コード例 #1
0
ファイル: zspsvx.c プロジェクト: otoauler/sdkpub
/* Subroutine */ int zspsvx_(char *fact, char *uplo, integer *n, integer *
                             nrhs, doublecomplex *ap, doublecomplex *afp, integer *ipiv,
                             doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
                             doublereal *rcond, doublereal *ferr, doublereal *berr, doublecomplex *
                             work, doublereal *rwork, integer *info)
{
    /*  -- LAPACK driver routine (version 3.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           June 30, 1999


        Purpose
        =======

        ZSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
        A = L*D*L**T to compute the solution to a complex system of linear
        equations A * X = B, where A is an N-by-N symmetric matrix stored
        in packed format and X and B are N-by-NRHS matrices.

        Error bounds on the solution and a condition estimate are also
        provided.

        Description
        ===========

        The following steps are performed:

        1. If FACT = 'N', the diagonal pivoting method is used to factor A as
              A = U * D * U**T,  if UPLO = 'U', or
              A = L * D * L**T,  if UPLO = 'L',
           where U (or L) is a product of permutation and unit upper (lower)
           triangular matrices and D is symmetric and block diagonal with
           1-by-1 and 2-by-2 diagonal blocks.

        2. If some D(i,i)=0, so that D is exactly singular, then the routine
           returns with INFO = i. Otherwise, the factored form of A is used
           to estimate the condition number of the matrix A.  If the
           reciprocal of the condition number is less than machine precision,
           INFO = N+1 is returned as a warning, but the routine still goes on
           to solve for X and compute error bounds as described below.

        3. The system of equations is solved for X using the factored form
           of A.

        4. Iterative refinement is applied to improve the computed solution
           matrix and calculate error bounds and backward error estimates
           for it.

        Arguments
        =========

        FACT    (input) CHARACTER*1
                Specifies whether or not the factored form of A has been
                supplied on entry.
                = 'F':  On entry, AFP and IPIV contain the factored form
                        of A.  AP, AFP and IPIV will not be modified.
                = 'N':  The matrix A will be copied to AFP and factored.

        UPLO    (input) CHARACTER*1
                = 'U':  Upper triangle of A is stored;
                = 'L':  Lower triangle of A is stored.

        N       (input) INTEGER
                The number of linear equations, i.e., the order of the
                matrix A.  N >= 0.

        NRHS    (input) INTEGER
                The number of right hand sides, i.e., the number of columns
                of the matrices B and X.  NRHS >= 0.

        AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
                The upper or lower triangle of the symmetric matrix A, packed
                columnwise in a linear array.  The j-th column of A is stored
                in the array AP as follows:
                if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                See below for further details.

        AFP     (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)
                If FACT = 'F', then AFP is an input argument and on entry
                contains the block diagonal matrix D and the multipliers used
                to obtain the factor U or L from the factorization
                A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
                a packed triangular matrix in the same storage format as A.

                If FACT = 'N', then AFP is an output argument and on exit
                contains the block diagonal matrix D and the multipliers used
                to obtain the factor U or L from the factorization
                A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
                a packed triangular matrix in the same storage format as A.

        IPIV    (input or output) INTEGER array, dimension (N)
                If FACT = 'F', then IPIV is an input argument and on entry
                contains details of the interchanges and the block structure
                of D, as determined by ZSPTRF.
                If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                interchanged and D(k,k) is a 1-by-1 diagonal block.
                If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

                If FACT = 'N', then IPIV is an output argument and on exit
                contains details of the interchanges and the block structure
                of D, as determined by ZSPTRF.

        B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                The N-by-NRHS right hand side matrix B.

        LDB     (input) INTEGER
                The leading dimension of the array B.  LDB >= max(1,N).

        X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.

        LDX     (input) INTEGER
                The leading dimension of the array X.  LDX >= max(1,N).

        RCOND   (output) DOUBLE PRECISION
                The estimate of the reciprocal condition number of the matrix
                A.  If RCOND is less than the machine precision (in
                particular, if RCOND = 0), the matrix is singular to working
                precision.  This condition is indicated by a return code of
                INFO > 0.

        FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                The estimated forward error bound for each solution vector
                X(j) (the j-th column of the solution matrix X).
                If XTRUE is the true solution corresponding to X(j), FERR(j)
                is an estimated upper bound for the magnitude of the largest
                element in (X(j) - XTRUE) divided by the magnitude of the
                largest element in X(j).  The estimate is as reliable as
                the estimate for RCOND, and is almost always a slight
                overestimate of the true error.

        BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                The componentwise relative backward error of each solution
                vector X(j) (i.e., the smallest relative change in
                any element of A or B that makes X(j) an exact solution).

        WORK    (workspace) COMPLEX*16 array, dimension (2*N)

        RWORK   (workspace) DOUBLE PRECISION array, dimension (N)

        INFO    (output) INTEGER
                = 0: successful exit
                < 0: if INFO = -i, the i-th argument had an illegal value
                > 0:  if INFO = i, and i is
                      <= N:  D(i,i) is exactly zero.  The factorization
                             has been completed but the factor D is exactly
                             singular, so the solution and error bounds could
                             not be computed. RCOND = 0 is returned.
                      = N+1: D is nonsingular, but RCOND is less than machine
                             precision, meaning that the matrix is singular
                             to working precision.  Nevertheless, the
                             solution and error bounds are computed because
                             there are a number of situations where the
                             computed solution can be more accurate than the
                             value of RCOND would suggest.

        Further Details
        ===============

        The packed storage scheme is illustrated by the following example
        when N = 4, UPLO = 'U':

        Two-dimensional storage of the symmetric matrix A:

           a11 a12 a13 a14
               a22 a23 a24
                   a33 a34     (aij = aji)
                       a44

        Packed storage of the upper triangle of A:

        AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

        =====================================================================


           Test the input parameters.

           Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;

    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
                                       doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    static logical nofact;
    extern /* Subroutine */ int xerbla_(char *, integer *), zlacpy_(
        char *, integer *, integer *, doublecomplex *, integer *,
        doublecomplex *, integer *);
    extern doublereal zlansp_(char *, char *, integer *, doublecomplex *,
                              doublereal *);
    extern /* Subroutine */ int zspcon_(char *, integer *, doublecomplex *,
                                        integer *, doublereal *, doublereal *, doublecomplex *, integer *), zsprfs_(char *, integer *, integer *, doublecomplex *,
                                                doublecomplex *, integer *, doublecomplex *, integer *,
                                                doublecomplex *, integer *, doublereal *, doublereal *,
                                                doublecomplex *, doublereal *, integer *), zsptrf_(char *,
                                                        integer *, doublecomplex *, integer *, integer *),
                                                                zsptrs_(char *, integer *, integer *, doublecomplex *, integer *,
                                                                        doublecomplex *, integer *, integer *);


    --ap;
    --afp;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    if (! nofact && ! lsame_(fact, "F")) {
        *info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo,
               "L")) {
        *info = -2;
    } else if (*n < 0) {
        *info = -3;
    } else if (*nrhs < 0) {
        *info = -4;
    } else if (*ldb < max(1,*n)) {
        *info = -9;
    } else if (*ldx < max(1,*n)) {
        *info = -11;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZSPSVX", &i__1);
        return 0;
    }

    if (nofact) {

        /*        Compute the factorization A = U*D*U' or A = L*D*L'. */

        i__1 = *n * (*n + 1) / 2;
        zcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
        zsptrf_(uplo, n, &afp[1], &ipiv[1], info);

        /*        Return if INFO is non-zero. */

        if (*info != 0) {
            if (*info > 0) {
                *rcond = 0.;
            }
            return 0;
        }
    }

    /*     Compute the norm of the matrix A. */

    anorm = zlansp_("I", uplo, n, &ap[1], &rwork[1]);

    /*     Compute the reciprocal of the condition number of A. */

    zspcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], info);

    /*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
        *info = *n + 1;
    }

    /*     Compute the solution vectors X. */

    zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    zsptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);

    /*     Use iterative refinement to improve the computed solutions and
           compute error bounds and backward error estimates for them. */

    zsprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[
                x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);

    return 0;

    /*     End of ZSPSVX */

} /* zspsvx_ */
コード例 #2
0
/* Subroutine */ int zspsv_(char *uplo, integer *n, integer *nrhs, 
	doublecomplex *ap, integer *ipiv, doublecomplex *b, integer *ldb, 
	integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZSPSV computes the solution to a complex system of linear equations   
       A * X = B,   
    where A is an N-by-N symmetric matrix stored in packed format and X   
    and B are N-by-NRHS matrices.   

    The diagonal pivoting method is used to factor A as   
       A = U * D * U**T,  if UPLO = 'U', or   
       A = L * D * L**T,  if UPLO = 'L',   
    where U (or L) is a product of permutation and unit upper (lower)   
    triangular matrices, D is symmetric and block diagonal with 1-by-1   
    and 2-by-2 diagonal blocks.  The factored form of A is then used to   
    solve the system of equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the symmetric matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, the block diagonal matrix D and the multipliers used   
            to obtain the factor U or L from the factorization   
            A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as   
            a packed triangular matrix in the same storage format as A.   

    IPIV    (output) INTEGER array, dimension (N)   
            Details of the interchanges and the block structure of D, as   
            determined by ZSPTRF.  If IPIV(k) > 0, then rows and columns   
            k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1   
            diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,   
            then rows and columns k-1 and -IPIV(k) were interchanged and   
            D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and   
            IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and   
            -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2   
            diagonal block.   

    B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization   
                  has been completed, but the block diagonal matrix D is   
                  exactly singular, so the solution could not be   
                  computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the symmetric matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = aji)   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), zsptrf_(
	    char *, integer *, doublecomplex *, integer *, integer *),
	     zsptrs_(char *, integer *, integer *, doublecomplex *, integer *,
	     doublecomplex *, integer *, integer *);

    --ap;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZSPSV ", &i__1);
	return 0;
    }

/*     Compute the factorization A = U*D*U' or A = L*D*L'. */

    zsptrf_(uplo, n, &ap[1], &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zsptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of ZSPSV */

} /* zspsv_ */
コード例 #3
0
ファイル: zerrsy.c プロジェクト: kstraube/hysim
/* Subroutine */ int zerrsy_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer ip[4], info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int zsytf2_(char *, integer *, doublecomplex *, 
	    integer *, integer *, integer *), alaesm_(char *, logical 
	    *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zspcon_(char *, integer *, doublecomplex *, 
	     integer *, doublereal *, doublereal *, doublecomplex *, integer *
), zsycon_(char *, integer *, doublecomplex *, integer *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zsprfs_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zsptrf_(char *, 
	     integer *, doublecomplex *, integer *, integer *), 
	    zsptri_(char *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zsyrfs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *, doublecomplex *, integer *, doublecomplex *, integer *
, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zsytrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *, doublecomplex *, integer *, integer *), zsytri_(char *, integer *, doublecomplex *, integer *, 
	    integer *, doublecomplex *, integer *), zsptrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zsytrs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRSY tests the error exits for the COMPLEX*16 routines */
/*  for symmetric indefinite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
	ip[j - 1] = j;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the diagonal pivoting */
/*     factorization of a symmetric indefinite matrix. */

    if (lsamen_(&c__2, c2, "SY")) {

/*        ZSYTRF */

	s_copy(srnamc_1.srnamt, "ZSYTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytrf_("/", &c__0, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytrf_("U", &c_n1, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytrf_("U", &c__2, a, &c__1, ip, w, &c__4, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTF2 */

	s_copy(srnamc_1.srnamt, "ZSYTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytf2_("/", &c__0, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytf2_("U", &c_n1, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytf2_("U", &c__2, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTRI */

	s_copy(srnamc_1.srnamt, "ZSYTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytri_("/", &c__0, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytri_("U", &c_n1, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytri_("U", &c__2, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTRS */

	s_copy(srnamc_1.srnamt, "ZSYTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytrs_("U", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsytrs_("U", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zsytrs_("U", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zsytrs_("U", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYRFS */

	s_copy(srnamc_1.srnamt, "ZSYRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsyrfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsyrfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsyrfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zsyrfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYCON */

	s_copy(srnamc_1.srnamt, "ZSYCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsycon_("/", &c__0, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsycon_("U", &c_n1, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsycon_("U", &c__2, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zsycon_("U", &c__1, a, &c__1, ip, &d__1, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the diagonal pivoting */
/*     factorization of a symmetric indefinite packed matrix. */

    } else if (lsamen_(&c__2, c2, "SP")) {

/*        ZSPTRF */

	s_copy(srnamc_1.srnamt, "ZSPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptrf_("/", &c__0, a, ip, &info);
	chkxer_("ZSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptrf_("U", &c_n1, a, ip, &info);
	chkxer_("ZSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPTRI */

	s_copy(srnamc_1.srnamt, "ZSPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptri_("/", &c__0, a, ip, w, &info);
	chkxer_("ZSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptri_("U", &c_n1, a, ip, w, &info);
	chkxer_("ZSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPTRS */

	s_copy(srnamc_1.srnamt, "ZSPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptrs_("/", &c__0, &c__0, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptrs_("U", &c_n1, &c__0, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsptrs_("U", &c__0, &c_n1, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zsptrs_("U", &c__2, &c__1, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPRFS */

	s_copy(srnamc_1.srnamt, "ZSPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsprfs_("/", &c__0, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsprfs_("U", &c_n1, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsprfs_("U", &c__0, &c_n1, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__1, x, &c__2, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__2, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPCON */

	s_copy(srnamc_1.srnamt, "ZSPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zspcon_("/", &c__0, a, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zspcon_("U", &c_n1, a, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zspcon_("U", &c__1, a, ip, &d__1, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRSY */

} /* zerrsy_ */
コード例 #4
0
ファイル: zdrvsp.c プロジェクト: zangel/uquad
/* Subroutine */ int zdrvsp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, 
	doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact, nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer nbmin;
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    );
    static integer iuplo, izero, i1, i2, k1, nerrs;
    extern /* Subroutine */ int zspt01_(char *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zppt05_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zspt02_(char *, integer *, integer *,
	     doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *);
    static char xtype[1];
    extern /* Subroutine */ int zspsv_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    char *), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static doublereal rcondc;
    static char packit[1];
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    static doublereal cndnum, ainvnm;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
    extern doublereal zlansp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zlatsp_(char 
	    *, integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zsptrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zsptri_(char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zerrvx_(char *, integer *), zspsvx_(char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
	    doublereal *, integer *);
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZDRVSP tests the driver routines ZSPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AINV    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

		if (imat != 11) {

/*                 Set up parameters with ZLATB4 and generate a test   
                   matrix with ZLATMS. */

		    zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);

		    s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		    zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &
			    work[1], &info);

/*                 Check error code from ZLATMS. */

		    if (info != 0) {
			alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
			goto L160;
		    }

/*                 For types 3-6, zero one or more rows and columns of   
                   the matrix to test that INFO is returned correctly. */

		    if (zerot) {
			if (imat == 3) {
			    izero = 1;
			} else if (imat == 4) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

			if (imat < 6) {

/*                       Set row and column IZERO to zero. */

			    if (iuplo == 1) {
				ioff = (izero - 1) * izero / 2;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
				}
				ioff += izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0., a[i__4].i = 0.;
				    ioff += i__;
/* L30: */
				}
			    } else {
				ioff = izero;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0., a[i__4].i = 0.;
				    ioff = ioff + n - i__;
/* L40: */
				}
				ioff -= izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
				}
			    }
			} else {
			    if (iuplo == 1) {

/*                          Set the first IZERO rows and columns to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i2 = min(j,izero);
				    i__4 = i2;
				    for (i__ = 1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				    }
				    ioff += j;
/* L70: */
				}
			    } else {

/*                          Set the last IZERO rows and columns to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i1 = max(j,izero);
				    i__4 = n;
				    for (i__ = i1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				    }
				    ioff = ioff + n - j;
/* L90: */
				}
			    }
			}
		    } else {
			izero = 0;
		    }
		} else {

/*                 Use a special block diagonal matrix to test alternate   
                   code for the 2-by-2 blocks. */

		    zlatsp_(uplo, &n, &a[1], iseed);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by ZSPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = zlansp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zsptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			zsptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = zlansp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test ZSPSV  --- */

		    if (ifact == 2) {
			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using ZSPSV. */

			s_copy(srnamc_1.srnamt, "ZSPSV ", (ftnlen)6, (ftnlen)
				6);
			zspsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from ZSPSV . */

			if (info != k) {
			    alaerh_(path, "ZSPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
				, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "ZSPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test ZSPSVX --- */

		    if (ifact == 2 && npp > 0) {
			zlaset_("Full", &npp, &c__1, &c_b61, &c_b61, &afac[1],
				 &npp);
		    }
		    zlaset_("Full", &n, nrhs, &c_b61, &c_b61, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using ZSPSVX. */

		    s_copy(srnamc_1.srnamt, "ZSPSVX", (ftnlen)6, (ftnlen)6);
		    zspsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 
			    1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from ZSPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "ZSPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from ZSPSVX with the computed value   
                   in RCONDC. */

		    result[5] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "ZSPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVSP */

} /* zdrvsp_ */