コード例 #1
0
ファイル: zlantp.c プロジェクト: fmarrabal/libflame
/* ===================================================================== */
doublereal zlantp_(char *norm, char *uplo, char *diag, integer *n, doublecomplex *ap, doublereal *work)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal ret_val;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    integer i__, j, k;
    doublereal sum, scale;
    logical udiag;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern logical disnan_(doublereal *);
    extern /* Subroutine */
    int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --work;
    --ap;
    /* Function Body */
    if (*n == 0)
    {
        value = 0.;
    }
    else if (lsame_(norm, "M"))
    {
        /* Find max(abs(A(i,j))). */
        k = 1;
        if (lsame_(diag, "U"))
        {
            value = 1.;
            if (lsame_(uplo, "U"))
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = k + j - 2;
                    for (i__ = k;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum = z_abs(&ap[i__]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L10: */
                    }
                    k += j;
                    /* L20: */
                }
            }
            else
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = k + *n - j;
                    for (i__ = k + 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum = z_abs(&ap[i__]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L30: */
                    }
                    k = k + *n - j + 1;
                    /* L40: */
                }
            }
        }
        else
        {
            value = 0.;
            if (lsame_(uplo, "U"))
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = k + j - 1;
                    for (i__ = k;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum = z_abs(&ap[i__]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L50: */
                    }
                    k += j;
                    /* L60: */
                }
            }
            else
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = k + *n - j;
                    for (i__ = k;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum = z_abs(&ap[i__]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L70: */
                    }
                    k = k + *n - j + 1;
                    /* L80: */
                }
            }
        }
    }
    else if (lsame_(norm, "O") || *(unsigned char *) norm == '1')
    {
        /* Find norm1(A). */
        value = 0.;
        k = 1;
        udiag = lsame_(diag, "U");
        if (lsame_(uplo, "U"))
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                if (udiag)
                {
                    sum = 1.;
                    i__2 = k + j - 2;
                    for (i__ = k;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ap[i__]);
                        /* L90: */
                    }
                }
                else
                {
                    sum = 0.;
                    i__2 = k + j - 1;
                    for (i__ = k;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ap[i__]);
                        /* L100: */
                    }
                }
                k += j;
                if (value < sum || disnan_(&sum))
                {
                    value = sum;
                }
                /* L110: */
            }
        }
        else
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                if (udiag)
                {
                    sum = 1.;
                    i__2 = k + *n - j;
                    for (i__ = k + 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ap[i__]);
                        /* L120: */
                    }
                }
                else
                {
                    sum = 0.;
                    i__2 = k + *n - j;
                    for (i__ = k;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ap[i__]);
                        /* L130: */
                    }
                }
                k = k + *n - j + 1;
                if (value < sum || disnan_(&sum))
                {
                    value = sum;
                }
                /* L140: */
            }
        }
    }
    else if (lsame_(norm, "I"))
    {
        /* Find normI(A). */
        k = 1;
        if (lsame_(uplo, "U"))
        {
            if (lsame_(diag, "U"))
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 1.;
                    /* L150: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = j - 1;
                    for (i__ = 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        work[i__] += z_abs(&ap[k]);
                        ++k;
                        /* L160: */
                    }
                    ++k;
                    /* L170: */
                }
            }
            else
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 0.;
                    /* L180: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = j;
                    for (i__ = 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        work[i__] += z_abs(&ap[k]);
                        ++k;
                        /* L190: */
                    }
                    /* L200: */
                }
            }
        }
        else
        {
            if (lsame_(diag, "U"))
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 1.;
                    /* L210: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    ++k;
                    i__2 = *n;
                    for (i__ = j + 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        work[i__] += z_abs(&ap[k]);
                        ++k;
                        /* L220: */
                    }
                    /* L230: */
                }
            }
            else
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 0.;
                    /* L240: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = *n;
                    for (i__ = j;
                            i__ <= i__2;
                            ++i__)
                    {
                        work[i__] += z_abs(&ap[k]);
                        ++k;
                        /* L250: */
                    }
                    /* L260: */
                }
            }
        }
        value = 0.;
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            sum = work[i__];
            if (value < sum || disnan_(&sum))
            {
                value = sum;
            }
            /* L270: */
        }
    }
    else if (lsame_(norm, "F") || lsame_(norm, "E"))
    {
        /* Find normF(A). */
        if (lsame_(uplo, "U"))
        {
            if (lsame_(diag, "U"))
            {
                scale = 1.;
                sum = (doublereal) (*n);
                k = 2;
                i__1 = *n;
                for (j = 2;
                        j <= i__1;
                        ++j)
                {
                    i__2 = j - 1;
                    zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
                    k += j;
                    /* L280: */
                }
            }
            else
            {
                scale = 0.;
                sum = 1.;
                k = 1;
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    zlassq_(&j, &ap[k], &c__1, &scale, &sum);
                    k += j;
                    /* L290: */
                }
            }
        }
        else
        {
            if (lsame_(diag, "U"))
            {
                scale = 1.;
                sum = (doublereal) (*n);
                k = 2;
                i__1 = *n - 1;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = *n - j;
                    zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
                    k = k + *n - j + 1;
                    /* L300: */
                }
            }
            else
            {
                scale = 0.;
                sum = 1.;
                k = 1;
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    i__2 = *n - j + 1;
                    zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
                    k = k + *n - j + 1;
                    /* L310: */
                }
            }
        }
        value = scale * sqrt(sum);
    }
    ret_val = value;
    return ret_val;
    /* End of ZLANTP */
}
コード例 #2
0
ファイル: zheequb.c プロジェクト: fmarrabal/libflame
/* Subroutine */
int zheequb_(char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *s, doublereal *scond, doublereal *amax, doublecomplex *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2, z__3, z__4;
    /* Builtin functions */
    double d_imag(doublecomplex *), sqrt(doublereal), log(doublereal), pow_di( doublereal *, integer *);
    /* Local variables */
    doublereal d__;
    integer i__, j;
    doublereal t, u, c0, c1, c2, si;
    logical up;
    doublereal avg, std, tol, base;
    integer iter;
    doublereal smin, smax, scale;
    extern logical lsame_(char *, char *);
    doublereal sumsq;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    doublereal bignum, smlnum;
    extern /* Subroutine */
    int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    /* -- LAPACK computational routine (version 3.4.1) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* April 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Statement Functions .. */
    /* .. */
    /* .. Statement Function Definitions .. */
    /* Test input parameters. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --s;
    --work;
    /* Function Body */
    *info = 0;
    if (! (lsame_(uplo, "U") || lsame_(uplo, "L")))
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*lda < max(1,*n))
    {
        *info = -4;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZHEEQUB", &i__1);
        return 0;
    }
    up = lsame_(uplo, "U");
    *amax = 0.;
    /* Quick return if possible. */
    if (*n == 0)
    {
        *scond = 1.;
        return 0;
    }
    i__1 = *n;
    for (i__ = 1;
            i__ <= i__1;
            ++i__)
    {
        s[i__] = 0.;
    }
    *amax = 0.;
    if (up)
    {
        i__1 = *n;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            i__2 = j - 1;
            for (i__ = 1;
                    i__ <= i__2;
                    ++i__)
            {
                /* Computing MAX */
                i__3 = i__ + j * a_dim1;
                d__3 = s[i__];
                d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2)); // , expr subst
                s[i__] = max(d__3,d__4);
                /* Computing MAX */
                i__3 = i__ + j * a_dim1;
                d__3 = s[j];
                d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2)); // , expr subst
                s[j] = max(d__3,d__4);
                /* Computing MAX */
                i__3 = i__ + j * a_dim1;
                d__3 = *amax;
                d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2)); // , expr subst
                *amax = max(d__3,d__4);
            }
            /* Computing MAX */
            i__2 = j + j * a_dim1;
            d__3 = s[j];
            d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[j + j * a_dim1]), abs(d__2)); // , expr subst
            s[j] = max(d__3,d__4);
            /* Computing MAX */
            i__2 = j + j * a_dim1;
            d__3 = *amax;
            d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[j + j * a_dim1]), abs(d__2)); // , expr subst
            *amax = max(d__3,d__4);
        }
    }
    else
    {
        i__1 = *n;
        for (j = 1;
                j <= i__1;
                ++j)
        {
            /* Computing MAX */
            i__2 = j + j * a_dim1;
            d__3 = s[j];
            d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[j + j * a_dim1]), abs(d__2)); // , expr subst
            s[j] = max(d__3,d__4);
            /* Computing MAX */
            i__2 = j + j * a_dim1;
            d__3 = *amax;
            d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[j + j * a_dim1]), abs(d__2)); // , expr subst
            *amax = max(d__3,d__4);
            i__2 = *n;
            for (i__ = j + 1;
                    i__ <= i__2;
                    ++i__)
            {
                /* Computing MAX */
                i__3 = i__ + j * a_dim1;
                d__3 = s[i__];
                d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2)); // , expr subst
                s[i__] = max(d__3,d__4);
                /* Computing MAX */
                i__3 = i__ + j * a_dim1;
                d__3 = s[j];
                d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2)); // , expr subst
                s[j] = max(d__3,d__4);
                /* Computing MAX */
                i__3 = i__ + j * a_dim1;
                d__3 = *amax;
                d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2)); // , expr subst
                *amax = max(d__3,d__4);
            }
        }
    }
    i__1 = *n;
    for (j = 1;
            j <= i__1;
            ++j)
    {
        s[j] = 1. / s[j];
    }
    tol = 1. / sqrt(*n * 2.);
    for (iter = 1;
            iter <= 100;
            ++iter)
    {
        scale = 0.;
        sumsq = 0.;
        /* beta = |A|s */
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            i__2 = i__;
            work[i__2].r = 0.;
            work[i__2].i = 0.; // , expr subst
        }
        if (up)
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = j - 1;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    i__3 = i__ + j * a_dim1;
                    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2));
                    i__3 = i__;
                    i__4 = i__;
                    i__5 = i__ + j * a_dim1;
                    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + j * a_dim1]), abs(d__2))) * s[j];
                    z__1.r = work[i__4].r + d__3;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                    i__3 = j;
                    i__4 = j;
                    i__5 = i__ + j * a_dim1;
                    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + j * a_dim1]), abs(d__2))) * s[i__];
                    z__1.r = work[i__4].r + d__3;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                }
                i__2 = j;
                i__3 = j;
                i__4 = j + j * a_dim1;
                d__3 = ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[j + j * a_dim1]), abs(d__2))) * s[j];
                z__1.r = work[i__3].r + d__3;
                z__1.i = work[i__3].i; // , expr subst
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
            }
        }
        else
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = j;
                i__3 = j;
                i__4 = j + j * a_dim1;
                d__3 = ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[j + j * a_dim1]), abs(d__2))) * s[j];
                z__1.r = work[i__3].r + d__3;
                z__1.i = work[i__3].i; // , expr subst
                work[i__2].r = z__1.r;
                work[i__2].i = z__1.i; // , expr subst
                i__2 = *n;
                for (i__ = j + 1;
                        i__ <= i__2;
                        ++i__)
                {
                    i__3 = i__ + j * a_dim1;
                    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2));
                    i__3 = i__;
                    i__4 = i__;
                    i__5 = i__ + j * a_dim1;
                    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + j * a_dim1]), abs(d__2))) * s[j];
                    z__1.r = work[i__4].r + d__3;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                    i__3 = j;
                    i__4 = j;
                    i__5 = i__ + j * a_dim1;
                    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + j * a_dim1]), abs(d__2))) * s[i__];
                    z__1.r = work[i__4].r + d__3;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                }
            }
        }
        /* avg = s^T beta / n */
        avg = 0.;
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            i__2 = i__;
            i__3 = i__;
            z__2.r = s[i__2] * work[i__3].r;
            z__2.i = s[i__2] * work[i__3].i; // , expr subst
            z__1.r = avg + z__2.r;
            z__1.i = z__2.i; // , expr subst
            avg = z__1.r;
        }
        avg /= *n;
        std = 0.;
        i__1 = *n * 3;
        for (i__ = (*n << 1) + 1;
                i__ <= i__1;
                ++i__)
        {
            i__2 = i__;
            i__3 = i__ - (*n << 1);
            i__4 = i__ - (*n << 1);
            z__2.r = s[i__3] * work[i__4].r;
            z__2.i = s[i__3] * work[i__4].i; // , expr subst
            z__1.r = z__2.r - avg;
            z__1.i = z__2.i; // , expr subst
            work[i__2].r = z__1.r;
            work[i__2].i = z__1.i; // , expr subst
        }
        zlassq_(n, &work[(*n << 1) + 1], &c__1, &scale, &sumsq);
        std = scale * sqrt(sumsq / *n);
        if (std < tol * avg)
        {
            goto L999;
        }
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            i__2 = i__ + i__ * a_dim1;
            t = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + i__ * a_dim1]), abs(d__2));
            si = s[i__];
            c2 = (*n - 1) * t;
            i__2 = *n - 2;
            i__3 = i__;
            d__1 = t * si;
            z__2.r = work[i__3].r - d__1;
            z__2.i = work[i__3].i; // , expr subst
            d__2 = (doublereal) i__2;
            z__1.r = d__2 * z__2.r;
            z__1.i = d__2 * z__2.i; // , expr subst
            c1 = z__1.r;
            d__1 = -(t * si) * si;
            i__2 = i__;
            d__2 = 2.;
            z__4.r = d__2 * work[i__2].r;
            z__4.i = d__2 * work[i__2].i; // , expr subst
            z__3.r = si * z__4.r;
            z__3.i = si * z__4.i; // , expr subst
            z__2.r = d__1 + z__3.r;
            z__2.i = z__3.i; // , expr subst
            d__3 = *n * avg;
            z__1.r = z__2.r - d__3;
            z__1.i = z__2.i; // , expr subst
            c0 = z__1.r;
            d__ = c1 * c1 - c0 * 4 * c2;
            if (d__ <= 0.)
            {
                *info = -1;
                return 0;
            }
            si = c0 * -2 / (c1 + sqrt(d__));
            d__ = si - s[i__];
            u = 0.;
            if (up)
            {
                i__2 = i__;
                for (j = 1;
                        j <= i__2;
                        ++j)
                {
                    i__3 = j + i__ * a_dim1;
                    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[j + i__ * a_dim1]), abs(d__2));
                    u += s[j] * t;
                    i__3 = j;
                    i__4 = j;
                    d__1 = d__ * t;
                    z__1.r = work[i__4].r + d__1;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                }
                i__2 = *n;
                for (j = i__ + 1;
                        j <= i__2;
                        ++j)
                {
                    i__3 = i__ + j * a_dim1;
                    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2));
                    u += s[j] * t;
                    i__3 = j;
                    i__4 = j;
                    d__1 = d__ * t;
                    z__1.r = work[i__4].r + d__1;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                }
            }
            else
            {
                i__2 = i__;
                for (j = 1;
                        j <= i__2;
                        ++j)
                {
                    i__3 = i__ + j * a_dim1;
                    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j * a_dim1]), abs(d__2));
                    u += s[j] * t;
                    i__3 = j;
                    i__4 = j;
                    d__1 = d__ * t;
                    z__1.r = work[i__4].r + d__1;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                }
                i__2 = *n;
                for (j = i__ + 1;
                        j <= i__2;
                        ++j)
                {
                    i__3 = j + i__ * a_dim1;
                    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[j + i__ * a_dim1]), abs(d__2));
                    u += s[j] * t;
                    i__3 = j;
                    i__4 = j;
                    d__1 = d__ * t;
                    z__1.r = work[i__4].r + d__1;
                    z__1.i = work[i__4].i; // , expr subst
                    work[i__3].r = z__1.r;
                    work[i__3].i = z__1.i; // , expr subst
                }
            }
            i__2 = i__;
            z__4.r = u + work[i__2].r;
            z__4.i = work[i__2].i; // , expr subst
            z__3.r = d__ * z__4.r;
            z__3.i = d__ * z__4.i; // , expr subst
            d__1 = (doublereal) (*n);
            z__2.r = z__3.r / d__1;
            z__2.i = z__3.i / d__1; // , expr subst
            z__1.r = avg + z__2.r;
            z__1.i = z__2.i; // , expr subst
            avg = z__1.r;
            s[i__] = si;
        }
    }
L999:
    smlnum = dlamch_("SAFEMIN");
    bignum = 1. / smlnum;
    smin = bignum;
    smax = 0.;
    t = 1. / sqrt(avg);
    base = dlamch_("B");
    u = 1. / log(base);
    i__1 = *n;
    for (i__ = 1;
            i__ <= i__1;
            ++i__)
    {
        i__2 = (integer) (u * log(s[i__] * t));
        s[i__] = pow_di(&base, &i__2);
        /* Computing MIN */
        d__1 = smin;
        d__2 = s[i__]; // , expr subst
        smin = min(d__1,d__2);
        /* Computing MAX */
        d__1 = smax;
        d__2 = s[i__]; // , expr subst
        smax = max(d__1,d__2);
    }
    *scond = max(smin,smlnum) / min(smax,bignum);
    return 0;
}
コード例 #3
0
ファイル: zlansb.c プロジェクト: 3deggi/levmar-ndk
doublereal zlansb_(char *norm, char *uplo, integer *n, integer *k, 
	doublecomplex *ab, integer *ldab, doublereal *work)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j, l;
    doublereal sum, absa, scale;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANSB  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the element of  largest absolute value  of an */
/*  n by n symmetric band matrix A,  with k super-diagonals. */

/*  Description */
/*  =========== */

/*  ZLANSB returns the value */

/*     ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANSB as described */
/*          above. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          band matrix A is supplied. */
/*          = 'U':  Upper triangular part is supplied */
/*          = 'L':  Lower triangular part is supplied */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANSB is */
/*          set to zero. */

/*  K       (input) INTEGER */
/*          The number of super-diagonals or sub-diagonals of the */
/*          band matrix A.  K >= 0. */

/*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*          The upper or lower triangle of the symmetric band matrix A, */
/*          stored in the first K+1 rows of AB.  The j-th column of A is */
/*          stored in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= K+1. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
/*          WORK is not referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		i__2 = *k + 2 - j;
		i__3 = *k + 1;
		for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
		    value = max(d__1,d__2);
/* L10: */
		}
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		i__2 = *n + 1 - j, i__4 = *k + 1;
		i__3 = min(i__2,i__4);
		for (i__ = 1; i__ <= i__3; ++i__) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
		    value = max(d__1,d__2);
/* L30: */
		}
/* L40: */
	    }
	}
    } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {

/*        Find normI(A) ( = norm1(A), since A is symmetric). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sum = 0.;
		l = *k + 1 - j;
/* Computing MAX */
		i__3 = 1, i__2 = j - *k;
		i__4 = j - 1;
		for (i__ = max(i__3,i__2); i__ <= i__4; ++i__) {
		    absa = z_abs(&ab[l + i__ + j * ab_dim1]);
		    sum += absa;
		    work[i__] += absa;
/* L50: */
		}
		work[j] = sum + z_abs(&ab[*k + 1 + j * ab_dim1]);
/* L60: */
	    }
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = work[i__];
		value = max(d__1,d__2);
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[i__] = 0.;
/* L80: */
	    }
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sum = work[j] + z_abs(&ab[j * ab_dim1 + 1]);
		l = 1 - j;
/* Computing MIN */
		i__3 = *n, i__2 = j + *k;
		i__4 = min(i__3,i__2);
		for (i__ = j + 1; i__ <= i__4; ++i__) {
		    absa = z_abs(&ab[l + i__ + j * ab_dim1]);
		    sum += absa;
		    work[i__] += absa;
/* L90: */
		}
		value = max(value,sum);
/* L100: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*k > 0) {
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 2; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = j - 1;
		    i__4 = min(i__3,*k);
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    zlassq_(&i__4, &ab[max(i__2, 1)+ j * ab_dim1], &c__1, &
			    scale, &sum);
/* L110: */
		}
		l = *k + 1;
	    } else {
		i__1 = *n - 1;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = *n - j;
		    i__4 = min(i__3,*k);
		    zlassq_(&i__4, &ab[j * ab_dim1 + 2], &c__1, &scale, &sum);
/* L120: */
		}
		l = 1;
	    }
	    sum *= 2;
	} else {
	    l = 1;
	}
	zlassq_(n, &ab[l + ab_dim1], ldab, &scale, &sum);
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANSB */

} /* zlansb_ */
コード例 #4
0
ファイル: zlanhp.c プロジェクト: 0u812/roadrunner-backup
doublereal zlanhp_(char *norm, char *uplo, integer *n, doublecomplex *ap, 
	doublereal *work)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal ret_val, d__1, d__2, d__3;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j, k;
    doublereal sum, absa, scale;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANHP  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  complex hermitian matrix A,  supplied in packed form. */

/*  Description */
/*  =========== */

/*  ZLANHP returns the value */

/*     ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANHP as described */
/*          above. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          hermitian matrix A is supplied. */
/*          = 'U':  Upper triangular part of A is supplied */
/*          = 'L':  Lower triangular part of A is supplied */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHP is */
/*          set to zero. */

/*  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          The upper or lower triangle of the hermitian matrix A, packed */
/*          columnwise in a linear array.  The j-th column of A is stored */
/*          in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          Note that the  imaginary parts of the diagonal elements need */
/*          not be set and are assumed to be zero. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
/*          WORK is not referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --ap;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    k = 0;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = k + j - 1;
		for (i__ = k + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&ap[i__]);
		    value = max(d__1,d__2);
/* L10: */
		}
		k += j;
/* Computing MAX */
		i__2 = k;
		d__2 = value, d__3 = (d__1 = ap[i__2].r, abs(d__1));
		value = max(d__2,d__3);
/* L20: */
	    }
	} else {
	    k = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		i__2 = k;
		d__2 = value, d__3 = (d__1 = ap[i__2].r, abs(d__1));
		value = max(d__2,d__3);
		i__2 = k + *n - j;
		for (i__ = k + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&ap[i__]);
		    value = max(d__1,d__2);
/* L30: */
		}
		k = k + *n - j + 1;
/* L40: */
	    }
	}
    } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {

/*        Find normI(A) ( = norm1(A), since A is hermitian). */

	value = 0.;
	k = 1;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sum = 0.;
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    absa = z_abs(&ap[k]);
		    sum += absa;
		    work[i__] += absa;
		    ++k;
/* L50: */
		}
		i__2 = k;
		work[j] = sum + (d__1 = ap[i__2].r, abs(d__1));
		++k;
/* L60: */
	    }
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = work[i__];
		value = max(d__1,d__2);
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[i__] = 0.;
/* L80: */
	    }
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = k;
		sum = work[j] + (d__1 = ap[i__2].r, abs(d__1));
		++k;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    absa = z_abs(&ap[k]);
		    sum += absa;
		    work[i__] += absa;
		    ++k;
/* L90: */
		}
		value = max(value,sum);
/* L100: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	k = 2;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 2; j <= i__1; ++j) {
		i__2 = j - 1;
		zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
		k += j;
/* L110: */
	    }
	} else {
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j;
		zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
		k = k + *n - j + 1;
/* L120: */
	    }
	}
	sum *= 2;
	k = 1;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = k;
	    if (ap[i__2].r != 0.) {
		i__2 = k;
		absa = (d__1 = ap[i__2].r, abs(d__1));
		if (scale < absa) {
/* Computing 2nd power */
		    d__1 = scale / absa;
		    sum = sum * (d__1 * d__1) + 1.;
		    scale = absa;
		} else {
/* Computing 2nd power */
		    d__1 = absa / scale;
		    sum += d__1 * d__1;
		}
	    }
	    if (lsame_(uplo, "U")) {
		k = k + i__ + 1;
	    } else {
		k = k + *n - i__ + 1;
	    }
/* L130: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANHP */

} /* zlanhp_ */
コード例 #5
0
ファイル: ztgex2.c プロジェクト: Electrostatics/FETK
/* Subroutine */ int ztgex2_(logical *wantq, logical *wantz, integer *n, 
	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	doublecomplex *q, integer *ldq, doublecomplex *z__, integer *ldz, 
	integer *j1, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3;
    doublereal d__1;
    doublecomplex z__1, z__2, z__3;

    /* Builtin functions */
    double sqrt(doublereal), z_abs(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    static doublecomplex f, g;
    static integer i__, m;
    static doublecomplex s[4]	/* was [2][2] */, t[4]	/* was [2][2] */;
    static doublereal cq, sa, sb, cz;
    static doublecomplex sq;
    static doublereal ss, ws;
    static doublecomplex sz;
    static doublereal eps, sum;
    static logical weak;
    static doublecomplex cdum, work[8];
    extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublecomplex *);
    static doublereal scale;
    extern doublereal dlamch_(char *, ftnlen);
    static logical dtrong;
    static doublereal thresh;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, ftnlen), 
	    zlartg_(doublecomplex *, doublecomplex *, doublereal *, 
	    doublecomplex *, doublecomplex *);
    static doublereal smlnum;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
/*  in an upper triangular matrix pair (A, B) by an unitary equivalence */
/*  transformation. */

/*  (A, B) must be in generalized Schur canonical form, that is, A and */
/*  B are both upper triangular. */

/*  Optionally, the matrices Q and Z of generalized Schur vectors are */
/*  updated. */

/*         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
/*         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */


/*  Arguments */
/*  ========= */

/*  WANTQ   (input) LOGICAL */
/*          .TRUE. : update the left transformation matrix Q; */
/*          .FALSE.: do not update Q. */

/*  WANTZ   (input) LOGICAL */
/*          .TRUE. : update the right transformation matrix Z; */
/*          .FALSE.: do not update Z. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B. N >= 0. */

/*  A       (input/output) COMPLEX*16 arrays, dimensions (LDA,N) */
/*          On entry, the matrix A in the pair (A, B). */
/*          On exit, the updated matrix A. */

/*  LDA     (input)  INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,N). */

/*  B       (input/output) COMPLEX*16 arrays, dimensions (LDB,N) */
/*          On entry, the matrix B in the pair (A, B). */
/*          On exit, the updated matrix B. */

/*  LDB     (input)  INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,N). */

/*  Q       (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/*          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
/*          the updated matrix Q. */
/*          Not referenced if WANTQ = .FALSE.. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q. LDQ >= 1; */
/*          If WANTQ = .TRUE., LDQ >= N. */

/*  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/*          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
/*          the updated matrix Z. */
/*          Not referenced if WANTZ = .FALSE.. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z. LDZ >= 1; */
/*          If WANTZ = .TRUE., LDZ >= N. */

/*  J1      (input) INTEGER */
/*          The index to the first block (A11, B11). */

/*  INFO    (output) INTEGER */
/*           =0:  Successful exit. */
/*           =1:  The transformed matrix pair (A, B) would be too far */
/*                from generalized Schur form; the problem is ill- */
/*                conditioned. (A, B) may have been partially reordered, */
/*                and ILST points to the first row of the current */
/*                position of the block being moved. */


/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  In the current code both weak and strong stability tests are */
/*  performed. The user can omit the strong stability test by changing */
/*  the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
/*  details. */

/*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */

/*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
/*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
/*      Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
/*      Department of Computing Science, Umea University, S-901 87 Umea, */
/*      Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
/*      Numerical Algorithms, 1996. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;

    /* Function Body */
    *info = 0;

/*     Quick return if possible */

    if (*n <= 1) {
	return 0;
    }

    m = 2;
    weak = FALSE_;
    dtrong = FALSE_;

/*     Make a local copy of selected block in (A, B) */

    zlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2, (ftnlen)4);
    zlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2, (ftnlen)4);

/*     Compute the threshold for testing the acceptance of swapping. */

    eps = dlamch_("P", (ftnlen)1);
    smlnum = dlamch_("S", (ftnlen)1) / eps;
    scale = 0.;
    sum = 1.;
    zlacpy_("Full", &m, &m, s, &c__2, work, &m, (ftnlen)4);
    zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m, (ftnlen)4);
    i__1 = (m << 1) * m;
    zlassq_(&i__1, work, &c__1, &scale, &sum);
    sa = scale * sqrt(sum);
/* Computing MAX */
    d__1 = eps * 10. * sa;
    thresh = max(d__1,smlnum);

/*     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
/*     using Givens rotations and perform the swap tentatively. */

    z__2.r = s[3].r * t[0].r - s[3].i * t[0].i, z__2.i = s[3].r * t[0].i + s[
	    3].i * t[0].r;
    z__3.r = t[3].r * s[0].r - t[3].i * s[0].i, z__3.i = t[3].r * s[0].i + t[
	    3].i * s[0].r;
    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
    f.r = z__1.r, f.i = z__1.i;
    z__2.r = s[3].r * t[2].r - s[3].i * t[2].i, z__2.i = s[3].r * t[2].i + s[
	    3].i * t[2].r;
    z__3.r = t[3].r * s[2].r - t[3].i * s[2].i, z__3.i = t[3].r * s[2].i + t[
	    3].i * s[2].r;
    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
    g.r = z__1.r, g.i = z__1.i;
    sa = z_abs(&s[3]);
    sb = z_abs(&t[3]);
    zlartg_(&g, &f, &cz, &sz, &cdum);
    z__1.r = -sz.r, z__1.i = -sz.i;
    sz.r = z__1.r, sz.i = z__1.i;
    d_cnjg(&z__1, &sz);
    zrot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &z__1);
    d_cnjg(&z__1, &sz);
    zrot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &z__1);
    if (sa >= sb) {
	zlartg_(s, &s[1], &cq, &sq, &cdum);
    } else {
	zlartg_(t, &t[1], &cq, &sq, &cdum);
    }
    zrot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
    zrot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);

/*     Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */

    ws = z_abs(&s[1]) + z_abs(&t[1]);
    weak = ws <= thresh;
    if (! weak) {
	goto L20;
    }

    if (TRUE_) {

/*        Strong stability test: */
/*           F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B))) */

	zlacpy_("Full", &m, &m, s, &c__2, work, &m, (ftnlen)4);
	zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m, (ftnlen)4);
	d_cnjg(&z__2, &sz);
	z__1.r = -z__2.r, z__1.i = -z__2.i;
	zrot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &z__1);
	d_cnjg(&z__2, &sz);
	z__1.r = -z__2.r, z__1.i = -z__2.i;
	zrot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &z__1);
	z__1.r = -sq.r, z__1.i = -sq.i;
	zrot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &z__1);
	z__1.r = -sq.r, z__1.i = -sq.i;
	zrot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &z__1);
	for (i__ = 1; i__ <= 2; ++i__) {
	    i__1 = i__ - 1;
	    i__2 = i__ - 1;
	    i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
	    z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
		    .i;
	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
	    i__1 = i__ + 1;
	    i__2 = i__ + 1;
	    i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
	    z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
		    .i;
	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
	    i__1 = i__ + 3;
	    i__2 = i__ + 3;
	    i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
	    z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
		    .i;
	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
	    i__1 = i__ + 5;
	    i__2 = i__ + 5;
	    i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
	    z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
		    .i;
	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
/* L10: */
	}
	scale = 0.;
	sum = 1.;
	i__1 = (m << 1) * m;
	zlassq_(&i__1, work, &c__1, &scale, &sum);
	ss = scale * sqrt(sum);
	dtrong = ss <= thresh;
	if (! dtrong) {
	    goto L20;
	}
    }

/*     If the swap is accepted ("weakly" and "strongly"), apply the */
/*     equivalence transformations to the original matrix pair (A,B) */

    i__1 = *j1 + 1;
    d_cnjg(&z__1, &sz);
    zrot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
	    c__1, &cz, &z__1);
    i__1 = *j1 + 1;
    d_cnjg(&z__1, &sz);
    zrot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
	    c__1, &cz, &z__1);
    i__1 = *n - *j1 + 1;
    zrot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
	     &cq, &sq);
    i__1 = *n - *j1 + 1;
    zrot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
	     &cq, &sq);

/*     Set  N1 by N2 (2,1) blocks to 0 */

    i__1 = *j1 + 1 + *j1 * a_dim1;
    a[i__1].r = 0., a[i__1].i = 0.;
    i__1 = *j1 + 1 + *j1 * b_dim1;
    b[i__1].r = 0., b[i__1].i = 0.;

/*     Accumulate transformations into Q and Z if requested. */

    if (*wantz) {
	d_cnjg(&z__1, &sz);
	zrot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1], 
		&c__1, &cz, &z__1);
    }
    if (*wantq) {
	d_cnjg(&z__1, &sq);
	zrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
		c__1, &cq, &z__1);
    }

/*     Exit with INFO = 0 if swap was successfully performed. */

    return 0;

/*     Exit with INFO = 1 if swap was rejected. */

L20:
    *info = 1;
    return 0;

/*     End of ZTGEX2 */

} /* ztgex2_ */
コード例 #6
0
ファイル: zlangt.c プロジェクト: deepakantony/vispack
doublereal zlangt_(char *norm, integer *n, doublecomplex *dl, doublecomplex *
	d, doublecomplex *du)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    ZLANGT  returns the value of the one norm,  or the Frobenius norm, or 
  
    the  infinity norm,  or the  element of  largest absolute value  of a 
  
    complex tridiagonal matrix A.   

    Description   
    ===========   

    ZLANGT returns the value   

       ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum), 
  
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and 
  
    normF  denotes the  Frobenius norm of a matrix (square root of sum of 
  
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANGT as described   
            above.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANGT is   
            set to zero.   

    DL      (input) COMPLEX*16 array, dimension (N-1)   
            The (n-1) sub-diagonal elements of A.   

    D       (input) COMPLEX*16 array, dimension (N)   
            The diagonal elements of A.   

    DU      (input) COMPLEX*16 array, dimension (N-1)   
            The (n-1) super-diagonal elements of A.   

    ===================================================================== 
  


    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1;
    doublereal ret_val, d__1, d__2;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static integer i;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;



#define DU(I) du[(I)-1]
#define D(I) d[(I)-1]
#define DL(I) dl[(I)-1]


    if (*n <= 0) {
	anorm = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	anorm = z_abs(&D(*n));
	i__1 = *n - 1;
	for (i = 1; i <= *n-1; ++i) {
/* Computing MAX */
	    d__1 = anorm, d__2 = z_abs(&DL(i));
	    anorm = max(d__1,d__2);
/* Computing MAX */
	    d__1 = anorm, d__2 = z_abs(&D(i));
	    anorm = max(d__1,d__2);
/* Computing MAX */
	    d__1 = anorm, d__2 = z_abs(&DU(i));
	    anorm = max(d__1,d__2);
/* L10: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)norm == '1') {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = z_abs(&D(1));
	} else {
/* Computing MAX */
	    d__1 = z_abs(&D(1)) + z_abs(&DL(1)), d__2 = z_abs(&D(*n)) + z_abs(
		    &DU(*n - 1));
	    anorm = max(d__1,d__2);
	    i__1 = *n - 1;
	    for (i = 2; i <= *n-1; ++i) {
/* Computing MAX */
		d__1 = anorm, d__2 = z_abs(&D(i)) + z_abs(&DL(i)) + z_abs(&DU(
			i - 1));
		anorm = max(d__1,d__2);
/* L20: */
	    }
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	if (*n == 1) {
	    anorm = z_abs(&D(1));
	} else {
/* Computing MAX */
	    d__1 = z_abs(&D(1)) + z_abs(&DU(1)), d__2 = z_abs(&D(*n)) + z_abs(
		    &DL(*n - 1));
	    anorm = max(d__1,d__2);
	    i__1 = *n - 1;
	    for (i = 2; i <= *n-1; ++i) {
/* Computing MAX */
		d__1 = anorm, d__2 = z_abs(&D(i)) + z_abs(&DU(i)) + z_abs(&DL(
			i - 1));
		anorm = max(d__1,d__2);
/* L30: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	zlassq_(n, &D(1), &c__1, &scale, &sum);
	if (*n > 1) {
	    i__1 = *n - 1;
	    zlassq_(&i__1, &DL(1), &c__1, &scale, &sum);
	    i__1 = *n - 1;
	    zlassq_(&i__1, &DU(1), &c__1, &scale, &sum);
	}
	anorm = scale * sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of ZLANGT */

} /* zlangt_ */
コード例 #7
0
ファイル: zlansp.c プロジェクト: fmarrabal/libflame
/* ===================================================================== */
doublereal zlansp_(char *norm, char *uplo, integer *n, doublecomplex *ap, doublereal *work)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal ret_val, d__1;
    /* Builtin functions */
    double z_abs(doublecomplex *), d_imag(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    integer i__, j, k;
    doublereal sum, absa, scale;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern logical disnan_(doublereal *);
    extern /* Subroutine */
    int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --work;
    --ap;
    /* Function Body */
    if (*n == 0)
    {
        value = 0.;
    }
    else if (lsame_(norm, "M"))
    {
        /* Find max(abs(A(i,j))). */
        value = 0.;
        if (lsame_(uplo, "U"))
        {
            k = 1;
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = k + j - 1;
                for (i__ = k;
                        i__ <= i__2;
                        ++i__)
                {
                    sum = z_abs(&ap[i__]);
                    if (value < sum || disnan_(&sum))
                    {
                        value = sum;
                    }
                    /* L10: */
                }
                k += j;
                /* L20: */
            }
        }
        else
        {
            k = 1;
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = k + *n - j;
                for (i__ = k;
                        i__ <= i__2;
                        ++i__)
                {
                    sum = z_abs(&ap[i__]);
                    if (value < sum || disnan_(&sum))
                    {
                        value = sum;
                    }
                    /* L30: */
                }
                k = k + *n - j + 1;
                /* L40: */
            }
        }
    }
    else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1')
    {
        /* Find normI(A) ( = norm1(A), since A is symmetric). */
        value = 0.;
        k = 1;
        if (lsame_(uplo, "U"))
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                sum = 0.;
                i__2 = j - 1;
                for (i__ = 1;
                        i__ <= i__2;
                        ++i__)
                {
                    absa = z_abs(&ap[k]);
                    sum += absa;
                    work[i__] += absa;
                    ++k;
                    /* L50: */
                }
                work[j] = sum + z_abs(&ap[k]);
                ++k;
                /* L60: */
            }
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                sum = work[i__];
                if (value < sum || disnan_(&sum))
                {
                    value = sum;
                }
                /* L70: */
            }
        }
        else
        {
            i__1 = *n;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                work[i__] = 0.;
                /* L80: */
            }
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                sum = work[j] + z_abs(&ap[k]);
                ++k;
                i__2 = *n;
                for (i__ = j + 1;
                        i__ <= i__2;
                        ++i__)
                {
                    absa = z_abs(&ap[k]);
                    sum += absa;
                    work[i__] += absa;
                    ++k;
                    /* L90: */
                }
                if (value < sum || disnan_(&sum))
                {
                    value = sum;
                }
                /* L100: */
            }
        }
    }
    else if (lsame_(norm, "F") || lsame_(norm, "E"))
    {
        /* Find normF(A). */
        scale = 0.;
        sum = 1.;
        k = 2;
        if (lsame_(uplo, "U"))
        {
            i__1 = *n;
            for (j = 2;
                    j <= i__1;
                    ++j)
            {
                i__2 = j - 1;
                zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
                k += j;
                /* L110: */
            }
        }
        else
        {
            i__1 = *n - 1;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                i__2 = *n - j;
                zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
                k = k + *n - j + 1;
                /* L120: */
            }
        }
        sum *= 2;
        k = 1;
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            i__2 = k;
            if (ap[i__2].r != 0.)
            {
                i__2 = k;
                absa = (d__1 = ap[i__2].r, abs(d__1));
                if (scale < absa)
                {
                    /* Computing 2nd power */
                    d__1 = scale / absa;
                    sum = sum * (d__1 * d__1) + 1.;
                    scale = absa;
                }
                else
                {
                    /* Computing 2nd power */
                    d__1 = absa / scale;
                    sum += d__1 * d__1;
                }
            }
            if (d_imag(&ap[k]) != 0.)
            {
                absa = (d__1 = d_imag(&ap[k]), abs(d__1));
                if (scale < absa)
                {
                    /* Computing 2nd power */
                    d__1 = scale / absa;
                    sum = sum * (d__1 * d__1) + 1.;
                    scale = absa;
                }
                else
                {
                    /* Computing 2nd power */
                    d__1 = absa / scale;
                    sum += d__1 * d__1;
                }
            }
            if (lsame_(uplo, "U"))
            {
                k = k + i__ + 1;
            }
            else
            {
                k = k + *n - i__ + 1;
            }
            /* L130: */
        }
        value = scale * sqrt(sum);
    }
    ret_val = value;
    return ret_val;
    /* End of ZLANSP */
}
コード例 #8
0
ファイル: zlangb.c プロジェクト: dacap/loseface
doublereal zlangb_(char *norm, integer *n, integer *kl, integer *ku, 
	doublecomplex *ab, integer *ldab, doublereal *work)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal ret_val, d__1, d__2;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j, k, l;
    doublereal sum, scale;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANGB  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the element of  largest absolute value  of an */
/*  n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals. */

/*  Description */
/*  =========== */

/*  ZLANGB returns the value */

/*     ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANGB as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANGB is */
/*          set to zero. */

/*  KL      (input) INTEGER */
/*          The number of sub-diagonals of the matrix A.  KL >= 0. */

/*  KU      (input) INTEGER */
/*          The number of super-diagonals of the matrix A.  KU >= 0. */

/*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th */
/*          column of A is stored in the j-th column of the array AB as */
/*          follows: */
/*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KL+KU+1. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/*          referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = *ku + 2 - j;
/* Computing MIN */
	    i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
	    i__3 = min(i__4,i__5);
	    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
		value = max(d__1,d__2);
/* L10: */
	    }
/* L20: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    sum = 0.;
/* Computing MAX */
	    i__3 = *ku + 2 - j;
/* Computing MIN */
	    i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
	    i__2 = min(i__4,i__5);
	    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
		sum += z_abs(&ab[i__ + j * ab_dim1]);
/* L30: */
	    }
	    value = max(value,sum);
/* L40: */
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    work[i__] = 0.;
/* L50: */
	}
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    k = *ku + 1 - j;
/* Computing MAX */
	    i__2 = 1, i__3 = j - *ku;
/* Computing MIN */
	    i__5 = *n, i__6 = j + *kl;
	    i__4 = min(i__5,i__6);
	    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
		work[i__] += z_abs(&ab[k + i__ + j * ab_dim1]);
/* L60: */
	    }
/* L70: */
	}
	value = 0.;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = max(d__1,d__2);
/* L80: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__4 = 1, i__2 = j - *ku;
	    l = max(i__4,i__2);
	    k = *ku + 1 - j + l;
/* Computing MIN */
	    i__2 = *n, i__3 = j + *kl;
	    i__4 = min(i__2,i__3) - l + 1;
	    zlassq_(&i__4, &ab[k + j * ab_dim1], &c__1, &scale, &sum);
/* L90: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANGB */

} /* zlangb_ */
コード例 #9
0
doublereal zlanhb_(char *norm, char *uplo, integer *n, integer *k, 
	doublecomplex *ab, integer *ldab, doublereal *work)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2, d__3;

    /* Local variables */
    integer i__, j, l;
    doublereal sum, absa, scale;
    doublereal value;

/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  ZLANHB  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the element of  largest absolute value  of an */
/*  n by n hermitian band matrix A,  with k super-diagonals. */

/*  Description */
/*  =========== */

/*  ZLANHB returns the value */

/*     ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANHB as described */
/*          above. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          band matrix A is supplied. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is */
/*          set to zero. */

/*  K       (input) INTEGER */
/*          The number of super-diagonals or sub-diagonals of the */
/*          band matrix A.  K >= 0. */

/*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*          The upper or lower triangle of the hermitian band matrix A, */
/*          stored in the first K+1 rows of AB.  The j-th column of A is */
/*          stored in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k). */
/*          Note that the imaginary parts of the diagonal elements need */
/*          not be set and are assumed to be zero. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= K+1. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
/*          WORK is not referenced. */

/* ===================================================================== */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		i__2 = *k + 2 - j;
		i__3 = *k;
		for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
		    value = max(d__1,d__2);
		}
/* Computing MAX */
		i__3 = *k + 1 + j * ab_dim1;
		d__2 = value, d__3 = (d__1 = ab[i__3].r, abs(d__1));
		value = max(d__2,d__3);
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		i__3 = j * ab_dim1 + 1;
		d__2 = value, d__3 = (d__1 = ab[i__3].r, abs(d__1));
		value = max(d__2,d__3);
/* Computing MIN */
		i__2 = *n + 1 - j, i__4 = *k + 1;
		i__3 = min(i__2,i__4);
		for (i__ = 2; i__ <= i__3; ++i__) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
		    value = max(d__1,d__2);
		}
	    }
	}
    } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {

/*        Find normI(A) ( = norm1(A), since A is hermitian). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sum = 0.;
		l = *k + 1 - j;
/* Computing MAX */
		i__3 = 1, i__2 = j - *k;
		i__4 = j - 1;
		for (i__ = max(i__3,i__2); i__ <= i__4; ++i__) {
		    absa = z_abs(&ab[l + i__ + j * ab_dim1]);
		    sum += absa;
		    work[i__] += absa;
		}
		i__4 = *k + 1 + j * ab_dim1;
		work[j] = sum + (d__1 = ab[i__4].r, abs(d__1));
	    }
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = work[i__];
		value = max(d__1,d__2);
	    }
	} else {
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[i__] = 0.;
	    }
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__4 = j * ab_dim1 + 1;
		sum = work[j] + (d__1 = ab[i__4].r, abs(d__1));
		l = 1 - j;
/* Computing MIN */
		i__3 = *n, i__2 = j + *k;
		i__4 = min(i__3,i__2);
		for (i__ = j + 1; i__ <= i__4; ++i__) {
		    absa = z_abs(&ab[l + i__ + j * ab_dim1]);
		    sum += absa;
		    work[i__] += absa;
		}
		value = max(value,sum);
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*k > 0) {
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 2; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = j - 1;
		    i__4 = min(i__3,*k);
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    zlassq_(&i__4, &ab[max(i__2, 1)+ j * ab_dim1], &c__1, &
			    scale, &sum);
		}
		l = *k + 1;
	    } else {
		i__1 = *n - 1;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = *n - j;
		    i__4 = min(i__3,*k);
		    zlassq_(&i__4, &ab[j * ab_dim1 + 2], &c__1, &scale, &sum);
		}
		l = 1;
	    }
	    sum *= 2;
	} else {
	    l = 1;
	}
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__4 = l + j * ab_dim1;
	    if (ab[i__4].r != 0.) {
		i__4 = l + j * ab_dim1;
		absa = (d__1 = ab[i__4].r, abs(d__1));
		if (scale < absa) {
/* Computing 2nd power */
		    d__1 = scale / absa;
		    sum = sum * (d__1 * d__1) + 1.;
		    scale = absa;
		} else {
/* Computing 2nd power */
		    d__1 = absa / scale;
		    sum += d__1 * d__1;
		}
	    }
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANHB */

} /* zlanhb_ */
コード例 #10
0
ファイル: zlangt.c プロジェクト: fmarrabal/libflame
/* ===================================================================== */
doublereal zlangt_(char *norm, integer *n, doublecomplex *dl, doublecomplex * d__, doublecomplex *du)
{
    /* System generated locals */
    integer i__1;
    doublereal ret_val, d__1;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    integer i__;
    doublereal sum, temp, scale;
    extern logical lsame_(char *, char *);
    doublereal anorm;
    extern logical disnan_(doublereal *);
    extern /* Subroutine */
    int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    --du;
    --d__;
    --dl;
    /* Function Body */
    if (*n <= 0)
    {
        anorm = 0.;
    }
    else if (lsame_(norm, "M"))
    {
        /* Find max(abs(A(i,j))). */
        anorm = z_abs(&d__[*n]);
        i__1 = *n - 1;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            d__1 = z_abs(&dl[i__]);
            if (anorm < z_abs(&dl[i__]) || disnan_(&d__1))
            {
                anorm = z_abs(&dl[i__]);
            }
            d__1 = z_abs(&d__[i__]);
            if (anorm < z_abs(&d__[i__]) || disnan_(&d__1))
            {
                anorm = z_abs(&d__[i__]);
            }
            d__1 = z_abs(&du[i__]);
            if (anorm < z_abs(&du[i__]) || disnan_(&d__1))
            {
                anorm = z_abs(&du[i__]);
            }
            /* L10: */
        }
    }
    else if (lsame_(norm, "O") || *(unsigned char *) norm == '1')
    {
        /* Find norm1(A). */
        if (*n == 1)
        {
            anorm = z_abs(&d__[1]);
        }
        else
        {
            anorm = z_abs(&d__[1]) + z_abs(&dl[1]);
            temp = z_abs(&d__[*n]) + z_abs(&du[*n - 1]);
            if (anorm < temp || disnan_(&temp))
            {
                anorm = temp;
            }
            i__1 = *n - 1;
            for (i__ = 2;
                    i__ <= i__1;
                    ++i__)
            {
                temp = z_abs(&d__[i__]) + z_abs(&dl[i__]) + z_abs(&du[i__ - 1] );
                if (anorm < temp || disnan_(&temp))
                {
                    anorm = temp;
                }
                /* L20: */
            }
        }
    }
    else if (lsame_(norm, "I"))
    {
        /* Find normI(A). */
        if (*n == 1)
        {
            anorm = z_abs(&d__[1]);
        }
        else
        {
            anorm = z_abs(&d__[1]) + z_abs(&du[1]);
            temp = z_abs(&d__[*n]) + z_abs(&dl[*n - 1]);
            if (anorm < temp || disnan_(&temp))
            {
                anorm = temp;
            }
            i__1 = *n - 1;
            for (i__ = 2;
                    i__ <= i__1;
                    ++i__)
            {
                temp = z_abs(&d__[i__]) + z_abs(&du[i__]) + z_abs(&dl[i__ - 1] );
                if (anorm < temp || disnan_(&temp))
                {
                    anorm = temp;
                }
                /* L30: */
            }
        }
    }
    else if (lsame_(norm, "F") || lsame_(norm, "E"))
    {
        /* Find normF(A). */
        scale = 0.;
        sum = 1.;
        zlassq_(n, &d__[1], &c__1, &scale, &sum);
        if (*n > 1)
        {
            i__1 = *n - 1;
            zlassq_(&i__1, &dl[1], &c__1, &scale, &sum);
            i__1 = *n - 1;
            zlassq_(&i__1, &du[1], &c__1, &scale, &sum);
        }
        anorm = scale * sqrt(sum);
    }
    ret_val = anorm;
    return ret_val;
    /* End of ZLANGT */
}
コード例 #11
0
ファイル: zlanhs.c プロジェクト: BishopWolf/ITK
/*<       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK ) >*/
doublereal zlanhs_(char *norm, integer *n, doublecomplex *a, integer *lda,
        doublereal *work, ftnlen norm_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j;
    doublereal sum, scale;
    extern logical lsame_(const char *, const char *, ftnlen, ftnlen);
    doublereal value=0;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
             doublereal *, doublereal *);
    (void)norm_len;

/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     October 31, 1992 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          NORM >*/
/*<       INTEGER            LDA, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   WORK( * ) >*/
/*<       COMPLEX*16         A( LDA, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANHS  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  Hessenberg matrix A. */

/*  Description */
/*  =========== */

/*  ZLANHS returns the value */

/*     ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANHS as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is */
/*          set to zero. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The n by n upper Hessenberg matrix A; the part of A below the */
/*          first sub-diagonal is not referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(N,1). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK), */
/*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/*          referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, J >*/
/*<       DOUBLE PRECISION   SCALE, SUM, VALUE >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           ZLASSQ >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX, MIN, SQRT >*/
/*     .. */
/*     .. Executable Statements .. */

/*<       IF( N.EQ.0 ) THEN >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
/*<          VALUE = ZERO >*/
        value = 0.;
/*<       ELSE IF( LSAME( NORM, 'M' ) ) THEN >*/
    } else if (lsame_(norm, "M", (ftnlen)1, (ftnlen)1)) {

/*        Find max(abs(A(i,j))). */

/*<          VALUE = ZERO >*/
        value = 0.;
/*<          DO 20 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 10 I = 1, MIN( N, J+1 ) >*/
/* Computing MIN */
            i__3 = *n, i__4 = j + 1;
            i__2 = min(i__3,i__4);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                VALUE = MAX( VALUE, ABS( A( I, J ) ) ) >*/
/* Computing MAX */
                d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
                value = max(d__1,d__2);
/*<    10       CONTINUE >*/
/* L10: */
            }
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN >*/
    } else if (lsame_(norm, "O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
            norm == '1') {

/*        Find norm1(A). */

/*<          VALUE = ZERO >*/
        value = 0.;
/*<          DO 40 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             SUM = ZERO >*/
            sum = 0.;
/*<             DO 30 I = 1, MIN( N, J+1 ) >*/
/* Computing MIN */
            i__3 = *n, i__4 = j + 1;
            i__2 = min(i__3,i__4);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                SUM = SUM + ABS( A( I, J ) ) >*/
                sum += z_abs(&a[i__ + j * a_dim1]);
/*<    30       CONTINUE >*/
/* L30: */
            }
/*<             VALUE = MAX( VALUE, SUM ) >*/
            value = max(value,sum);
/*<    40    CONTINUE >*/
/* L40: */
        }
/*<       ELSE IF( LSAME( NORM, 'I' ) ) THEN >*/
    } else if (lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {

/*        Find normI(A). */

/*<          DO 50 I = 1, N >*/
        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             WORK( I ) = ZERO >*/
            work[i__] = 0.;
/*<    50    CONTINUE >*/
/* L50: */
        }
/*<          DO 70 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 60 I = 1, MIN( N, J+1 ) >*/
/* Computing MIN */
            i__3 = *n, i__4 = j + 1;
            i__2 = min(i__3,i__4);
            for (i__ = 1; i__ <= i__2; ++i__) {
/*<                WORK( I ) = WORK( I ) + ABS( A( I, J ) ) >*/
                work[i__] += z_abs(&a[i__ + j * a_dim1]);
/*<    60       CONTINUE >*/
/* L60: */
            }
/*<    70    CONTINUE >*/
/* L70: */
        }
/*<          VALUE = ZERO >*/
        value = 0.;
/*<          DO 80 I = 1, N >*/
        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
/*<             VALUE = MAX( VALUE, WORK( I ) ) >*/
/* Computing MAX */
            d__1 = value, d__2 = work[i__];
            value = max(d__1,d__2);
/*<    80    CONTINUE >*/
/* L80: */
        }
/*<       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN >*/
    } else if (lsame_(norm, "F", (ftnlen)1, (ftnlen)1) || lsame_(norm, "E", (
            ftnlen)1, (ftnlen)1)) {

/*        Find normF(A). */

/*<          SCALE = ZERO >*/
        scale = 0.;
/*<          SUM = ONE >*/
        sum = 1.;
/*<          DO 90 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             CALL ZLASSQ( MIN( N, J+1 ), A( 1, J ), 1, SCALE, SUM ) >*/
/* Computing MIN */
            i__3 = *n, i__4 = j + 1;
            i__2 = min(i__3,i__4);
            zlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/*<    90    CONTINUE >*/
/* L90: */
        }
/*<          VALUE = SCALE*SQRT( SUM ) >*/
        value = scale * sqrt(sum);
/*<       END IF >*/
    }

/*<       ZLANHS = VALUE >*/
    ret_val = value;
/*<       RETURN >*/
    return ret_val;

/*     End of ZLANHS */

/*<       END >*/
} /* zlanhs_ */
コード例 #12
0
ファイル: zlanht.c プロジェクト: GuillaumeFuchs/Ensimag
double zlanht_(char *norm, int *n, double *d__, doublecomplex *e)
{
    /* System generated locals */
    int i__1;
    double ret_val, d__1, d__2, d__3;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(double);

    /* Local variables */
    int i__;
    double sum, scale;
    extern int lsame_(char *, char *);
    double anorm;
    extern  int dlassq_(int *, double *, int *, 
	    double *, double *), zlassq_(int *, doublecomplex *, 
	    int *, double *, double *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANHT  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  complex Hermitian tridiagonal matrix A. */

/*  Description */
/*  =========== */

/*  ZLANHT returns the value */

/*     ZLANHT = ( MAX(ABS(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  MAX(ABS(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANHT as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is */
/*          set to zero. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The diagonal elements of A. */

/*  E       (input) COMPLEX*16 array, dimension (N-1) */
/*          The (n-1) sub-diagonal or super-diagonal elements of A. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    if (*n <= 0) {
	anorm = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find MAX(ABS(A(i,j))). */

	anorm = (d__1 = d__[*n], ABS(d__1));
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__2 = anorm, d__3 = (d__1 = d__[i__], ABS(d__1));
	    anorm = MAX(d__2,d__3);
/* Computing MAX */
	    d__1 = anorm, d__2 = z_abs(&e[i__]);
	    anorm = MAX(d__1,d__2);
/* L10: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1' || lsame_(norm, "I")) {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = ABS(d__[1]);
	} else {
/* Computing MAX */
	    d__2 = ABS(d__[1]) + z_abs(&e[1]), d__3 = z_abs(&e[*n - 1]) + (
		    d__1 = d__[*n], ABS(d__1));
	    anorm = MAX(d__2,d__3);
	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__2 = anorm, d__3 = (d__1 = d__[i__], ABS(d__1)) + z_abs(&e[
			i__]) + z_abs(&e[i__ - 1]);
		anorm = MAX(d__2,d__3);
/* L20: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*n > 1) {
	    i__1 = *n - 1;
	    zlassq_(&i__1, &e[1], &c__1, &scale, &sum);
	    sum *= 2;
	}
	dlassq_(n, &d__[1], &c__1, &scale, &sum);
	anorm = scale * sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of ZLANHT */

} /* zlanht_ */
コード例 #13
0
ファイル: zlanhb.c プロジェクト: deepakantony/vispack
doublereal zlanhb_(char *norm, char *uplo, integer *n, integer *k, 
	doublecomplex *ab, integer *ldab, doublereal *work)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZLANHB  returns the value of the one norm,  or the Frobenius norm, or 
  
    the  infinity norm,  or the element of  largest absolute value  of an 
  
    n by n hermitian band matrix A,  with k super-diagonals.   

    Description   
    ===========   

    ZLANHB returns the value   

       ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum), 
  
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and 
  
    normF  denotes the  Frobenius norm of a matrix (square root of sum of 
  
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANHB as described   
            above.   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            band matrix A is supplied.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is   
            set to zero.   

    K       (input) INTEGER   
            The number of super-diagonals or sub-diagonals of the   
            band matrix A.  K >= 0.   

    AB      (input) COMPLEX*16 array, dimension (LDAB,N)   
            The upper or lower triangle of the hermitian band matrix A,   
            stored in the first K+1 rows of AB.  The j-th column of A is 
  
            stored in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).   
            Note that the imaginary parts of the diagonal elements need   
            not be set and are assumed to be zero.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= K+1.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,   
            WORK is not referenced.   

   ===================================================================== 
  


    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2, d__3;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static doublereal absa;
    static integer i, j, l;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;



#define WORK(I) work[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]

    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
/* Computing MAX */
		i__2 = *k + 2 - j;
		i__3 = *k;
		for (i = max(*k+2-j,1); i <= *k; ++i) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&AB(i,j));
		    value = max(d__1,d__2);
/* L10: */
		}
/* Computing MAX */
		i__3 = *k + 1 + j * ab_dim1;
		d__2 = value, d__3 = (d__1 = AB(*k+1,j).r, abs(d__1));
		value = max(d__2,d__3);
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
/* Computing MAX */
		i__3 = j * ab_dim1 + 1;
		d__2 = value, d__3 = (d__1 = AB(1,j).r, abs(d__1));
		value = max(d__2,d__3);
/* Computing MIN */
		i__2 = *n + 1 - j, i__4 = *k + 1;
		i__3 = min(i__2,i__4);
		for (i = 2; i <= min(*n+1-j,*k+1); ++i) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&AB(i,j));
		    value = max(d__1,d__2);
/* L30: */
		}
/* L40: */
	    }
	}
    } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(
	    unsigned char *)norm == '1') {

/*        Find normI(A) ( = norm1(A), since A is hermitian). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		sum = 0.;
		l = *k + 1 - j;
/* Computing MAX */
		i__3 = 1, i__2 = j - *k;
		i__4 = j - 1;
		for (i = max(1,j-*k); i <= j-1; ++i) {
		    absa = z_abs(&AB(l+i,j));
		    sum += absa;
		    WORK(i) += absa;
/* L50: */
		}
		i__4 = *k + 1 + j * ab_dim1;
		WORK(j) = sum + (d__1 = AB(*k+1,j).r, abs(d__1));
/* L60: */
	    }
	    i__1 = *n;
	    for (i = 1; i <= *n; ++i) {
/* Computing MAX */
		d__1 = value, d__2 = WORK(i);
		value = max(d__1,d__2);
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (i = 1; i <= *n; ++i) {
		WORK(i) = 0.;
/* L80: */
	    }
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__4 = j * ab_dim1 + 1;
		sum = WORK(j) + (d__1 = AB(1,j).r, abs(d__1));
		l = 1 - j;
/* Computing MIN */
		i__3 = *n, i__2 = j + *k;
		i__4 = min(i__3,i__2);
		for (i = j + 1; i <= min(*n,j+*k); ++i) {
		    absa = z_abs(&AB(l+i,j));
		    sum += absa;
		    WORK(i) += absa;
/* L90: */
		}
		value = max(value,sum);
/* L100: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*k > 0) {
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 2; j <= *n; ++j) {
/* Computing MIN */
		    i__3 = j - 1;
		    i__4 = min(i__3,*k);
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    zlassq_(&i__4, &AB(max(*k+2-j,1),j), &c__1, &
			    scale, &sum);
/* L110: */
		}
		l = *k + 1;
	    } else {
		i__1 = *n - 1;
		for (j = 1; j <= *n-1; ++j) {
/* Computing MIN */
		    i__3 = *n - j;
		    i__4 = min(i__3,*k);
		    zlassq_(&i__4, &AB(2,j), &c__1, &scale, &sum);
/* L120: */
		}
		l = 1;
	    }
	    sum *= 2;
	} else {
	    l = 1;
	}
	i__1 = *n;
	for (j = 1; j <= *n; ++j) {
	    i__4 = l + j * ab_dim1;
	    if (AB(l,j).r != 0.) {
		i__4 = l + j * ab_dim1;
		absa = (d__1 = AB(l,j).r, abs(d__1));
		if (scale < absa) {
/* Computing 2nd power */
		    d__1 = scale / absa;
		    sum = sum * (d__1 * d__1) + 1.;
		    scale = absa;
		} else {
/* Computing 2nd power */
		    d__1 = absa / scale;
		    sum += d__1 * d__1;
		}
	    }
/* L130: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANHB */

} /* zlanhb_ */
コード例 #14
0
ファイル: zlanhp.c プロジェクト: deepakantony/vispack
doublereal zlanhp_(char *norm, char *uplo, integer *n, doublecomplex *ap, 
	doublereal *work)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZLANHP  returns the value of the one norm,  or the Frobenius norm, or 
  
    the  infinity norm,  or the  element of  largest absolute value  of a 
  
    complex hermitian matrix A,  supplied in packed form.   

    Description   
    ===========   

    ZLANHP returns the value   

       ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum), 
  
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and 
  
    normF  denotes the  Frobenius norm of a matrix (square root of sum of 
  
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANHP as described   
            above.   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            hermitian matrix A is supplied.   
            = 'U':  Upper triangular part of A is supplied   
            = 'L':  Lower triangular part of A is supplied   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANHP is   
            set to zero.   

    AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)   
            The upper or lower triangle of the hermitian matrix A, packed 
  
            columnwise in a linear array.  The j-th column of A is stored 
  
            in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            Note that the  imaginary parts of the diagonal elements need 
  
            not be set and are assumed to be zero.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,   
            WORK is not referenced.   

   ===================================================================== 
  


    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1, i__2;
    doublereal ret_val, d__1, d__2, d__3;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static doublereal absa;
    static integer i, j, k;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;



#define WORK(I) work[(I)-1]
#define AP(I) ap[(I)-1]


    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    k = 0;
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__2 = k + j - 1;
		for (i = k + 1; i <= k+j-1; ++i) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&AP(i));
		    value = max(d__1,d__2);
/* L10: */
		}
		k += j;
/* Computing MAX */
		i__2 = k;
		d__2 = value, d__3 = (d__1 = AP(k).r, abs(d__1));
		value = max(d__2,d__3);
/* L20: */
	    }
	} else {
	    k = 1;
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
/* Computing MAX */
		i__2 = k;
		d__2 = value, d__3 = (d__1 = AP(k).r, abs(d__1));
		value = max(d__2,d__3);
		i__2 = k + *n - j;
		for (i = k + 1; i <= k+*n-j; ++i) {
/* Computing MAX */
		    d__1 = value, d__2 = z_abs(&AP(i));
		    value = max(d__1,d__2);
/* L30: */
		}
		k = k + *n - j + 1;
/* L40: */
	    }
	}
    } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(
	    unsigned char *)norm == '1') {

/*        Find normI(A) ( = norm1(A), since A is hermitian). */

	value = 0.;
	k = 1;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		sum = 0.;
		i__2 = j - 1;
		for (i = 1; i <= j-1; ++i) {
		    absa = z_abs(&AP(k));
		    sum += absa;
		    WORK(i) += absa;
		    ++k;
/* L50: */
		}
		i__2 = k;
		WORK(j) = sum + (d__1 = AP(k).r, abs(d__1));
		++k;
/* L60: */
	    }
	    i__1 = *n;
	    for (i = 1; i <= *n; ++i) {
/* Computing MAX */
		d__1 = value, d__2 = WORK(i);
		value = max(d__1,d__2);
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (i = 1; i <= *n; ++i) {
		WORK(i) = 0.;
/* L80: */
	    }
	    i__1 = *n;
	    for (j = 1; j <= *n; ++j) {
		i__2 = k;
		sum = WORK(j) + (d__1 = AP(k).r, abs(d__1));
		++k;
		i__2 = *n;
		for (i = j + 1; i <= *n; ++i) {
		    absa = z_abs(&AP(k));
		    sum += absa;
		    WORK(i) += absa;
		    ++k;
/* L90: */
		}
		value = max(value,sum);
/* L100: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	k = 2;
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 2; j <= *n; ++j) {
		i__2 = j - 1;
		zlassq_(&i__2, &AP(k), &c__1, &scale, &sum);
		k += j;
/* L110: */
	    }
	} else {
	    i__1 = *n - 1;
	    for (j = 1; j <= *n-1; ++j) {
		i__2 = *n - j;
		zlassq_(&i__2, &AP(k), &c__1, &scale, &sum);
		k = k + *n - j + 1;
/* L120: */
	    }
	}
	sum *= 2;
	k = 1;
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    i__2 = k;
	    if (AP(k).r != 0.) {
		i__2 = k;
		absa = (d__1 = AP(k).r, abs(d__1));
		if (scale < absa) {
/* Computing 2nd power */
		    d__1 = scale / absa;
		    sum = sum * (d__1 * d__1) + 1.;
		    scale = absa;
		} else {
/* Computing 2nd power */
		    d__1 = absa / scale;
		    sum += d__1 * d__1;
		}
	    }
	    if (lsame_(uplo, "U")) {
		k = k + i + 1;
	    } else {
		k = k + *n - i + 1;
	    }
/* L130: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANHP */

} /* zlanhp_ */
コード例 #15
0
ファイル: zlanht.c プロジェクト: MichaelH13/sdkpub
doublereal zlanht_(char *norm, integer *n, doublereal *d__, doublecomplex *e)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1992   


    Purpose   
    =======   

    ZLANHT  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the  element of  largest absolute value  of a   
    complex Hermitian tridiagonal matrix A.   

    Description   
    ===========   

    ZLANHT returns the value   

       ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANHT as described   
            above.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is   
            set to zero.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The diagonal elements of A.   

    E       (input) COMPLEX*16 array, dimension (N-1)   
            The (n-1) sub-diagonal or super-diagonal elements of A.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1;
    doublereal ret_val, d__1, d__2, d__3;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static integer i__;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, 
	    doublereal *, doublereal *), zlassq_(integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *);
    static doublereal sum;


    --e;
    --d__;

    /* Function Body */
    if (*n <= 0) {
	anorm = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	anorm = (d__1 = d__[*n], abs(d__1));
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
	    anorm = max(d__2,d__3);
/* Computing MAX */
	    d__1 = anorm, d__2 = z_abs(&e[i__]);
	    anorm = max(d__1,d__2);
/* L10: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1' || lsame_(norm, "I")) {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = abs(d__[1]);
	} else {
/* Computing MAX */
	    d__2 = abs(d__[1]) + z_abs(&e[1]), d__3 = z_abs(&e[*n - 1]) + (
		    d__1 = d__[*n], abs(d__1));
	    anorm = max(d__2,d__3);
	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)) + z_abs(&e[
			i__]) + z_abs(&e[i__ - 1]);
		anorm = max(d__2,d__3);
/* L20: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*n > 1) {
	    i__1 = *n - 1;
	    zlassq_(&i__1, &e[1], &c__1, &scale, &sum);
	    sum *= 2;
	}
	dlassq_(n, &d__[1], &c__1, &scale, &sum);
	anorm = scale * sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of ZLANHT */

} /* zlanht_ */
コード例 #16
0
ファイル: zlantb.c プロジェクト: GuillaumeFuchs/Ensimag
double zlantb_(char *norm, char *uplo, char *diag, int *n, int *k, 
	 doublecomplex *ab, int *ldab, double *work)
{
    /* System generated locals */
    int ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
    double ret_val, d__1, d__2;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(double);

    /* Local variables */
    int i__, j, l;
    double sum, scale;
    int udiag;
    extern int lsame_(char *, char *);
    double value;
    extern  int zlassq_(int *, doublecomplex *, int *, 
	     double *, double *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANTB  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the element of  largest absolute value  of an */
/*  n by n triangular band matrix A,  with ( k + 1 ) diagonals. */

/*  Description */
/*  =========== */

/*  ZLANTB returns the value */

/*     ZLANTB = ( MAX(ABS(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  MAX(ABS(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANTB as described */
/*          above. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANTB is */
/*          set to zero. */

/*  K       (input) INTEGER */
/*          The number of super-diagonals of the matrix A if UPLO = 'U', */
/*          or the number of sub-diagonals of the matrix A if UPLO = 'L'. */
/*          K >= 0. */

/*  AB      (input) COMPLEX*16 array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first k+1 rows of AB.  The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for MAX(1,j-k)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=MIN(n,j+k). */
/*          Note that when DIAG = 'U', the elements of the array AB */
/*          corresponding to the diagonal elements of the matrix A are */
/*          not referenced, but are assumed to be one. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= K+1. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/*          referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find MAX(ABS(A(i,j))). */

	if (lsame_(diag, "U")) {
	    value = 1.;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    i__3 = *k;
		    for (i__ = MAX(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
			value = MAX(d__1,d__2);
/* L10: */
		    }
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__2 = *n + 1 - j, i__4 = *k + 1;
		    i__3 = MIN(i__2,i__4);
		    for (i__ = 2; i__ <= i__3; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
			value = MAX(d__1,d__2);
/* L30: */
		    }
/* L40: */
		}
	    }
	} else {
	    value = 0.;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__3 = *k + 2 - j;
		    i__2 = *k + 1;
		    for (i__ = MAX(i__3,1); i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
			value = MAX(d__1,d__2);
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = MIN(i__3,i__4);
		    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab[i__ + j * ab_dim1]);
			value = MAX(d__1,d__2);
/* L70: */
		    }
/* L80: */
		}
	    }
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	udiag = lsame_(diag, "U");
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.;
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    i__3 = *k;
		    for (i__ = MAX(i__2,1); i__ <= i__3; ++i__) {
			sum += z_abs(&ab[i__ + j * ab_dim1]);
/* L90: */
		    }
		} else {
		    sum = 0.;
/* Computing MAX */
		    i__3 = *k + 2 - j;
		    i__2 = *k + 1;
		    for (i__ = MAX(i__3,1); i__ <= i__2; ++i__) {
			sum += z_abs(&ab[i__ + j * ab_dim1]);
/* L100: */
		    }
		}
		value = MAX(value,sum);
/* L110: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.;
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = MIN(i__3,i__4);
		    for (i__ = 2; i__ <= i__2; ++i__) {
			sum += z_abs(&ab[i__ + j * ab_dim1]);
/* L120: */
		    }
		} else {
		    sum = 0.;
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = MIN(i__3,i__4);
		    for (i__ = 1; i__ <= i__2; ++i__) {
			sum += z_abs(&ab[i__ + j * ab_dim1]);
/* L130: */
		    }
		}
		value = MAX(value,sum);
/* L140: */
	    }
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.;
/* L150: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = *k + 1 - j;
/* Computing MAX */
		    i__2 = 1, i__3 = j - *k;
		    i__4 = j - 1;
		    for (i__ = MAX(i__2,i__3); i__ <= i__4; ++i__) {
			work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
/* L160: */
		    }
/* L170: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.;
/* L180: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = *k + 1 - j;
/* Computing MAX */
		    i__4 = 1, i__2 = j - *k;
		    i__3 = j;
		    for (i__ = MAX(i__4,i__2); i__ <= i__3; ++i__) {
			work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
/* L190: */
		    }
/* L200: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.;
/* L210: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = 1 - j;
/* Computing MIN */
		    i__4 = *n, i__2 = j + *k;
		    i__3 = MIN(i__4,i__2);
		    for (i__ = j + 1; i__ <= i__3; ++i__) {
			work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
/* L220: */
		    }
/* L230: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.;
/* L240: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = 1 - j;
/* Computing MIN */
		    i__4 = *n, i__2 = j + *k;
		    i__3 = MIN(i__4,i__2);
		    for (i__ = j; i__ <= i__3; ++i__) {
			work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
/* L250: */
		    }
/* L260: */
		}
	    }
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = MAX(d__1,d__2);
/* L270: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		scale = 1.;
		sum = (double) (*n);
		if (*k > 0) {
		    i__1 = *n;
		    for (j = 2; j <= i__1; ++j) {
/* Computing MIN */
			i__4 = j - 1;
			i__3 = MIN(i__4,*k);
/* Computing MAX */
			i__2 = *k + 2 - j;
			zlassq_(&i__3, &ab[MAX(i__2, 1)+ j * ab_dim1], &c__1, 
				&scale, &sum);
/* L280: */
		    }
		}
	    } else {
		scale = 0.;
		sum = 1.;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__4 = j, i__2 = *k + 1;
		    i__3 = MIN(i__4,i__2);
/* Computing MAX */
		    i__5 = *k + 2 - j;
		    zlassq_(&i__3, &ab[MAX(i__5, 1)+ j * ab_dim1], &c__1, &
			    scale, &sum);
/* L290: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		scale = 1.;
		sum = (double) (*n);
		if (*k > 0) {
		    i__1 = *n - 1;
		    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
			i__4 = *n - j;
			i__3 = MIN(i__4,*k);
			zlassq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, &scale, &
				sum);
/* L300: */
		    }
		}
	    } else {
		scale = 0.;
		sum = 1.;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__4 = *n - j + 1, i__2 = *k + 1;
		    i__3 = MIN(i__4,i__2);
		    zlassq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, &scale, &sum);
/* L310: */
		}
	    }
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANTB */

} /* zlantb_ */
コード例 #17
0
ファイル: zlatdf.c プロジェクト: dacap/loseface
/* Subroutine */ int zlatdf_(integer *ijob, integer *n, doublecomplex *z__, 
	integer *ldz, doublecomplex *rhs, doublereal *rdsum, doublereal *
	rdscal, integer *ipiv, integer *jpiv)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
    doublecomplex z__1, z__2, z__3;

    /* Builtin functions */
    void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
    double z_abs(doublecomplex *);
    void z_sqrt(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, j, k;
    doublecomplex bm, bp, xm[2], xp[2];
    integer info;
    doublecomplex temp, work[8];
    doublereal scale;
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *, 
	    doublecomplex *, integer *);
    doublecomplex pmone;
    extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    doublereal rtemp, sminu, rwork[2];
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    doublereal splus;
    extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), zgesc2_(
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *, doublereal *), zgecon_(char *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *);
    extern doublereal dzasum_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *), zlaswp_(integer *, doublecomplex *, 
	    integer *, integer *, integer *, integer *, integer *);


/*  -- LAPACK auxiliary routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLATDF computes the contribution to the reciprocal Dif-estimate */
/*  by solving for x in Z * x = b, where b is chosen such that the norm */
/*  of x is as large as possible. It is assumed that LU decomposition */
/*  of Z has been computed by ZGETC2. On entry RHS = f holds the */
/*  contribution from earlier solved sub-systems, and on return RHS = x. */

/*  The factorization of Z returned by ZGETC2 has the form */
/*  Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */
/*  triangular with unit diagonal elements and U is upper triangular. */

/*  Arguments */
/*  ========= */

/*  IJOB    (input) INTEGER */
/*          IJOB = 2: First compute an approximative null-vector e */
/*              of Z using ZGECON, e is normalized and solve for */
/*              Zx = +-e - f with the sign giving the greater value of */
/*              2-norm(x).  About 5 times as expensive as Default. */
/*          IJOB .ne. 2: Local look ahead strategy where */
/*              all entries of the r.h.s. b is choosen as either +1 or */
/*              -1.  Default. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Z. */

/*  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          On entry, the LU part of the factorization of the n-by-n */
/*          matrix Z computed by ZGETC2:  Z = P * L * U * Q */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDA >= max(1, N). */

/*  RHS     (input/output) DOUBLE PRECISION array, dimension (N). */
/*          On entry, RHS contains contributions from other subsystems. */
/*          On exit, RHS contains the solution of the subsystem with */
/*          entries according to the value of IJOB (see above). */

/*  RDSUM   (input/output) DOUBLE PRECISION */
/*          On entry, the sum of squares of computed contributions to */
/*          the Dif-estimate under computation by ZTGSYL, where the */
/*          scaling factor RDSCAL (see below) has been factored out. */
/*          On exit, the corresponding sum of squares updated with the */
/*          contributions from the current sub-system. */
/*          If TRANS = 'T' RDSUM is not touched. */
/*          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL. */

/*  RDSCAL  (input/output) DOUBLE PRECISION */
/*          On entry, scaling factor used to prevent overflow in RDSUM. */
/*          On exit, RDSCAL is updated w.r.t. the current contributions */
/*          in RDSUM. */
/*          If TRANS = 'T', RDSCAL is not touched. */
/*          NOTE: RDSCAL only makes sense when ZTGSY2 is called by */
/*          ZTGSYL. */

/*  IPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= i <= N, row i of the */
/*          matrix has been interchanged with row IPIV(i). */

/*  JPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= j <= N, column j of the */
/*          matrix has been interchanged with column JPIV(j). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  This routine is a further developed implementation of algorithm */
/*  BSOLVE in [1] using complete pivoting in the LU factorization. */

/*   [1]   Bo Kagstrom and Lars Westin, */
/*         Generalized Schur Methods with Condition Estimators for */
/*         Solving the Generalized Sylvester Equation, IEEE Transactions */
/*         on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */

/*   [2]   Peter Poromaa, */
/*         On Efficient and Robust Estimators for the Separation */
/*         between two Regular Matrix Pairs with Applications in */
/*         Condition Estimation. Report UMINF-95.05, Department of */
/*         Computing Science, Umea University, S-901 87 Umea, Sweden, */
/*         1995. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --rhs;
    --ipiv;
    --jpiv;

    /* Function Body */
    if (*ijob != 2) {

/*        Apply permutations IPIV to RHS */

	i__1 = *n - 1;
	zlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);

/*        Solve for L-part choosing RHS either to +1 or -1. */

	z__1.r = -1., z__1.i = -0.;
	pmone.r = z__1.r, pmone.i = z__1.i;
	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = j;
	    z__1.r = rhs[i__2].r + 1., z__1.i = rhs[i__2].i + 0.;
	    bp.r = z__1.r, bp.i = z__1.i;
	    i__2 = j;
	    z__1.r = rhs[i__2].r - 1., z__1.i = rhs[i__2].i - 0.;
	    bm.r = z__1.r, bm.i = z__1.i;
	    splus = 1.;

/*           Lockahead for L- part RHS(1:N-1) = +-1 */
/*           SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */

	    i__2 = *n - j;
	    zdotc_(&z__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 
		    + j * z_dim1], &c__1);
	    splus += z__1.r;
	    i__2 = *n - j;
	    zdotc_(&z__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], 
		     &c__1);
	    sminu = z__1.r;
	    i__2 = j;
	    splus *= rhs[i__2].r;
	    if (splus > sminu) {
		i__2 = j;
		rhs[i__2].r = bp.r, rhs[i__2].i = bp.i;
	    } else if (sminu > splus) {
		i__2 = j;
		rhs[i__2].r = bm.r, rhs[i__2].i = bm.i;
	    } else {

/*              In this case the updating sums are equal and we can */
/*              choose RHS(J) +1 or -1. The first time this happens we */
/*              choose -1, thereafter +1. This is a simple way to get */
/*              good estimates of matrices like Byers well-known example */
/*              (see [1]). (Not done in BSOLVE.) */

		i__2 = j;
		i__3 = j;
		z__1.r = rhs[i__3].r + pmone.r, z__1.i = rhs[i__3].i + 
			pmone.i;
		rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
		pmone.r = 1., pmone.i = 0.;
	    }

/*           Compute the remaining r.h.s. */

	    i__2 = j;
	    z__1.r = -rhs[i__2].r, z__1.i = -rhs[i__2].i;
	    temp.r = z__1.r, temp.i = z__1.i;
	    i__2 = *n - j;
	    zaxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], 
		     &c__1);
/* L10: */
	}

/*        Solve for U- part, lockahead for RHS(N) = +-1. This is not done */
/*        In BSOLVE and will hopefully give us a better estimate because */
/*        any ill-conditioning of the original matrix is transfered to U */
/*        and not to L. U(N, N) is an approximation to sigma_min(LU). */

	i__1 = *n - 1;
	zcopy_(&i__1, &rhs[1], &c__1, work, &c__1);
	i__1 = *n - 1;
	i__2 = *n;
	z__1.r = rhs[i__2].r + 1., z__1.i = rhs[i__2].i + 0.;
	work[i__1].r = z__1.r, work[i__1].i = z__1.i;
	i__1 = *n;
	i__2 = *n;
	z__1.r = rhs[i__2].r - 1., z__1.i = rhs[i__2].i - 0.;
	rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
	splus = 0.;
	sminu = 0.;
	for (i__ = *n; i__ >= 1; --i__) {
	    z_div(&z__1, &c_b1, &z__[i__ + i__ * z_dim1]);
	    temp.r = z__1.r, temp.i = z__1.i;
	    i__1 = i__ - 1;
	    i__2 = i__ - 1;
	    z__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, z__1.i = 
		    work[i__2].r * temp.i + work[i__2].i * temp.r;
	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
	    i__1 = i__;
	    i__2 = i__;
	    z__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, z__1.i = 
		    rhs[i__2].r * temp.i + rhs[i__2].i * temp.r;
	    rhs[i__1].r = z__1.r, rhs[i__1].i = z__1.i;
	    i__1 = *n;
	    for (k = i__ + 1; k <= i__1; ++k) {
		i__2 = i__ - 1;
		i__3 = i__ - 1;
		i__4 = k - 1;
		i__5 = i__ + k * z_dim1;
		z__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, z__3.i =
			 z__[i__5].r * temp.i + z__[i__5].i * temp.r;
		z__2.r = work[i__4].r * z__3.r - work[i__4].i * z__3.i, 
			z__2.i = work[i__4].r * z__3.i + work[i__4].i * 
			z__3.r;
		z__1.r = work[i__3].r - z__2.r, z__1.i = work[i__3].i - 
			z__2.i;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
		i__2 = i__;
		i__3 = i__;
		i__4 = k;
		i__5 = i__ + k * z_dim1;
		z__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, z__3.i =
			 z__[i__5].r * temp.i + z__[i__5].i * temp.r;
		z__2.r = rhs[i__4].r * z__3.r - rhs[i__4].i * z__3.i, z__2.i =
			 rhs[i__4].r * z__3.i + rhs[i__4].i * z__3.r;
		z__1.r = rhs[i__3].r - z__2.r, z__1.i = rhs[i__3].i - z__2.i;
		rhs[i__2].r = z__1.r, rhs[i__2].i = z__1.i;
/* L20: */
	    }
	    splus += z_abs(&work[i__ - 1]);
	    sminu += z_abs(&rhs[i__]);
/* L30: */
	}
	if (splus > sminu) {
	    zcopy_(n, work, &c__1, &rhs[1], &c__1);
	}

/*        Apply the permutations JPIV to the computed solution (RHS) */

	i__1 = *n - 1;
	zlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);

/*        Compute the sum of squares */

	zlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
	return 0;
    }

/*     ENTRY IJOB = 2 */

/*     Compute approximate nullvector XM of Z */

    zgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info);
    zcopy_(n, &work[*n], &c__1, xm, &c__1);

/*     Compute RHS */

    i__1 = *n - 1;
    zlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
    zdotc_(&z__3, n, xm, &c__1, xm, &c__1);
    z_sqrt(&z__2, &z__3);
    z_div(&z__1, &c_b1, &z__2);
    temp.r = z__1.r, temp.i = z__1.i;
    zscal_(n, &temp, xm, &c__1);
    zcopy_(n, xm, &c__1, xp, &c__1);
    zaxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1);
    z__1.r = -1., z__1.i = -0.;
    zaxpy_(n, &z__1, xm, &c__1, &rhs[1], &c__1);
    zgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale);
    zgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale);
    if (dzasum_(n, xp, &c__1) > dzasum_(n, &rhs[1], &c__1)) {
	zcopy_(n, xp, &c__1, &rhs[1], &c__1);
    }

/*     Compute the sum of squares */

    zlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
    return 0;

/*     End of ZLATDF */

} /* zlatdf_ */
コード例 #18
0
ファイル: ztgsen.c プロジェクト: GuillaumeFuchs/Ensimag
 int ztgsen_(int *ijob, int *wantq, int *wantz, 
	int *select, int *n, doublecomplex *a, int *lda, 
	doublecomplex *b, int *ldb, doublecomplex *alpha, doublecomplex *
	beta, doublecomplex *q, int *ldq, doublecomplex *z__, int *
	ldz, int *m, double *pl, double *pr, double *dif, 
	doublecomplex *work, int *lwork, int *iwork, int *liwork, 
	int *info)
{
    /* System generated locals */
    int a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
	    z_offset, i__1, i__2, i__3;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double sqrt(double), z_abs(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    int i__, k, n1, n2, ks, mn2, ijb, kase, ierr;
    double dsum;
    int swap;
    doublecomplex temp1, temp2;
    int isave[3];
    extern  int zscal_(int *, doublecomplex *, 
	    doublecomplex *, int *);
    int wantd;
    int lwmin;
    int wantp;
    extern  int zlacn2_(int *, doublecomplex *, 
	    doublecomplex *, double *, int *, int *);
    int wantd1, wantd2;
    extern double dlamch_(char *);
    double dscale, rdscal, safmin;
    extern  int xerbla_(char *, int *);
    int liwmin;
    extern  int zlacpy_(char *, int *, int *, 
	    doublecomplex *, int *, doublecomplex *, int *), 
	    ztgexc_(int *, int *, int *, doublecomplex *, int 
	    *, doublecomplex *, int *, doublecomplex *, int *, 
	    doublecomplex *, int *, int *, int *, int *), 
	    zlassq_(int *, doublecomplex *, int *, double *, 
	    double *);
    int lquery;
    extern  int ztgsyl_(char *, int *, int *, int 
	    *, doublecomplex *, int *, doublecomplex *, int *, 
	    doublecomplex *, int *, doublecomplex *, int *, 
	    doublecomplex *, int *, doublecomplex *, int *, 
	    double *, double *, doublecomplex *, int *, int *, 
	     int *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     January 2007 */

/*     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZTGSEN reorders the generalized Schur decomposition of a complex */
/*  matrix pair (A, B) (in terms of an unitary equivalence trans- */
/*  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues */
/*  appears in the leading diagonal blocks of the pair (A,B). The leading */
/*  columns of Q and Z form unitary bases of the corresponding left and */
/*  right eigenspaces (deflating subspaces). (A, B) must be in */
/*  generalized Schur canonical form, that is, A and B are both upper */
/*  triangular. */

/*  ZTGSEN also computes the generalized eigenvalues */

/*           w(j)= ALPHA(j) / BETA(j) */

/*  of the reordered matrix pair (A, B). */

/*  Optionally, the routine computes estimates of reciprocal condition */
/*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
/*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
/*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
/*  the selected cluster and the eigenvalues outside the cluster, resp., */
/*  and norms of "projections" onto left and right eigenspaces w.r.t. */
/*  the selected cluster in the (1,1)-block. */


/*  Arguments */
/*  ========= */

/*  IJOB    (input) int */
/*          Specifies whether condition numbers are required for the */
/*          cluster of eigenvalues (PL and PR) or the deflating subspaces */
/*          (Difu and Difl): */
/*           =0: Only reorder w.r.t. SELECT. No extras. */
/*           =1: Reciprocal of norms of "projections" onto left and right */
/*               eigenspaces w.r.t. the selected cluster (PL and PR). */
/*           =2: Upper bounds on Difu and Difl. F-norm-based estimate */
/*               (DIF(1:2)). */
/*           =3: Estimate of Difu and Difl. 1-norm-based estimate */
/*               (DIF(1:2)). */
/*               About 5 times as expensive as IJOB = 2. */
/*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
/*               version to get it all. */
/*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */

/*  WANTQ   (input) LOGICAL */
/*          .TRUE. : update the left transformation matrix Q; */
/*          .FALSE.: do not update Q. */

/*  WANTZ   (input) LOGICAL */
/*          .TRUE. : update the right transformation matrix Z; */
/*          .FALSE.: do not update Z. */

/*  SELECT  (input) LOGICAL array, dimension (N) */
/*          SELECT specifies the eigenvalues in the selected cluster. To */
/*          select an eigenvalue w(j), SELECT(j) must be set to */
/*          .TRUE.. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B. N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension(LDA,N) */
/*          On entry, the upper triangular matrix A, in generalized */
/*          Schur canonical form. */
/*          On exit, A is overwritten by the reordered matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= MAX(1,N). */

/*  B       (input/output) COMPLEX*16 array, dimension(LDB,N) */
/*          On entry, the upper triangular matrix B, in generalized */
/*          Schur canonical form. */
/*          On exit, B is overwritten by the reordered matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= MAX(1,N). */

/*  ALPHA   (output) COMPLEX*16 array, dimension (N) */
/*  BETA    (output) COMPLEX*16 array, dimension (N) */
/*          The diagonal elements of A and B, respectively, */
/*          when the pair (A,B) has been reduced to generalized Schur */
/*          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized */
/*          eigenvalues. */

/*  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N) */
/*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
/*          On exit, Q has been postmultiplied by the left unitary */
/*          transformation matrix which reorder (A, B); The leading M */
/*          columns of Q form orthonormal bases for the specified pair of */
/*          left eigenspaces (deflating subspaces). */
/*          If WANTQ = .FALSE., Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q. LDQ >= 1. */
/*          If WANTQ = .TRUE., LDQ >= N. */

/*  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N) */
/*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
/*          On exit, Z has been postmultiplied by the left unitary */
/*          transformation matrix which reorder (A, B); The leading M */
/*          columns of Z form orthonormal bases for the specified pair of */
/*          left eigenspaces (deflating subspaces). */
/*          If WANTZ = .FALSE., Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z. LDZ >= 1. */
/*          If WANTZ = .TRUE., LDZ >= N. */

/*  M       (output) INTEGER */
/*          The dimension of the specified pair of left and right */
/*          eigenspaces, (deflating subspaces) 0 <= M <= N. */

/*  PL      (output) DOUBLE PRECISION */
/*  PR      (output) DOUBLE PRECISION */
/*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
/*          reciprocal  of the norm of "projections" onto left and right */
/*          eigenspace with respect to the selected cluster. */
/*          0 < PL, PR <= 1. */
/*          If M = 0 or M = N, PL = PR  = 1. */
/*          If IJOB = 0, 2 or 3 PL, PR are not referenced. */

/*  DIF     (output) DOUBLE PRECISION array, dimension (2). */
/*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
/*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
/*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
/*          estimates of Difu and Difl, computed using reversed */
/*          communication with ZLACN2. */
/*          If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
/*          If IJOB = 0 or 1, DIF is not referenced. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          IF IJOB = 0, WORK is not referenced.  Otherwise, */
/*          on exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >=  1 */
/*          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M) */
/*          If IJOB = 3 or 5, LWORK >=  4*M*(N-M) */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          IF IJOB = 0, IWORK is not referenced.  Otherwise, */
/*          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. LIWORK >= 1. */
/*          If IJOB = 1, 2 or 4, LIWORK >=  N+2; */
/*          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M)); */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*            =0: Successful exit. */
/*            <0: If INFO = -i, the i-th argument had an illegal value. */
/*            =1: Reordering of (A, B) failed because the transformed */
/*                matrix pair (A, B) would be too far from generalized */
/*                Schur form; the problem is very ill-conditioned. */
/*                (A, B) may have been partially reordered. */
/*                If requested, 0 is returned in DIF(*), PL and PR. */


/*  Further Details */
/*  =============== */

/*  ZTGSEN first collects the selected eigenvalues by computing unitary */
/*  U and W that move them to the top left corner of (A, B). In other */
/*  words, the selected eigenvalues are the eigenvalues of (A11, B11) in */

/*                U'*(A, B)*W = (A11 A12) (B11 B12) n1 */
/*                              ( 0  A22),( 0  B22) n2 */
/*                                n1  n2    n1  n2 */

/*  where N = n1+n2 and U' means the conjugate transpose of U. The first */
/*  n1 columns of U and W span the specified pair of left and right */
/*  eigenspaces (deflating subspaces) of (A, B). */

/*  If (A, B) has been obtained from the generalized float Schur */
/*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the */
/*  reordered generalized Schur form of (C, D) is given by */

/*           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', */

/*  and the first n1 columns of Q*U and Z*W span the corresponding */
/*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */

/*  Note that if the selected eigenvalue is sufficiently ill-conditioned, */
/*  then its value may differ significantly from its value before */
/*  reordering. */

/*  The reciprocal condition numbers of the left and right eigenspaces */
/*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
/*  be returned in DIF(1:2), corresponding to Difu and Difl, resp. */

/*  The Difu and Difl are defined as: */

/*       Difu[(A11, B11), (A22, B22)] = sigma-MIN( Zu ) */
/*  and */
/*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */

/*  where sigma-MIN(Zu) is the smallest singular value of the */
/*  (2*n1*n2)-by-(2*n1*n2) matrix */

/*       Zu = [ kron(In2, A11)  -kron(A22', In1) ] */
/*            [ kron(In2, B11)  -kron(B22', In1) ]. */

/*  Here, Inx is the identity matrix of size nx and A22' is the */
/*  transpose of A22. kron(X, Y) is the Kronecker product between */
/*  the matrices X and Y. */

/*  When DIF(2) is small, small changes in (A, B) can cause large changes */
/*  in the deflating subspace. An approximate (asymptotic) bound on the */
/*  maximum angular error in the computed deflating subspaces is */

/*       EPS * norm((A, B)) / DIF(2), */

/*  where EPS is the machine precision. */

/*  The reciprocal norm of the projectors on the left and right */
/*  eigenspaces associated with (A11, B11) may be returned in PL and PR. */
/*  They are computed as follows. First we compute L and R so that */
/*  P*(A, B)*Q is block diagonal, where */

/*       P = ( I -L ) n1           Q = ( I R ) n1 */
/*           ( 0  I ) n2    and        ( 0 I ) n2 */
/*             n1 n2                    n1 n2 */

/*  and (L, R) is the solution to the generalized Sylvester equation */

/*       A11*R - L*A22 = -A12 */
/*       B11*R - L*B22 = -B12 */

/*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
/*  An approximate (asymptotic) bound on the average absolute error of */
/*  the selected eigenvalues is */

/*       EPS * norm((A, B)) / PL. */

/*  There are also global error bounds which valid for perturbations up */
/*  to a certain restriction:  A lower bound (x) on the smallest */
/*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
/*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
/*  (i.e. (A + E, B + F), is */

/*   x = MIN(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*MAX(1/PL,1/PR)). */

/*  An approximate bound on x can be computed from DIF(1:2), PL and PR. */

/*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
/*  (L', R') and unperturbed (L, R) left and right deflating subspaces */
/*  associated with the selected cluster in the (1,1)-blocks can be */
/*  bounded as */

/*   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
/*   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */

/*  See LAPACK User's Guide section 4.11 or the following references */
/*  for more information. */

/*  Note that if the default method for computing the Frobenius-norm- */
/*  based estimate DIF is not wanted (see ZLATDF), then the parameter */
/*  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF */
/*  (IJOB = 2 will be used)). See ZTGSYL for more details. */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  References */
/*  ========== */

/*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */

/*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
/*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
/*      Estimation: Theory, Algorithms and Software, Report */
/*      UMINF - 94.04, Department of Computing Science, Umea University, */
/*      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */
/*      To appear in Numerical Algorithms, 1996. */

/*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
/*      for Solving the Generalized Sylvester Equation and Estimating the */
/*      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
/*      Department of Computing Science, Umea University, S-901 87 Umea, */
/*      Sweden, December 1993, Revised April 1994, Also as LAPACK working */
/*      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
/*      1996. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode and test the input parameters */

    /* Parameter adjustments */
    --select;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --alpha;
    --beta;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --dif;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (*ijob < 0 || *ijob > 5) {
	*info = -1;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < MAX(1,*n)) {
	*info = -7;
    } else if (*ldb < MAX(1,*n)) {
	*info = -9;
    } else if (*ldq < 1 || *wantq && *ldq < *n) {
	*info = -13;
    } else if (*ldz < 1 || *wantz && *ldz < *n) {
	*info = -15;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZTGSEN", &i__1);
	return 0;
    }

    ierr = 0;

    wantp = *ijob == 1 || *ijob >= 4;
    wantd1 = *ijob == 2 || *ijob == 4;
    wantd2 = *ijob == 3 || *ijob == 5;
    wantd = wantd1 || wantd2;

/*     Set M to the dimension of the specified pair of deflating */
/*     subspaces. */

    *m = 0;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	i__2 = k;
	i__3 = k + k * a_dim1;
	alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i;
	i__2 = k;
	i__3 = k + k * b_dim1;
	beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i;
	if (k < *n) {
	    if (select[k]) {
		++(*m);
	    }
	} else {
	    if (select[*n]) {
		++(*m);
	    }
	}
/* L10: */
    }

    if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
/* Computing MAX */
	i__1 = 1, i__2 = (*m << 1) * (*n - *m);
	lwmin = MAX(i__1,i__2);
/* Computing MAX */
	i__1 = 1, i__2 = *n + 2;
	liwmin = MAX(i__1,i__2);
    } else if (*ijob == 3 || *ijob == 5) {
/* Computing MAX */
	i__1 = 1, i__2 = (*m << 2) * (*n - *m);
	lwmin = MAX(i__1,i__2);
/* Computing MAX */
	i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = MAX(i__1,i__2), i__2 = 
		*n + 2;
	liwmin = MAX(i__1,i__2);
    } else {
	lwmin = 1;
	liwmin = 1;
    }

    work[1].r = (double) lwmin, work[1].i = 0.;
    iwork[1] = liwmin;

    if (*lwork < lwmin && ! lquery) {
	*info = -21;
    } else if (*liwork < liwmin && ! lquery) {
	*info = -23;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZTGSEN", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible. */

    if (*m == *n || *m == 0) {
	if (wantp) {
	    *pl = 1.;
	    *pr = 1.;
	}
	if (wantd) {
	    dscale = 0.;
	    dsum = 1.;
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		zlassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
		zlassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
/* L20: */
	    }
	    dif[1] = dscale * sqrt(dsum);
	    dif[2] = dif[1];
	}
	goto L70;
    }

/*     Get machine constant */

    safmin = dlamch_("S");

/*     Collect the selected blocks at the top-left corner of (A, B). */

    ks = 0;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	swap = select[k];
	if (swap) {
	    ++ks;

/*           Swap the K-th block to position KS. Compute unitary Q */
/*           and Z that will swap adjacent diagonal blocks in (A, B). */

	    if (k != ks) {
		ztgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, 
			 &q[q_offset], ldq, &z__[z_offset], ldz, &k, &ks, &
			ierr);
	    }

	    if (ierr > 0) {

/*              Swap is rejected: exit. */

		*info = 1;
		if (wantp) {
		    *pl = 0.;
		    *pr = 0.;
		}
		if (wantd) {
		    dif[1] = 0.;
		    dif[2] = 0.;
		}
		goto L70;
	    }
	}
/* L30: */
    }
    if (wantp) {

/*        Solve generalized Sylvester equation for R and L: */
/*                   A11 * R - L * A22 = A12 */
/*                   B11 * R - L * B22 = B12 */

	n1 = *m;
	n2 = *n - *m;
	i__ = n1 + 1;
	zlacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
	zlacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 + 
		1], &n1);
	ijb = 0;
	i__1 = *lwork - (n1 << 1) * n2;
	ztgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
, lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ * 
		b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
		work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);

/*        Estimate the reciprocal of norms of "projections" onto */
/*        left and right eigenspaces */

	rdscal = 0.;
	dsum = 1.;
	i__1 = n1 * n2;
	zlassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
	*pl = rdscal * sqrt(dsum);
	if (*pl == 0.) {
	    *pl = 1.;
	} else {
	    *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
	}
	rdscal = 0.;
	dsum = 1.;
	i__1 = n1 * n2;
	zlassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
	*pr = rdscal * sqrt(dsum);
	if (*pr == 0.) {
	    *pr = 1.;
	} else {
	    *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
	}
    }
    if (wantd) {

/*        Compute estimates Difu and Difl. */

	if (wantd1) {
	    n1 = *m;
	    n2 = *n - *m;
	    i__ = n1 + 1;
	    ijb = 3;

/*           Frobenius norm-based Difu estimate. */

	    i__1 = *lwork - (n1 << 1) * n2;
	    ztgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * 
		    a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + 
		    i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
		    dif[1], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &
		    ierr);

/*           Frobenius norm-based Difl estimate. */

	    i__1 = *lwork - (n1 << 1) * n2;
	    ztgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
		    a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1], 
		    ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale, 
		    &dif[2], &work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &
		    ierr);
	} else {

/*           Compute 1-norm-based estimates of Difu and Difl using */
/*           reversed communication with ZLACN2. In each step a */
/*           generalized Sylvester equation or a transposed variant */
/*           is solved. */

	    kase = 0;
	    n1 = *m;
	    n2 = *n - *m;
	    i__ = n1 + 1;
	    ijb = 0;
	    mn2 = (n1 << 1) * n2;

/*           1-norm-based estimate of Difu. */

L40:
	    zlacn2_(&mn2, &work[mn2 + 1], &work[1], &dif[1], &kase, isave);
	    if (kase != 0) {
		if (kase == 1) {

/*                 Solve generalized Sylvester equation */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ztgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 
			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 
			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
			    1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1) + 
			    1], &i__1, &iwork[1], &ierr);
		} else {

/*                 Solve the transposed variant. */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ztgsyl_("C", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + 
			    i__ * a_dim1], lda, &work[1], &n1, &b[b_offset], 
			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
			    1], &n1, &dscale, &dif[1], &work[(n1 * n2 << 1) + 
			    1], &i__1, &iwork[1], &ierr);
		}
		goto L40;
	    }
	    dif[1] = dscale / dif[1];

/*           1-norm-based estimate of Difl. */

L50:
	    zlacn2_(&mn2, &work[mn2 + 1], &work[1], &dif[2], &kase, isave);
	    if (kase != 0) {
		if (kase == 1) {

/*                 Solve generalized Sylvester equation */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ztgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 
			    &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ * 
			    b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 + 
			    1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 
			    1], &i__1, &iwork[1], &ierr);
		} else {

/*                 Solve the transposed variant. */

		    i__1 = *lwork - (n1 << 1) * n2;
		    ztgsyl_("C", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, 
			    &a[a_offset], lda, &work[1], &n2, &b[b_offset], 
			    ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 + 
			    1], &n2, &dscale, &dif[2], &work[(n1 * n2 << 1) + 
			    1], &i__1, &iwork[1], &ierr);
		}
		goto L50;
	    }
	    dif[2] = dscale / dif[2];
	}
    }

/*     If B(K,K) is complex, make it float and positive (normalization */
/*     of the generalized Schur form) and Store the generalized */
/*     eigenvalues of reordered pair (A, B) */

    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	dscale = z_abs(&b[k + k * b_dim1]);
	if (dscale > safmin) {
	    i__2 = k + k * b_dim1;
	    z__2.r = b[i__2].r / dscale, z__2.i = b[i__2].i / dscale;
	    d_cnjg(&z__1, &z__2);
	    temp1.r = z__1.r, temp1.i = z__1.i;
	    i__2 = k + k * b_dim1;
	    z__1.r = b[i__2].r / dscale, z__1.i = b[i__2].i / dscale;
	    temp2.r = z__1.r, temp2.i = z__1.i;
	    i__2 = k + k * b_dim1;
	    b[i__2].r = dscale, b[i__2].i = 0.;
	    i__2 = *n - k;
	    zscal_(&i__2, &temp1, &b[k + (k + 1) * b_dim1], ldb);
	    i__2 = *n - k + 1;
	    zscal_(&i__2, &temp1, &a[k + k * a_dim1], lda);
	    if (*wantq) {
		zscal_(n, &temp2, &q[k * q_dim1 + 1], &c__1);
	    }
	} else {
	    i__2 = k + k * b_dim1;
	    b[i__2].r = 0., b[i__2].i = 0.;
	}

	i__2 = k;
	i__3 = k + k * a_dim1;
	alpha[i__2].r = a[i__3].r, alpha[i__2].i = a[i__3].i;
	i__2 = k;
	i__3 = k + k * b_dim1;
	beta[i__2].r = b[i__3].r, beta[i__2].i = b[i__3].i;

/* L60: */
    }

L70:

    work[1].r = (double) lwmin, work[1].i = 0.;
    iwork[1] = liwmin;

    return 0;

/*     End of ZTGSEN */

} /* ztgsen_ */
コード例 #19
0
ファイル: zlanhe.c プロジェクト: TakuroNegishi/PDRTAM
doublereal zlanhe_(char *norm, char *uplo, integer *n, doublecomplex *a,
                   integer *lda, doublereal *work)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal ret_val, d__1, d__2, d__3;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j;
    doublereal sum, absa, scale;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
                                        doublereal *, doublereal *);


    /*  -- LAPACK auxiliary routine (version 3.2) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZLANHE  returns the value of the one norm,  or the Frobenius norm, or */
    /*  the  infinity norm,  or the  element of  largest absolute value  of a */
    /*  complex hermitian matrix A. */

    /*  Description */
    /*  =========== */

    /*  ZLANHE returns the value */

    /*     ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
    /*              ( */
    /*              ( norm1(A),         NORM = '1', 'O' or 'o' */
    /*              ( */
    /*              ( normI(A),         NORM = 'I' or 'i' */
    /*              ( */
    /*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

    /*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
    /*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
    /*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
    /*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

    /*  Arguments */
    /*  ========= */

    /*  NORM    (input) CHARACTER*1 */
    /*          Specifies the value to be returned in ZLANHE as described */
    /*          above. */

    /*  UPLO    (input) CHARACTER*1 */
    /*          Specifies whether the upper or lower triangular part of the */
    /*          hermitian matrix A is to be referenced. */
    /*          = 'U':  Upper triangular part of A is referenced */
    /*          = 'L':  Lower triangular part of A is referenced */

    /*  N       (input) INTEGER */
    /*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHE is */
    /*          set to zero. */

    /*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
    /*          The hermitian matrix A.  If UPLO = 'U', the leading n by n */
    /*          upper triangular part of A contains the upper triangular part */
    /*          of the matrix A, and the strictly lower triangular part of A */
    /*          is not referenced.  If UPLO = 'L', the leading n by n lower */
    /*          triangular part of A contains the lower triangular part of */
    /*          the matrix A, and the strictly upper triangular part of A is */
    /*          not referenced. Note that the imaginary parts of the diagonal */
    /*          elements need not be set and are assumed to be zero. */

    /*  LDA     (input) INTEGER */
    /*          The leading dimension of the array A.  LDA >= max(N,1). */

    /*  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
    /*          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
    /*          WORK is not referenced. */

    /* ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
        value = 0.;
    } else if (lsame_(norm, "M")) {

        /*        Find max(abs(A(i,j))). */

        value = 0.;
        if (lsame_(uplo, "U")) {
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                i__2 = j - 1;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    /* Computing MAX */
                    d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
                    value = max(d__1,d__2);
                    /* L10: */
                }
                /* Computing MAX */
                i__2 = j + j * a_dim1;
                d__2 = value, d__3 = (d__1 = a[i__2].r, abs(d__1));
                value = max(d__2,d__3);
                /* L20: */
            }
        } else {
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                /* Computing MAX */
                i__2 = j + j * a_dim1;
                d__2 = value, d__3 = (d__1 = a[i__2].r, abs(d__1));
                value = max(d__2,d__3);
                i__2 = *n;
                for (i__ = j + 1; i__ <= i__2; ++i__) {
                    /* Computing MAX */
                    d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
                    value = max(d__1,d__2);
                    /* L30: */
                }
                /* L40: */
            }
        }
    } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {

        /*        Find normI(A) ( = norm1(A), since A is hermitian). */

        value = 0.;
        if (lsame_(uplo, "U")) {
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                sum = 0.;
                i__2 = j - 1;
                for (i__ = 1; i__ <= i__2; ++i__) {
                    absa = z_abs(&a[i__ + j * a_dim1]);
                    sum += absa;
                    work[i__] += absa;
                    /* L50: */
                }
                i__2 = j + j * a_dim1;
                work[j] = sum + (d__1 = a[i__2].r, abs(d__1));
                /* L60: */
            }
            i__1 = *n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                /* Computing MAX */
                d__1 = value, d__2 = work[i__];
                value = max(d__1,d__2);
                /* L70: */
            }
        } else {
            i__1 = *n;
            for (i__ = 1; i__ <= i__1; ++i__) {
                work[i__] = 0.;
                /* L80: */
            }
            i__1 = *n;
            for (j = 1; j <= i__1; ++j) {
                i__2 = j + j * a_dim1;
                sum = work[j] + (d__1 = a[i__2].r, abs(d__1));
                i__2 = *n;
                for (i__ = j + 1; i__ <= i__2; ++i__) {
                    absa = z_abs(&a[i__ + j * a_dim1]);
                    sum += absa;
                    work[i__] += absa;
                    /* L90: */
                }
                value = max(value,sum);
                /* L100: */
            }
        }
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

        /*        Find normF(A). */

        scale = 0.;
        sum = 1.;
        if (lsame_(uplo, "U")) {
            i__1 = *n;
            for (j = 2; j <= i__1; ++j) {
                i__2 = j - 1;
                zlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
                /* L110: */
            }
        } else {
            i__1 = *n - 1;
            for (j = 1; j <= i__1; ++j) {
                i__2 = *n - j;
                zlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum);
                /* L120: */
            }
        }
        sum *= 2;
        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            i__2 = i__ + i__ * a_dim1;
            if (a[i__2].r != 0.) {
                i__2 = i__ + i__ * a_dim1;
                absa = (d__1 = a[i__2].r, abs(d__1));
                if (scale < absa) {
                    /* Computing 2nd power */
                    d__1 = scale / absa;
                    sum = sum * (d__1 * d__1) + 1.;
                    scale = absa;
                } else {
                    /* Computing 2nd power */
                    d__1 = absa / scale;
                    sum += d__1 * d__1;
                }
            }
            /* L130: */
        }
        value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

    /*     End of ZLANHE */

} /* zlanhe_ */
コード例 #20
0
doublereal zlangb_(char *norm, integer *n, integer *kl, integer *ku, 
	doublecomplex *ab, integer *ldab, doublereal *work)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZLANGB  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the element of  largest absolute value  of an   
    n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.   

    Description   
    ===========   

    ZLANGB returns the value   

       ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANGB as described   
            above.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANGB is   
            set to zero.   

    KL      (input) INTEGER   
            The number of sub-diagonals of the matrix A.  KL >= 0.   

    KU      (input) INTEGER   
            The number of super-diagonals of the matrix A.  KU >= 0.   

    AB      (input) COMPLEX*16 array, dimension (LDAB,N)   
            The band matrix A, stored in rows 1 to KL+KU+1.  The j-th   
            column of A is stored in the j-th column of the array AB as   
            follows:   
            AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KL+KU+1.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I'; otherwise, WORK is not   
            referenced.   

   =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
    doublereal ret_val, d__1, d__2;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static integer i__, j, k, l;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;
#define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1
#define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = *ku + 2 - j;
/* Computing MIN */
	    i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
	    i__3 = min(i__4,i__5);
	    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = z_abs(&ab_ref(i__, j));
		value = max(d__1,d__2);
/* L10: */
	    }
/* L20: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    sum = 0.;
/* Computing MAX */
	    i__3 = *ku + 2 - j;
/* Computing MIN */
	    i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
	    i__2 = min(i__4,i__5);
	    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
		sum += z_abs(&ab_ref(i__, j));
/* L30: */
	    }
	    value = max(value,sum);
/* L40: */
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    work[i__] = 0.;
/* L50: */
	}
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    k = *ku + 1 - j;
/* Computing MAX */
	    i__2 = 1, i__3 = j - *ku;
/* Computing MIN */
	    i__5 = *n, i__6 = j + *kl;
	    i__4 = min(i__5,i__6);
	    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
		work[i__] += z_abs(&ab_ref(k + i__, j));
/* L60: */
	    }
/* L70: */
	}
	value = 0.;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = max(d__1,d__2);
/* L80: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__4 = 1, i__2 = j - *ku;
	    l = max(i__4,i__2);
	    k = *ku + 1 - j + l;
/* Computing MIN */
	    i__2 = *n, i__3 = j + *kl;
	    i__4 = min(i__2,i__3) - l + 1;
	    zlassq_(&i__4, &ab_ref(k, j), &c__1, &scale, &sum);
/* L90: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANGB */

} /* zlangb_ */
コード例 #21
0
ファイル: zlantb.c プロジェクト: flame/libflame
/* ===================================================================== */
doublereal zlantb_(char *norm, char *uplo, char *diag, integer *n, integer *k, doublecomplex *ab, integer *ldab, doublereal *work)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal ret_val;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    integer i__, j, l;
    doublereal sum, scale;
    logical udiag;
    extern logical lsame_(char *, char *);
    doublereal value;
    extern logical disnan_(doublereal *);
    extern /* Subroutine */
    int zlassq_(integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    /* -- LAPACK auxiliary routine (version 3.4.2) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* September 2012 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;
    /* Function Body */
    if (*n == 0)
    {
        value = 0.;
    }
    else if (lsame_(norm, "M"))
    {
        /* Find max(f2c_abs(A(i,j))). */
        if (lsame_(diag, "U"))
        {
            value = 1.;
            if (lsame_(uplo, "U"))
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    /* Computing MAX */
                    i__2 = *k + 2 - j;
                    i__3 = *k;
                    for (i__ = max(i__2,1);
                            i__ <= i__3;
                            ++i__)
                    {
                        sum = z_abs(&ab[i__ + j * ab_dim1]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L10: */
                    }
                    /* L20: */
                }
            }
            else
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    /* Computing MIN */
                    i__2 = *n + 1 - j;
                    i__4 = *k + 1; // , expr subst
                    i__3 = min(i__2,i__4);
                    for (i__ = 2;
                            i__ <= i__3;
                            ++i__)
                    {
                        sum = z_abs(&ab[i__ + j * ab_dim1]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L30: */
                    }
                    /* L40: */
                }
            }
        }
        else
        {
            value = 0.;
            if (lsame_(uplo, "U"))
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    /* Computing MAX */
                    i__3 = *k + 2 - j;
                    i__2 = *k + 1;
                    for (i__ = max(i__3,1);
                            i__ <= i__2;
                            ++i__)
                    {
                        sum = z_abs(&ab[i__ + j * ab_dim1]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L50: */
                    }
                    /* L60: */
                }
            }
            else
            {
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    /* Computing MIN */
                    i__3 = *n + 1 - j;
                    i__4 = *k + 1; // , expr subst
                    i__2 = min(i__3,i__4);
                    for (i__ = 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum = z_abs(&ab[i__ + j * ab_dim1]);
                        if (value < sum || disnan_(&sum))
                        {
                            value = sum;
                        }
                        /* L70: */
                    }
                    /* L80: */
                }
            }
        }
    }
    else if (lsame_(norm, "O") || *(unsigned char *) norm == '1')
    {
        /* Find norm1(A). */
        value = 0.;
        udiag = lsame_(diag, "U");
        if (lsame_(uplo, "U"))
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                if (udiag)
                {
                    sum = 1.;
                    /* Computing MAX */
                    i__2 = *k + 2 - j;
                    i__3 = *k;
                    for (i__ = max(i__2,1);
                            i__ <= i__3;
                            ++i__)
                    {
                        sum += z_abs(&ab[i__ + j * ab_dim1]);
                        /* L90: */
                    }
                }
                else
                {
                    sum = 0.;
                    /* Computing MAX */
                    i__3 = *k + 2 - j;
                    i__2 = *k + 1;
                    for (i__ = max(i__3,1);
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ab[i__ + j * ab_dim1]);
                        /* L100: */
                    }
                }
                if (value < sum || disnan_(&sum))
                {
                    value = sum;
                }
                /* L110: */
            }
        }
        else
        {
            i__1 = *n;
            for (j = 1;
                    j <= i__1;
                    ++j)
            {
                if (udiag)
                {
                    sum = 1.;
                    /* Computing MIN */
                    i__3 = *n + 1 - j;
                    i__4 = *k + 1; // , expr subst
                    i__2 = min(i__3,i__4);
                    for (i__ = 2;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ab[i__ + j * ab_dim1]);
                        /* L120: */
                    }
                }
                else
                {
                    sum = 0.;
                    /* Computing MIN */
                    i__3 = *n + 1 - j;
                    i__4 = *k + 1; // , expr subst
                    i__2 = min(i__3,i__4);
                    for (i__ = 1;
                            i__ <= i__2;
                            ++i__)
                    {
                        sum += z_abs(&ab[i__ + j * ab_dim1]);
                        /* L130: */
                    }
                }
                if (value < sum || disnan_(&sum))
                {
                    value = sum;
                }
                /* L140: */
            }
        }
    }
    else if (lsame_(norm, "I"))
    {
        /* Find normI(A). */
        value = 0.;
        if (lsame_(uplo, "U"))
        {
            if (lsame_(diag, "U"))
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 1.;
                    /* L150: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    l = *k + 1 - j;
                    /* Computing MAX */
                    i__2 = 1;
                    i__3 = j - *k; // , expr subst
                    i__4 = j - 1;
                    for (i__ = max(i__2,i__3);
                            i__ <= i__4;
                            ++i__)
                    {
                        work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
                        /* L160: */
                    }
                    /* L170: */
                }
            }
            else
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 0.;
                    /* L180: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    l = *k + 1 - j;
                    /* Computing MAX */
                    i__4 = 1;
                    i__2 = j - *k; // , expr subst
                    i__3 = j;
                    for (i__ = max(i__4,i__2);
                            i__ <= i__3;
                            ++i__)
                    {
                        work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
                        /* L190: */
                    }
                    /* L200: */
                }
            }
        }
        else
        {
            if (lsame_(diag, "U"))
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 1.;
                    /* L210: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    l = 1 - j;
                    /* Computing MIN */
                    i__4 = *n;
                    i__2 = j + *k; // , expr subst
                    i__3 = min(i__4,i__2);
                    for (i__ = j + 1;
                            i__ <= i__3;
                            ++i__)
                    {
                        work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
                        /* L220: */
                    }
                    /* L230: */
                }
            }
            else
            {
                i__1 = *n;
                for (i__ = 1;
                        i__ <= i__1;
                        ++i__)
                {
                    work[i__] = 0.;
                    /* L240: */
                }
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    l = 1 - j;
                    /* Computing MIN */
                    i__4 = *n;
                    i__2 = j + *k; // , expr subst
                    i__3 = min(i__4,i__2);
                    for (i__ = j;
                            i__ <= i__3;
                            ++i__)
                    {
                        work[i__] += z_abs(&ab[l + i__ + j * ab_dim1]);
                        /* L250: */
                    }
                    /* L260: */
                }
            }
        }
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            sum = work[i__];
            if (value < sum || disnan_(&sum))
            {
                value = sum;
            }
            /* L270: */
        }
    }
    else if (lsame_(norm, "F") || lsame_(norm, "E"))
    {
        /* Find normF(A). */
        if (lsame_(uplo, "U"))
        {
            if (lsame_(diag, "U"))
            {
                scale = 1.;
                sum = (doublereal) (*n);
                if (*k > 0)
                {
                    i__1 = *n;
                    for (j = 2;
                            j <= i__1;
                            ++j)
                    {
                        /* Computing MIN */
                        i__4 = j - 1;
                        i__3 = min(i__4,*k);
                        /* Computing MAX */
                        i__2 = *k + 2 - j;
                        zlassq_(&i__3, &ab[max(i__2,1) + j * ab_dim1], &c__1, &scale, &sum);
                        /* L280: */
                    }
                }
            }
            else
            {
                scale = 0.;
                sum = 1.;
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    /* Computing MIN */
                    i__4 = j;
                    i__2 = *k + 1; // , expr subst
                    i__3 = min(i__4,i__2);
                    /* Computing MAX */
                    i__5 = *k + 2 - j;
                    zlassq_(&i__3, &ab[max(i__5,1) + j * ab_dim1], &c__1, & scale, &sum);
                    /* L290: */
                }
            }
        }
        else
        {
            if (lsame_(diag, "U"))
            {
                scale = 1.;
                sum = (doublereal) (*n);
                if (*k > 0)
                {
                    i__1 = *n - 1;
                    for (j = 1;
                            j <= i__1;
                            ++j)
                    {
                        /* Computing MIN */
                        i__4 = *n - j;
                        i__3 = min(i__4,*k);
                        zlassq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, &scale, & sum);
                        /* L300: */
                    }
                }
            }
            else
            {
                scale = 0.;
                sum = 1.;
                i__1 = *n;
                for (j = 1;
                        j <= i__1;
                        ++j)
                {
                    /* Computing MIN */
                    i__4 = *n - j + 1;
                    i__2 = *k + 1; // , expr subst
                    i__3 = min(i__4,i__2);
                    zlassq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, &scale, &sum);
                    /* L310: */
                }
            }
        }
        value = scale * sqrt(sum);
    }
    ret_val = value;
    return ret_val;
    /* End of ZLANTB */
}
コード例 #22
0
doublereal zlanhs_(char *norm, integer *n, doublecomplex *a, integer *lda, 
	doublereal *work, ftnlen norm_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2;

    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);

    /* Local variables */
    static integer i__, j;
    static doublereal sum, scale;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);


/*  -- LAPACK auxiliary routine (version 2.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     October 31, 1992 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLANHS  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  Hessenberg matrix A. */

/*  Description */
/*  =========== */

/*  ZLANHS returns the value */

/*     ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in ZLANHS as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is */
/*          set to zero. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The n by n upper Hessenberg matrix A; the part of A below the */
/*          first sub-diagonal is not referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(N,1). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK), */
/*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/*          referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M", (ftnlen)1, (ftnlen)1)) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = z_abs(&a[i__ + j * a_dim1]);
		value = max(d__1,d__2);
/* L10: */
	    }
/* L20: */
	}
    } else if (lsame_(norm, "O", (ftnlen)1, (ftnlen)1) || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    sum = 0.;
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		sum += z_abs(&a[i__ + j * a_dim1]);
/* L30: */
	    }
	    value = max(value,sum);
/* L40: */
	}
    } else if (lsame_(norm, "I", (ftnlen)1, (ftnlen)1)) {

/*        Find normI(A). */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    work[i__] = 0.;
/* L50: */
	}
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		work[i__] += z_abs(&a[i__ + j * a_dim1]);
/* L60: */
	    }
/* L70: */
	}
	value = 0.;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = max(d__1,d__2);
/* L80: */
	}
    } else if (lsame_(norm, "F", (ftnlen)1, (ftnlen)1) || lsame_(norm, "E", (
	    ftnlen)1, (ftnlen)1)) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    zlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/* L90: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANHS */

} /* zlanhs_ */
コード例 #23
0
ファイル: zsyequb.c プロジェクト: 3deggi/levmar-ndk
/* Subroutine */ int zsyequb_(char *uplo, integer *n, doublecomplex *a, 
	integer *lda, doublereal *s, doublereal *scond, doublereal *amax, 
	doublecomplex *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2, z__3, z__4;

    /* Builtin functions */
    double d_imag(doublecomplex *), sqrt(doublereal), log(doublereal), pow_di(
	    doublereal *, integer *);

    /* Local variables */
    doublereal d__;
    integer i__, j;
    doublereal t, u, c0, c1, c2, si;
    logical up;
    doublereal avg, std, tol, base;
    integer iter;
    doublereal smin, smax, scale;
    extern logical lsame_(char *, char *);
    doublereal sumsq;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    doublereal bignum, smlnum;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *, 
	     doublereal *, doublereal *);


/*     -- LAPACK routine (version 3.2)                                 -- */
/*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
/*     -- November 2008                                                -- */

/*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/*     -- Univ. of California Berkeley and NAG Ltd.                    -- */

/*     .. */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZSYEQUB computes row and column scalings intended to equilibrate a */
/*  symmetric matrix A and reduce its condition number */
/*  (with respect to the two-norm).  S contains the scale factors, */
/*  S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
/*  elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This */
/*  choice of S puts the condition number of B within a factor N of the */
/*  smallest possible condition number over all possible diagonal */
/*  scalings. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The N-by-N symmetric matrix whose scaling */
/*          factors are to be computed.  Only the diagonal elements of A */
/*          are referenced. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  S       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, S contains the scale factors for A. */

/*  SCOND   (output) DOUBLE PRECISION */
/*          If INFO = 0, S contains the ratio of the smallest S(i) to */
/*          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too */
/*          large nor too small, it is not worth scaling by S. */

/*  AMAX    (output) DOUBLE PRECISION */
/*          Absolute value of largest matrix element.  If AMAX is very */
/*          close to overflow or very close to underflow, the matrix */
/*          should be scaled. */
/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the i-th diagonal element is nonpositive. */

/*  Further Details */
/*  ======= ======= */

/*  Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", */
/*  Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. */
/*  DOI 10.1023/B:NUMA.0000016606.32820.69 */
/*  Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     Statement Function Definitions */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --s;
    --work;

    /* Function Body */
    *info = 0;
    if (! (lsame_(uplo, "U") || lsame_(uplo, "L"))) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZSYEQUB", &i__1);
	return 0;
    }
    up = lsame_(uplo, "U");
    *amax = 0.;

/*     Quick return if possible. */

    if (*n == 0) {
	*scond = 1.;
	return 0;
    }
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	s[i__] = 0.;
    }
    *amax = 0.;
    if (up) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = j - 1;
	    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		d__3 = s[i__], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&a[i__ + j * a_dim1]), abs(d__2));
		s[i__] = max(d__3,d__4);
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		d__3 = s[j], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&a[i__ + j * a_dim1]), abs(d__2));
		s[j] = max(d__3,d__4);
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		d__3 = *amax, d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&a[i__ + j * a_dim1]), abs(d__2));
		*amax = max(d__3,d__4);
	    }
/* Computing MAX */
	    i__2 = j + j * a_dim1;
	    d__3 = s[j], d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = 
		    d_imag(&a[j + j * a_dim1]), abs(d__2));
	    s[j] = max(d__3,d__4);
/* Computing MAX */
	    i__2 = j + j * a_dim1;
	    d__3 = *amax, d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = 
		    d_imag(&a[j + j * a_dim1]), abs(d__2));
	    *amax = max(d__3,d__4);
	}
    } else {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = j + j * a_dim1;
	    d__3 = s[j], d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = 
		    d_imag(&a[j + j * a_dim1]), abs(d__2));
	    s[j] = max(d__3,d__4);
/* Computing MAX */
	    i__2 = j + j * a_dim1;
	    d__3 = *amax, d__4 = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = 
		    d_imag(&a[j + j * a_dim1]), abs(d__2));
	    *amax = max(d__3,d__4);
	    i__2 = *n;
	    for (i__ = j + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		d__3 = s[i__], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&a[i__ + j * a_dim1]), abs(d__2));
		s[i__] = max(d__3,d__4);
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		d__3 = s[j], d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&a[i__ + j * a_dim1]), abs(d__2));
		s[j] = max(d__3,d__4);
/* Computing MAX */
		i__3 = i__ + j * a_dim1;
		d__3 = *amax, d__4 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = 
			d_imag(&a[i__ + j * a_dim1]), abs(d__2));
		*amax = max(d__3,d__4);
	    }
	}
    }
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	s[j] = 1. / s[j];
    }
    tol = 1. / sqrt(*n * 2.);
    for (iter = 1; iter <= 100; ++iter) {
	scale = 0.;
	sumsq = 0.;
/*       beta = |A|s */
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = i__;
	    work[i__2].r = 0., work[i__2].i = 0.;
	}
	if (up) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * a_dim1;
		    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ 
			    + j * a_dim1]), abs(d__2));
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = i__ + j * a_dim1;
		    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[
			    i__ + j * a_dim1]), abs(d__2))) * s[j];
		    z__1.r = work[i__4].r + d__3, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		    i__3 = j;
		    i__4 = j;
		    i__5 = i__ + j * a_dim1;
		    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[
			    i__ + j * a_dim1]), abs(d__2))) * s[i__];
		    z__1.r = work[i__4].r + d__3, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		}
		i__2 = j;
		i__3 = j;
		i__4 = j + j * a_dim1;
		d__3 = ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[j + 
			j * a_dim1]), abs(d__2))) * s[j];
		z__1.r = work[i__3].r + d__3, z__1.i = work[i__3].i;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		i__3 = j;
		i__4 = j + j * a_dim1;
		d__3 = ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[j + 
			j * a_dim1]), abs(d__2))) * s[j];
		z__1.r = work[i__3].r + d__3, z__1.i = work[i__3].i;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * a_dim1;
		    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ 
			    + j * a_dim1]), abs(d__2));
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = i__ + j * a_dim1;
		    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[
			    i__ + j * a_dim1]), abs(d__2))) * s[j];
		    z__1.r = work[i__4].r + d__3, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		    i__3 = j;
		    i__4 = j;
		    i__5 = i__ + j * a_dim1;
		    d__3 = ((d__1 = a[i__5].r, abs(d__1)) + (d__2 = d_imag(&a[
			    i__ + j * a_dim1]), abs(d__2))) * s[i__];
		    z__1.r = work[i__4].r + d__3, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		}
	    }
	}
/*       avg = s^T beta / n */
	avg = 0.;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = i__;
	    i__3 = i__;
	    z__2.r = s[i__2] * work[i__3].r, z__2.i = s[i__2] * work[i__3].i;
	    z__1.r = avg + z__2.r, z__1.i = z__2.i;
	    avg = z__1.r;
	}
	avg /= *n;
	std = 0.;
	i__1 = *n << 1;
	for (i__ = *n + 1; i__ <= i__1; ++i__) {
	    i__2 = i__;
	    i__3 = i__ - *n;
	    i__4 = i__ - *n;
	    z__2.r = s[i__3] * work[i__4].r, z__2.i = s[i__3] * work[i__4].i;
	    z__1.r = z__2.r - avg, z__1.i = z__2.i;
	    work[i__2].r = z__1.r, work[i__2].i = z__1.i;
	}
	zlassq_(n, &work[*n + 1], &c__1, &scale, &sumsq);
	std = scale * sqrt(sumsq / *n);
	if (std < tol * avg) {
	    goto L999;
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = i__ + i__ * a_dim1;
	    t = (d__1 = a[i__2].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + i__ * 
		    a_dim1]), abs(d__2));
	    si = s[i__];
	    c2 = (*n - 1) * t;
	    i__2 = *n - 2;
	    i__3 = i__;
	    d__1 = t * si;
	    z__2.r = work[i__3].r - d__1, z__2.i = work[i__3].i;
	    d__2 = (doublereal) i__2;
	    z__1.r = d__2 * z__2.r, z__1.i = d__2 * z__2.i;
	    c1 = z__1.r;
	    d__1 = -(t * si) * si;
	    i__2 = i__;
	    d__2 = 2.;
	    z__4.r = d__2 * work[i__2].r, z__4.i = d__2 * work[i__2].i;
	    z__3.r = si * z__4.r, z__3.i = si * z__4.i;
	    z__2.r = d__1 + z__3.r, z__2.i = z__3.i;
	    d__3 = *n * avg;
	    z__1.r = z__2.r - d__3, z__1.i = z__2.i;
	    c0 = z__1.r;
	    d__ = c1 * c1 - c0 * 4 * c2;
	    if (d__ <= 0.) {
		*info = -1;
		return 0;
	    }
	    si = c0 * -2 / (c1 + sqrt(d__));
	    d__ = si - s[i__];
	    u = 0.;
	    if (up) {
		i__2 = i__;
		for (j = 1; j <= i__2; ++j) {
		    i__3 = j + i__ * a_dim1;
		    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[j + 
			    i__ * a_dim1]), abs(d__2));
		    u += s[j] * t;
		    i__3 = j;
		    i__4 = j;
		    d__1 = d__ * t;
		    z__1.r = work[i__4].r + d__1, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		}
		i__2 = *n;
		for (j = i__ + 1; j <= i__2; ++j) {
		    i__3 = i__ + j * a_dim1;
		    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ 
			    + j * a_dim1]), abs(d__2));
		    u += s[j] * t;
		    i__3 = j;
		    i__4 = j;
		    d__1 = d__ * t;
		    z__1.r = work[i__4].r + d__1, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		}
	    } else {
		i__2 = i__;
		for (j = 1; j <= i__2; ++j) {
		    i__3 = i__ + j * a_dim1;
		    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ 
			    + j * a_dim1]), abs(d__2));
		    u += s[j] * t;
		    i__3 = j;
		    i__4 = j;
		    d__1 = d__ * t;
		    z__1.r = work[i__4].r + d__1, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		}
		i__2 = *n;
		for (j = i__ + 1; j <= i__2; ++j) {
		    i__3 = j + i__ * a_dim1;
		    t = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[j + 
			    i__ * a_dim1]), abs(d__2));
		    u += s[j] * t;
		    i__3 = j;
		    i__4 = j;
		    d__1 = d__ * t;
		    z__1.r = work[i__4].r + d__1, z__1.i = work[i__4].i;
		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
		}
	    }
	    i__2 = i__;
	    z__4.r = u + work[i__2].r, z__4.i = work[i__2].i;
	    z__3.r = d__ * z__4.r, z__3.i = d__ * z__4.i;
	    d__1 = (doublereal) (*n);
	    z__2.r = z__3.r / d__1, z__2.i = z__3.i / d__1;
	    z__1.r = avg + z__2.r, z__1.i = z__2.i;
	    avg = z__1.r;
	    s[i__] = si;
	}
    }
L999:
    smlnum = dlamch_("SAFEMIN");
    bignum = 1. / smlnum;
    smin = bignum;
    smax = 0.;
    t = 1. / sqrt(avg);
    base = dlamch_("B");
    u = 1. / log(base);
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = (integer) (u * log(s[i__] * t));
	s[i__] = pow_di(&base, &i__2);
/* Computing MIN */
	d__1 = smin, d__2 = s[i__];
	smin = min(d__1,d__2);
/* Computing MAX */
	d__1 = smax, d__2 = s[i__];
	smax = max(d__1,d__2);
    }
    *scond = max(smin,smlnum) / min(smax,bignum);

    return 0;
} /* zsyequb_ */
コード例 #24
0
ファイル: zlanhs.c プロジェクト: deepakantony/vispack
doublereal zlanhs_(char *norm, integer *n, doublecomplex *a, integer *lda, 
	doublereal *work)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZLANHS  returns the value of the one norm,  or the Frobenius norm, or 
  
    the  infinity norm,  or the  element of  largest absolute value  of a 
  
    Hessenberg matrix A.   

    Description   
    ===========   

    ZLANHS returns the value   

       ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum), 
  
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and 
  
    normF  denotes the  Frobenius norm of a matrix (square root of sum of 
  
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANHS as described   
            above.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is   
            set to zero.   

    A       (input) COMPLEX*16 array, dimension (LDA,N)   
            The n by n upper Hessenberg matrix A; the part of A below the 
  
            first sub-diagonal is not referenced.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(N,1).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I'; otherwise, WORK is not   
            referenced.   

   ===================================================================== 
  


    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
    doublereal ret_val, d__1, d__2;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static integer i, j;
    static doublereal scale;
    extern logical lsame_(char *, char *);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;



#define WORK(I) work[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= *n; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    for (i = 1; i <= min(*n,j+1); ++i) {
/* Computing MAX */
		d__1 = value, d__2 = z_abs(&A(i,j));
		value = max(d__1,d__2);
/* L10: */
	    }
/* L20: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	i__1 = *n;
	for (j = 1; j <= *n; ++j) {
	    sum = 0.;
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    for (i = 1; i <= min(*n,j+1); ++i) {
		sum += z_abs(&A(i,j));
/* L30: */
	    }
	    value = max(value,sum);
/* L40: */
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    WORK(i) = 0.;
/* L50: */
	}
	i__1 = *n;
	for (j = 1; j <= *n; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    for (i = 1; i <= min(*n,j+1); ++i) {
		WORK(i) += z_abs(&A(i,j));
/* L60: */
	    }
/* L70: */
	}
	value = 0.;
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
/* Computing MAX */
	    d__1 = value, d__2 = WORK(i);
	    value = max(d__1,d__2);
/* L80: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	i__1 = *n;
	for (j = 1; j <= *n; ++j) {
/* Computing MIN */
	    i__3 = *n, i__4 = j + 1;
	    i__2 = min(i__3,i__4);
	    zlassq_(&i__2, &A(1,j), &c__1, &scale, &sum);
/* L90: */
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANHS */

} /* zlanhs_ */
コード例 #25
0
ファイル: zlantb.c プロジェクト: MichaelH13/sdkpub
doublereal zlantb_(char *norm, char *uplo, char *diag, integer *n, integer *k,
	 doublecomplex *ab, integer *ldab, doublereal *work)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZLANTB  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the element of  largest absolute value  of an   
    n by n triangular band matrix A,  with ( k + 1 ) diagonals.   

    Description   
    ===========   

    ZLANTB returns the value   

       ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANTB as described   
            above.   

    UPLO    (input) CHARACTER*1   
            Specifies whether the matrix A is upper or lower triangular.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    DIAG    (input) CHARACTER*1   
            Specifies whether or not the matrix A is unit triangular.   
            = 'N':  Non-unit triangular   
            = 'U':  Unit triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANTB is   
            set to zero.   

    K       (input) INTEGER   
            The number of super-diagonals of the matrix A if UPLO = 'U',   
            or the number of sub-diagonals of the matrix A if UPLO = 'L'.   
            K >= 0.   

    AB      (input) COMPLEX*16 array, dimension (LDAB,N)   
            The upper or lower triangular band matrix A, stored in the   
            first k+1 rows of AB.  The j-th column of A is stored   
            in the j-th column of the array AB as follows:   
            if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).   
            Note that when DIAG = 'U', the elements of the array AB   
            corresponding to the diagonal elements of the matrix A are   
            not referenced, but are assumed to be one.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= K+1.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I'; otherwise, WORK is not   
            referenced.   

   =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal ret_val, d__1, d__2;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static integer i__, j, l;
    static doublereal scale;
    static logical udiag;
    extern logical lsame_(char *, char *);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;
#define ab_subscr(a_1,a_2) (a_2)*ab_dim1 + a_1
#define ab_ref(a_1,a_2) ab[ab_subscr(a_1,a_2)]


    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	if (lsame_(diag, "U")) {
	    value = 1.;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    i__3 = *k;
		    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab_ref(i__, j));
			value = max(d__1,d__2);
/* L10: */
		    }
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__2 = *n + 1 - j, i__4 = *k + 1;
		    i__3 = min(i__2,i__4);
		    for (i__ = 2; i__ <= i__3; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab_ref(i__, j));
			value = max(d__1,d__2);
/* L30: */
		    }
/* L40: */
		}
	    }
	} else {
	    value = 0.;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__3 = *k + 2 - j;
		    i__2 = *k + 1;
		    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab_ref(i__, j));
			value = max(d__1,d__2);
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = min(i__3,i__4);
		    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ab_ref(i__, j));
			value = max(d__1,d__2);
/* L70: */
		    }
/* L80: */
		}
	    }
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	udiag = lsame_(diag, "U");
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.;
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    i__3 = *k;
		    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
			sum += z_abs(&ab_ref(i__, j));
/* L90: */
		    }
		} else {
		    sum = 0.;
/* Computing MAX */
		    i__3 = *k + 2 - j;
		    i__2 = *k + 1;
		    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
			sum += z_abs(&ab_ref(i__, j));
/* L100: */
		    }
		}
		value = max(value,sum);
/* L110: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.;
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = min(i__3,i__4);
		    for (i__ = 2; i__ <= i__2; ++i__) {
			sum += z_abs(&ab_ref(i__, j));
/* L120: */
		    }
		} else {
		    sum = 0.;
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = min(i__3,i__4);
		    for (i__ = 1; i__ <= i__2; ++i__) {
			sum += z_abs(&ab_ref(i__, j));
/* L130: */
		    }
		}
		value = max(value,sum);
/* L140: */
	    }
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	value = 0.;
	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.;
/* L150: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = *k + 1 - j;
/* Computing MAX */
		    i__2 = 1, i__3 = j - *k;
		    i__4 = j - 1;
		    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
			work[i__] += z_abs(&ab_ref(l + i__, j));
/* L160: */
		    }
/* L170: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.;
/* L180: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = *k + 1 - j;
/* Computing MAX */
		    i__4 = 1, i__2 = j - *k;
		    i__3 = j;
		    for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
			work[i__] += z_abs(&ab_ref(l + i__, j));
/* L190: */
		    }
/* L200: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.;
/* L210: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = 1 - j;
/* Computing MIN */
		    i__4 = *n, i__2 = j + *k;
		    i__3 = min(i__4,i__2);
		    for (i__ = j + 1; i__ <= i__3; ++i__) {
			work[i__] += z_abs(&ab_ref(l + i__, j));
/* L220: */
		    }
/* L230: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.;
/* L240: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = 1 - j;
/* Computing MIN */
		    i__4 = *n, i__2 = j + *k;
		    i__3 = min(i__4,i__2);
		    for (i__ = j; i__ <= i__3; ++i__) {
			work[i__] += z_abs(&ab_ref(l + i__, j));
/* L250: */
		    }
/* L260: */
		}
	    }
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = max(d__1,d__2);
/* L270: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		scale = 1.;
		sum = (doublereal) (*n);
		if (*k > 0) {
		    i__1 = *n;
		    for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
			i__3 = *k + 2 - j;
/* Computing MIN */
			i__2 = j - 1;
			i__4 = min(i__2,*k);
			zlassq_(&i__4, &ab_ref(max(i__3,1), j), &c__1, &scale,
				 &sum);
/* L280: */
		    }
		}
	    } else {
		scale = 0.;
		sum = 1.;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__3 = *k + 2 - j;
/* Computing MIN */
		    i__2 = j, i__5 = *k + 1;
		    i__4 = min(i__2,i__5);
		    zlassq_(&i__4, &ab_ref(max(i__3,1), j), &c__1, &scale, &
			    sum);
/* L290: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		scale = 1.;
		sum = (doublereal) (*n);
		if (*k > 0) {
		    i__1 = *n - 1;
		    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
			i__4 = *n - j;
			i__3 = min(i__4,*k);
			zlassq_(&i__3, &ab_ref(2, j), &c__1, &scale, &sum);
/* L300: */
		    }
		}
	    } else {
		scale = 0.;
		sum = 1.;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__4 = *n - j + 1, i__2 = *k + 1;
		    i__3 = min(i__4,i__2);
		    zlassq_(&i__3, &ab_ref(1, j), &c__1, &scale, &sum);
/* L310: */
		}
	    }
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANTB */

} /* zlantb_ */
コード例 #26
0
doublereal zlantp_(char *norm, char *uplo, char *diag, integer *n, 
	doublecomplex *ap, doublereal *work)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    ZLANTP  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the  element of  largest absolute value  of a   
    triangular matrix A, supplied in packed form.   

    Description   
    ===========   

    ZLANTP returns the value   

       ZLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in ZLANTP as described   
            above.   

    UPLO    (input) CHARACTER*1   
            Specifies whether the matrix A is upper or lower triangular.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    DIAG    (input) CHARACTER*1   
            Specifies whether or not the matrix A is unit triangular.   
            = 'N':  Non-unit triangular   
            = 'U':  Unit triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, ZLANTP is   
            set to zero.   

    AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)   
            The upper or lower triangular matrix A, packed columnwise in   
            a linear array.  The j-th column of A is stored in the array   
            AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            Note that when DIAG = 'U', the elements of the array AP   
            corresponding to the diagonal elements of the matrix A are   
            not referenced, but are assumed to be one.   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I'; otherwise, WORK is not   
            referenced.   

   =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer i__1, i__2;
    doublereal ret_val, d__1, d__2;
    /* Builtin functions */
    double z_abs(doublecomplex *), sqrt(doublereal);
    /* Local variables */
    static integer i__, j, k;
    static doublereal scale;
    static logical udiag;
    extern logical lsame_(char *, char *);
    static doublereal value;
    extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
	     doublereal *, doublereal *);
    static doublereal sum;


    --work;
    --ap;

    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	k = 1;
	if (lsame_(diag, "U")) {
	    value = 1.;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = k + j - 2;
		    for (i__ = k; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ap[i__]);
			value = max(d__1,d__2);
/* L10: */
		    }
		    k += j;
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = k + *n - j;
		    for (i__ = k + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ap[i__]);
			value = max(d__1,d__2);
/* L30: */
		    }
		    k = k + *n - j + 1;
/* L40: */
		}
	    }
	} else {
	    value = 0.;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = k + j - 1;
		    for (i__ = k; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ap[i__]);
			value = max(d__1,d__2);
/* L50: */
		    }
		    k += j;
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = k + *n - j;
		    for (i__ = k; i__ <= i__2; ++i__) {
/* Computing MAX */
			d__1 = value, d__2 = z_abs(&ap[i__]);
			value = max(d__1,d__2);
/* L70: */
		    }
		    k = k + *n - j + 1;
/* L80: */
		}
	    }
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.;
	k = 1;
	udiag = lsame_(diag, "U");
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.;
		    i__2 = k + j - 2;
		    for (i__ = k; i__ <= i__2; ++i__) {
			sum += z_abs(&ap[i__]);
/* L90: */
		    }
		} else {
		    sum = 0.;
		    i__2 = k + j - 1;
		    for (i__ = k; i__ <= i__2; ++i__) {
			sum += z_abs(&ap[i__]);
/* L100: */
		    }
		}
		k += j;
		value = max(value,sum);
/* L110: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.;
		    i__2 = k + *n - j;
		    for (i__ = k + 1; i__ <= i__2; ++i__) {
			sum += z_abs(&ap[i__]);
/* L120: */
		    }
		} else {
		    sum = 0.;
		    i__2 = k + *n - j;
		    for (i__ = k; i__ <= i__2; ++i__) {
			sum += z_abs(&ap[i__]);
/* L130: */
		    }
		}
		k = k + *n - j + 1;
		value = max(value,sum);
/* L140: */
	    }
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	k = 1;
	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.;
/* L150: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j - 1;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			work[i__] += z_abs(&ap[k]);
			++k;
/* L160: */
		    }
		    ++k;
/* L170: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.;
/* L180: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			work[i__] += z_abs(&ap[k]);
			++k;
/* L190: */
		    }
/* L200: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.;
/* L210: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    ++k;
		    i__2 = *n;
		    for (i__ = j + 1; i__ <= i__2; ++i__) {
			work[i__] += z_abs(&ap[k]);
			++k;
/* L220: */
		    }
/* L230: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.;
/* L240: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			work[i__] += z_abs(&ap[k]);
			++k;
/* L250: */
		    }
/* L260: */
		}
	    }
	}
	value = 0.;
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__1 = value, d__2 = work[i__];
	    value = max(d__1,d__2);
/* L270: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		scale = 1.;
		sum = (doublereal) (*n);
		k = 2;
		i__1 = *n;
		for (j = 2; j <= i__1; ++j) {
		    i__2 = j - 1;
		    zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
		    k += j;
/* L280: */
		}
	    } else {
		scale = 0.;
		sum = 1.;
		k = 1;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    zlassq_(&j, &ap[k], &c__1, &scale, &sum);
		    k += j;
/* L290: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		scale = 1.;
		sum = (doublereal) (*n);
		k = 2;
		i__1 = *n - 1;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n - j;
		    zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
		    k = k + *n - j + 1;
/* L300: */
		}
	    } else {
		scale = 0.;
		sum = 1.;
		k = 1;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n - j + 1;
		    zlassq_(&i__2, &ap[k], &c__1, &scale, &sum);
		    k = k + *n - j + 1;
/* L310: */
		}
	    }
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of ZLANTP */

} /* zlantp_ */