = rs.r * ab[i__4].i + rs.i * ab[i__4].r; ab[i__2].r = z__1.r, ab[i__2].i = z__1.i; i__2 = (i__ + 1) * ab_dim1 + 1; i__4 = (i__ + 1) * ab_dim1 + 1; z__1.r = rc * ab[i__4].r, z__1.i = rc * ab[i__4].i; ab[i__2].r = z__1.r, ab[i__2].i = z__1.i; } if (wantq) { d_cnjg(&z__1, &rs); zrot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 + 1], &c__1, &rc, &z__1); } if (wantc) { zrot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1], ldc, &rc, &rs); } } } else { /* A has been reduced to complex upper bidiagonal form or is */ /* diagonal */ if (*ku > 0 && *m < *n) { /* Annihilate a(m,m+1) by applying plane rotations from the */ /* right */ i__1 = *ku + (*m + 1) * ab_dim1; rb.r = ab[i__1].r, rb.i = ab[i__1].i; for (i__ = *m; i__ >= 1; --i__) { zlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra); i__1 = *ku + 1 + i__ * ab_dim1; ab[i__1].r = ra.r, ab[i__1].i = ra.i; if (i__ > 1) { d_cnjg(&z__3, &rs); z__2.r = -z__3.r, z__2.i = -z__3.i; i__1 = *ku + i__ * ab_dim1; z__1.r = z__2.r * ab[i__1].r - z__2.i * ab[i__1].i, z__1.i = z__2.r * ab[i__1].i + z__2.i * ab[i__1] .r; rb.r = z__1.r, rb.i = z__1.i; i__1 = *ku + i__ * ab_dim1; i__2 = *ku + i__ * ab_dim1; z__1.r = rc * ab[i__2].r, z__1.i = rc * ab[i__2].i; ab[i__1].r = z__1.r, ab[i__1].i = z__1.i; } if (wantpt) { d_cnjg(&z__1, &rs); zrot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1], ldpt, &rc, &z__1); } } } } /* Make diagonal and superdiagonal elements real, storing them in D */ /* and E */ i__1 = *ku + 1 + ab_dim1; t.r = ab[i__1].r, t.i = ab[i__1].i; i__1 = minmn; for (i__ = 1; i__ <= i__1; ++i__) { abst = z_abs(&t); d__[i__] = abst; if (abst != 0.) { z__1.r = t.r / abst, z__1.i = t.i / abst; t.r = z__1.r, t.i = z__1.i; } else { t.r = 1., t.i = 0.; } if (wantq) { zscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1); } if (wantc) { d_cnjg(&z__1, &t); zscal_(ncc, &z__1, &c__[i__ + c_dim1], ldc); } if (i__ < minmn) { if (*ku == 0 && *kl == 0) { e[i__] = 0.; i__2 = (i__ + 1) * ab_dim1 + 1; t.r = ab[i__2].r, t.i = ab[i__2].i; } else { if (*ku == 0) { i__2 = i__ * ab_dim1 + 2; d_cnjg(&z__2, &t); z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, z__1.i = ab[i__2].r * z__2.i + ab[i__2].i * z__2.r; t.r = z__1.r, t.i = z__1.i; } else { i__2 = *ku + (i__ + 1) * ab_dim1; d_cnjg(&z__2, &t); z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, z__1.i = ab[i__2].r * z__2.i + ab[i__2].i * z__2.r; t.r = z__1.r, t.i = z__1.i; } abst = z_abs(&t); e[i__] = abst; if (abst != 0.) { z__1.r = t.r / abst, z__1.i = t.i / abst; t.r = z__1.r, t.i = z__1.i; } else { t.r = 1., t.i = 0.; } if (wantpt) { zscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt); } i__2 = *ku + 1 + (i__ + 1) * ab_dim1; d_cnjg(&z__2, &t); z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, z__1.i = ab[i__2].r * z__2.i + ab[i__2].i * z__2.r; t.r = z__1.r, t.i = z__1.i; } } } return 0; /* End of ZGBBRD */ } /* zgbbrd_ */
/* Subroutine */ int zhbtrd_(char *vect, char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, doublereal *d__, doublereal *e, doublecomplex *q, integer *ldq, doublecomplex *work, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, i__5, i__6; doublereal d__1; doublecomplex z__1; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); double z_abs(doublecomplex *); /* Local variables */ integer i__, j, k, l; doublecomplex t; integer i2, j1, j2, nq, nr, kd1, ibl, iqb, kdn, jin, nrt, kdm1, inca, jend, lend, jinc; doublereal abst; integer incx, last; doublecomplex temp; extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *); integer j1end, j1inc, iqend; extern logical lsame_(char *, char *); extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); logical initq, wantq, upper; extern /* Subroutine */ int zlar2v_(integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); integer iqaend; extern /* Subroutine */ int xerbla_(char *, integer *), zlacgv_( integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *, doublecomplex *, doublecomplex *), zlargv_(integer * , doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *), zlartv_(integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHBTRD reduces a complex Hermitian band matrix A to real symmetric */ /* tridiagonal form T by a unitary similarity transformation: */ /* Q**H * A * Q = T. */ /* Arguments */ /* ========= */ /* VECT (input) CHARACTER*1 */ /* = 'N': do not form Q; */ /* = 'V': form Q; */ /* = 'U': update a matrix X, by forming X*Q. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, the diagonal elements of AB are overwritten by the */ /* diagonal elements of the tridiagonal matrix T; if KD > 0, the */ /* elements on the first superdiagonal (if UPLO = 'U') or the */ /* first subdiagonal (if UPLO = 'L') are overwritten by the */ /* off-diagonal elements of T; the rest of AB is overwritten by */ /* values generated during the reduction. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* D (output) DOUBLE PRECISION array, dimension (N) */ /* The diagonal elements of the tridiagonal matrix T. */ /* E (output) DOUBLE PRECISION array, dimension (N-1) */ /* The off-diagonal elements of the tridiagonal matrix T: */ /* E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */ /* Q (input/output) COMPLEX*16 array, dimension (LDQ,N) */ /* On entry, if VECT = 'U', then Q must contain an N-by-N */ /* matrix X; if VECT = 'N' or 'V', then Q need not be set. */ /* On exit: */ /* if VECT = 'V', Q contains the N-by-N unitary matrix Q; */ /* if VECT = 'U', Q contains the product X*Q; */ /* if VECT = 'N', the array Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. */ /* LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */ /* WORK (workspace) COMPLEX*16 array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* Modified by Linda Kaufman, Bell Labs. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --d__; --e; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --work; /* Function Body */ initq = lsame_(vect, "V"); wantq = initq || lsame_(vect, "U"); upper = lsame_(uplo, "U"); kd1 = *kd + 1; kdm1 = *kd - 1; incx = *ldab - 1; iqend = 1; *info = 0; if (! wantq && ! lsame_(vect, "N")) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kd < 0) { *info = -4; } else if (*ldab < kd1) { *info = -6; } else if (*ldq < max(1,*n) && wantq) { *info = -10; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHBTRD", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Initialize Q to the unit matrix, if needed */ if (initq) { zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq); } /* Wherever possible, plane rotations are generated and applied in */ /* vector operations of length NR over the index set J1:J2:KD1. */ /* The real cosines and complex sines of the plane rotations are */ /* stored in the arrays D and WORK. */ inca = kd1 * *ldab; /* Computing MIN */ i__1 = *n - 1; kdn = min(i__1,*kd); if (upper) { if (*kd > 1) { /* Reduce to complex Hermitian tridiagonal form, working with */ /* the upper triangle */ nr = 0; j1 = kdn + 2; j2 = 1; i__1 = kd1 + ab_dim1; i__2 = kd1 + ab_dim1; d__1 = ab[i__2].r; ab[i__1].r = d__1, ab[i__1].i = 0.; i__1 = *n - 2; for (i__ = 1; i__ <= i__1; ++i__) { /* Reduce i-th row of matrix to tridiagonal form */ for (k = kdn + 1; k >= 2; --k) { j1 += kdn; j2 += kdn; if (nr > 0) { /* generate plane rotations to annihilate nonzero */ /* elements which have been created outside the band */ zlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, & work[j1], &kd1, &d__[j1], &kd1); /* apply rotations from the right */ /* Dependent on the the number of diagonals either */ /* ZLARTV or ZROT is used */ if (nr >= (*kd << 1) - 1) { i__2 = *kd - 1; for (l = 1; l <= i__2; ++l) { zlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1], &inca, &ab[l + j1 * ab_dim1], &inca, & d__[j1], &work[j1], &kd1); /* L10: */ } } else { jend = j1 + (nr - 1) * kd1; i__2 = jend; i__3 = kd1; for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <= i__2; jinc += i__3) { zrot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], & c__1, &ab[jinc * ab_dim1 + 1], &c__1, &d__[jinc], &work[jinc]); /* L20: */ } } } if (k > 2) { if (k <= *n - i__ + 1) { /* generate plane rotation to annihilate a(i,i+k-1) */ /* within the band */ zlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] , &ab[*kd - k + 2 + (i__ + k - 1) * ab_dim1], &d__[i__ + k - 1], &work[i__ + k - 1], &temp); i__3 = *kd - k + 3 + (i__ + k - 2) * ab_dim1; ab[i__3].r = temp.r, ab[i__3].i = temp.i; /* apply rotation from the right */ i__3 = k - 3; zrot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) * ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ + k - 1) * ab_dim1], &c__1, &d__[i__ + k - 1], &work[i__ + k - 1]); } ++nr; j1 = j1 - kdn - 1; } /* apply plane rotations from both sides to diagonal */ /* blocks */ if (nr > 0) { zlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 + j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca, &d__[j1], &work[j1], &kd1); } /* apply plane rotations from the left */ if (nr > 0) { zlacgv_(&nr, &work[j1], &kd1); if ((*kd << 1) - 1 < nr) { /* Dependent on the the number of diagonals either */ /* ZLARTV or ZROT is used */ i__3 = *kd - 1; for (l = 1; l <= i__3; ++l) { if (j2 + l > *n) { nrt = nr - 1; } else { nrt = nr; } if (nrt > 0) { zlartv_(&nrt, &ab[*kd - l + (j1 + l) * ab_dim1], &inca, &ab[*kd - l + 1 + (j1 + l) * ab_dim1], &inca, & d__[j1], &work[j1], &kd1); } /* L30: */ } } else { j1end = j1 + kd1 * (nr - 2); if (j1end >= j1) { i__3 = j1end; i__2 = kd1; for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <= i__3; jin += i__2) { i__4 = *kd - 1; zrot_(&i__4, &ab[*kd - 1 + (jin + 1) * ab_dim1], &incx, &ab[*kd + (jin + 1) * ab_dim1], &incx, &d__[jin], & work[jin]); /* L40: */ } } /* Computing MIN */ i__2 = kdm1, i__3 = *n - j2; lend = min(i__2,i__3); last = j1end + kd1; if (lend > 0) { zrot_(&lend, &ab[*kd - 1 + (last + 1) * ab_dim1], &incx, &ab[*kd + (last + 1) * ab_dim1], &incx, &d__[last], &work[ last]); } } } if (wantq) { /* accumulate product of plane rotations in Q */ if (initq) { /* take advantage of the fact that Q was */ /* initially the Identity matrix */ iqend = max(iqend,j2); /* Computing MAX */ i__2 = 0, i__3 = k - 3; i2 = max(i__2,i__3); iqaend = i__ * *kd + 1; if (k == 2) { iqaend += *kd; } iqaend = min(iqaend,iqend); i__2 = j2; i__3 = kd1; for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) { ibl = i__ - i2 / kdm1; ++i2; /* Computing MAX */ i__4 = 1, i__5 = j - ibl; iqb = max(i__4,i__5); nq = iqaend + 1 - iqb; /* Computing MIN */ i__4 = iqaend + *kd; iqaend = min(i__4,iqend); d_cnjg(&z__1, &work[j]); zrot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, &q[iqb + j * q_dim1], &c__1, &d__[j], &z__1); /* L50: */ } } else { i__3 = j2; i__2 = kd1; for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) { d_cnjg(&z__1, &work[j]); zrot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[ j * q_dim1 + 1], &c__1, &d__[j], & z__1); /* L60: */ } } } if (j2 + kdn > *n) { /* adjust J2 to keep within the bounds of the matrix */ --nr; j2 = j2 - kdn - 1; } i__2 = j2; i__3 = kd1; for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) { /* create nonzero element a(j-1,j+kd) outside the band */ /* and store it in WORK */ i__4 = j + *kd; i__5 = j; i__6 = (j + *kd) * ab_dim1 + 1; z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6].i, z__1.i = work[i__5].r * ab[i__6] .i + work[i__5].i * ab[i__6].r; work[i__4].r = z__1.r, work[i__4].i = z__1.i; i__4 = (j + *kd) * ab_dim1 + 1; i__5 = j; i__6 = (j + *kd) * ab_dim1 + 1; z__1.r = d__[i__5] * ab[i__6].r, z__1.i = d__[i__5] * ab[i__6].i; ab[i__4].r = z__1.r, ab[i__4].i = z__1.i; /* L70: */ } /* L80: */ } /* L90: */ } } if (*kd > 0) { /* make off-diagonal elements real and copy them to E */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__3 = *kd + (i__ + 1) * ab_dim1; t.r = ab[i__3].r, t.i = ab[i__3].i; abst = z_abs(&t); i__3 = *kd + (i__ + 1) * ab_dim1; ab[i__3].r = abst, ab[i__3].i = 0.; e[i__] = abst; if (abst != 0.) { z__1.r = t.r / abst, z__1.i = t.i / abst; t.r = z__1.r, t.i = z__1.i; } else { t.r = 1., t.i = 0.; } if (i__ < *n - 1) { i__3 = *kd + (i__ + 2) * ab_dim1; i__2 = *kd + (i__ + 2) * ab_dim1; z__1.r = ab[i__2].r * t.r - ab[i__2].i * t.i, z__1.i = ab[ i__2].r * t.i + ab[i__2].i * t.r; ab[i__3].r = z__1.r, ab[i__3].i = z__1.i; } if (wantq) { d_cnjg(&z__1, &t); zscal_(n, &z__1, &q[(i__ + 1) * q_dim1 + 1], &c__1); } /* L100: */ } } else { /* set E to zero if original matrix was diagonal */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { e[i__] = 0.; /* L110: */ } } /* copy diagonal elements to D */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__3 = i__; i__2 = kd1 + i__ * ab_dim1; d__[i__3] = ab[i__2].r; /* L120: */ } } else { if (*kd > 1) { /* Reduce to complex Hermitian tridiagonal form, working with */ /* the lower triangle */ nr = 0; j1 = kdn + 2; j2 = 1; i__1 = ab_dim1 + 1; i__3 = ab_dim1 + 1; d__1 = ab[i__3].r; ab[i__1].r = d__1, ab[i__1].i = 0.; i__1 = *n - 2; for (i__ = 1; i__ <= i__1; ++i__) { /* Reduce i-th column of matrix to tridiagonal form */ for (k = kdn + 1; k >= 2; --k) { j1 += kdn; j2 += kdn; if (nr > 0) { /* generate plane rotations to annihilate nonzero */ /* elements which have been created outside the band */ zlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, & work[j1], &kd1, &d__[j1], &kd1); /* apply plane rotations from one side */ /* Dependent on the the number of diagonals either */ /* ZLARTV or ZROT is used */ if (nr > (*kd << 1) - 1) { i__3 = *kd - 1; for (l = 1; l <= i__3; ++l) { zlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) * ab_dim1], &inca, &ab[kd1 - l + 1 + ( j1 - kd1 + l) * ab_dim1], &inca, &d__[ j1], &work[j1], &kd1); /* L130: */ } } else { jend = j1 + kd1 * (nr - 1); i__3 = jend; i__2 = kd1; for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <= i__3; jinc += i__2) { zrot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1] , &incx, &ab[kd1 + (jinc - *kd) * ab_dim1], &incx, &d__[jinc], &work[ jinc]); /* L140: */ } } } if (k > 2) { if (k <= *n - i__ + 1) { /* generate plane rotation to annihilate a(i+k-1,i) */ /* within the band */ zlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ * ab_dim1], &d__[i__ + k - 1], &work[i__ + k - 1], &temp); i__2 = k - 1 + i__ * ab_dim1; ab[i__2].r = temp.r, ab[i__2].i = temp.i; /* apply rotation from the left */ i__2 = k - 3; i__3 = *ldab - 1; i__4 = *ldab - 1; zrot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], & i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], & i__4, &d__[i__ + k - 1], &work[i__ + k - 1]); } ++nr; j1 = j1 - kdn - 1; } /* apply plane rotations from both sides to diagonal */ /* blocks */ if (nr > 0) { zlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], & inca, &d__[j1], &work[j1], &kd1); } /* apply plane rotations from the right */ /* Dependent on the the number of diagonals either */ /* ZLARTV or ZROT is used */ if (nr > 0) { zlacgv_(&nr, &work[j1], &kd1); if (nr > (*kd << 1) - 1) { i__2 = *kd - 1; for (l = 1; l <= i__2; ++l) { if (j2 + l > *n) { nrt = nr - 1; } else { nrt = nr; } if (nrt > 0) { zlartv_(&nrt, &ab[l + 2 + (j1 - 1) * ab_dim1], &inca, &ab[l + 1 + j1 * ab_dim1], &inca, &d__[j1], &work[ j1], &kd1); } /* L150: */ } } else { j1end = j1 + kd1 * (nr - 2); if (j1end >= j1) { i__2 = j1end; i__3 = kd1; for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 : j1inc <= i__2; j1inc += i__3) { zrot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 + 3], &c__1, &ab[j1inc * ab_dim1 + 2], &c__1, &d__[j1inc], &work[ j1inc]); /* L160: */ } } /* Computing MIN */ i__3 = kdm1, i__2 = *n - j2; lend = min(i__3,i__2); last = j1end + kd1; if (lend > 0) { zrot_(&lend, &ab[(last - 1) * ab_dim1 + 3], & c__1, &ab[last * ab_dim1 + 2], &c__1, &d__[last], &work[last]); } } } if (wantq) { /* accumulate product of plane rotations in Q */ if (initq) { /* take advantage of the fact that Q was */ /* initially the Identity matrix */ iqend = max(iqend,j2); /* Computing MAX */ i__3 = 0, i__2 = k - 3; i2 = max(i__3,i__2); iqaend = i__ * *kd + 1; if (k == 2) { iqaend += *kd; } iqaend = min(iqaend,iqend); i__3 = j2; i__2 = kd1; for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) { ibl = i__ - i2 / kdm1; ++i2; /* Computing MAX */ i__4 = 1, i__5 = j - ibl; iqb = max(i__4,i__5); nq = iqaend + 1 - iqb; /* Computing MIN */ i__4 = iqaend + *kd; iqaend = min(i__4,iqend); zrot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, &q[iqb + j * q_dim1], &c__1, &d__[j], &work[j]); /* L170: */ } } else { i__2 = j2; i__3 = kd1; for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) { zrot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[ j * q_dim1 + 1], &c__1, &d__[j], & work[j]); /* L180: */ } } } if (j2 + kdn > *n) { /* adjust J2 to keep within the bounds of the matrix */ --nr; j2 = j2 - kdn - 1; } i__3 = j2; i__2 = kd1; for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) { /* create nonzero element a(j+kd,j-1) outside the */ /* band and store it in WORK */ i__4 = j + *kd; i__5 = j; i__6 = kd1 + j * ab_dim1; z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6].i, z__1.i = work[i__5].r * ab[i__6] .i + work[i__5].i * ab[i__6].r; work[i__4].r = z__1.r, work[i__4].i = z__1.i; i__4 = kd1 + j * ab_dim1; i__5 = j; i__6 = kd1 + j * ab_dim1; z__1.r = d__[i__5] * ab[i__6].r, z__1.i = d__[i__5] * ab[i__6].i; ab[i__4].r = z__1.r, ab[i__4].i = z__1.i; /* L190: */ } /* L200: */ } /* L210: */ } } if (*kd > 0) { /* make off-diagonal elements real and copy them to E */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ * ab_dim1 + 2; t.r = ab[i__2].r, t.i = ab[i__2].i; abst = z_abs(&t); i__2 = i__ * ab_dim1 + 2; ab[i__2].r = abst, ab[i__2].i = 0.; e[i__] = abst; if (abst != 0.) { z__1.r = t.r / abst, z__1.i = t.i / abst; t.r = z__1.r, t.i = z__1.i; } else { t.r = 1., t.i = 0.; } if (i__ < *n - 1) { i__2 = (i__ + 1) * ab_dim1 + 2; i__3 = (i__ + 1) * ab_dim1 + 2; z__1.r = ab[i__3].r * t.r - ab[i__3].i * t.i, z__1.i = ab[ i__3].r * t.i + ab[i__3].i * t.r; ab[i__2].r = z__1.r, ab[i__2].i = z__1.i; } if (wantq) { zscal_(n, &t, &q[(i__ + 1) * q_dim1 + 1], &c__1); } /* L220: */ } } else { /* set E to zero if original matrix was diagonal */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { e[i__] = 0.; /* L230: */ } } /* copy diagonal elements to D */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__ * ab_dim1 + 1; d__[i__2] = ab[i__3].r; /* L240: */ } } return 0; /* End of ZHBTRD */ } /* zhbtrd_ */