コード例 #1
0
ファイル: zerrsy.c プロジェクト: kstraube/hysim
/* Subroutine */ int zerrsy_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    doublecomplex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    doublereal r__[4];
    doublecomplex w[8], x[4];
    char c2[2];
    doublereal r1[4], r2[4];
    doublecomplex af[16]	/* was [4][4] */;
    integer ip[4], info;
    doublereal anrm, rcond;
    extern /* Subroutine */ int zsytf2_(char *, integer *, doublecomplex *, 
	    integer *, integer *, integer *), alaesm_(char *, logical 
	    *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), zspcon_(char *, integer *, doublecomplex *, 
	     integer *, doublereal *, doublereal *, doublecomplex *, integer *
), zsycon_(char *, integer *, doublecomplex *, integer *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zsprfs_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zsptrf_(char *, 
	     integer *, doublecomplex *, integer *, integer *), 
	    zsptri_(char *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zsyrfs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *, doublecomplex *, integer *, doublecomplex *, integer *
, doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zsytrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *, doublecomplex *, integer *, integer *), zsytri_(char *, integer *, doublecomplex *, integer *, 
	    integer *, doublecomplex *, integer *), zsptrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zsytrs_(char *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRSY tests the error exits for the COMPLEX*16 routines */
/*  for symmetric indefinite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    d__1 = 1. / (doublereal) (i__ + j);
	    d__2 = -1. / (doublereal) (i__ + j);
	    z__1.r = d__1, z__1.i = d__2;
	    af[i__1].r = z__1.r, af[i__1].i = z__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0., b[i__1].i = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	i__1 = j - 1;
	w[i__1].r = 0., w[i__1].i = 0.;
	i__1 = j - 1;
	x[i__1].r = 0., x[i__1].i = 0.;
	ip[j - 1] = j;
/* L20: */
    }
    anrm = 1.;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the diagonal pivoting */
/*     factorization of a symmetric indefinite matrix. */

    if (lsamen_(&c__2, c2, "SY")) {

/*        ZSYTRF */

	s_copy(srnamc_1.srnamt, "ZSYTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytrf_("/", &c__0, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytrf_("U", &c_n1, a, &c__1, ip, w, &c__1, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytrf_("U", &c__2, a, &c__1, ip, w, &c__4, &info);
	chkxer_("ZSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTF2 */

	s_copy(srnamc_1.srnamt, "ZSYTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytf2_("/", &c__0, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytf2_("U", &c_n1, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytf2_("U", &c__2, a, &c__1, ip, &info);
	chkxer_("ZSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTRI */

	s_copy(srnamc_1.srnamt, "ZSYTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytri_("/", &c__0, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytri_("U", &c_n1, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsytri_("U", &c__2, a, &c__1, ip, w, &info);
	chkxer_("ZSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYTRS */

	s_copy(srnamc_1.srnamt, "ZSYTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsytrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsytrs_("U", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsytrs_("U", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zsytrs_("U", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zsytrs_("U", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info);
	chkxer_("ZSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYRFS */

	s_copy(srnamc_1.srnamt, "ZSYRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsyrfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsyrfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsyrfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zsyrfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("ZSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSYCON */

	s_copy(srnamc_1.srnamt, "ZSYCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsycon_("/", &c__0, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsycon_("U", &c_n1, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zsycon_("U", &c__2, a, &c__1, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	d__1 = -anrm;
	zsycon_("U", &c__1, a, &c__1, ip, &d__1, &rcond, w, &info);
	chkxer_("ZSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the diagonal pivoting */
/*     factorization of a symmetric indefinite packed matrix. */

    } else if (lsamen_(&c__2, c2, "SP")) {

/*        ZSPTRF */

	s_copy(srnamc_1.srnamt, "ZSPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptrf_("/", &c__0, a, ip, &info);
	chkxer_("ZSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptrf_("U", &c_n1, a, ip, &info);
	chkxer_("ZSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPTRI */

	s_copy(srnamc_1.srnamt, "ZSPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptri_("/", &c__0, a, ip, w, &info);
	chkxer_("ZSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptri_("U", &c_n1, a, ip, w, &info);
	chkxer_("ZSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPTRS */

	s_copy(srnamc_1.srnamt, "ZSPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsptrs_("/", &c__0, &c__0, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsptrs_("U", &c_n1, &c__0, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsptrs_("U", &c__0, &c_n1, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zsptrs_("U", &c__2, &c__1, a, ip, b, &c__1, &info);
	chkxer_("ZSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPRFS */

	s_copy(srnamc_1.srnamt, "ZSPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zsprfs_("/", &c__0, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zsprfs_("U", &c_n1, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zsprfs_("U", &c__0, &c_n1, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__1, x, &c__2, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__2, x, &c__1, r1, r2, w, 
		r__, &info);
	chkxer_("ZSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZSPCON */

	s_copy(srnamc_1.srnamt, "ZSPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	zspcon_("/", &c__0, a, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zspcon_("U", &c_n1, a, ip, &anrm, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	d__1 = -anrm;
	zspcon_("U", &c__1, a, ip, &d__1, &rcond, w, &info);
	chkxer_("ZSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRSY */

} /* zerrsy_ */
コード例 #2
0
ファイル: zdrvsp.c プロジェクト: zangel/uquad
/* Subroutine */ int zdrvsp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, 
	doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact, nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer nbmin;
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    );
    static integer iuplo, izero, i1, i2, k1, nerrs;
    extern /* Subroutine */ int zspt01_(char *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *), zppt05_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zspt02_(char *, integer *, integer *,
	     doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *);
    static char xtype[1];
    extern /* Subroutine */ int zspsv_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    char *), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static doublereal rcondc;
    static char packit[1];
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    static doublereal cndnum, ainvnm;
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
    extern doublereal zlansp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zlatsp_(char 
	    *, integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zsptrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zsptri_(char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zerrvx_(char *, integer *), zspsvx_(char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
	    doublereal *, integer *);
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZDRVSP tests the driver routines ZSPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AINV    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 11;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

		if (imat != 11) {

/*                 Set up parameters with ZLATB4 and generate a test   
                   matrix with ZLATMS. */

		    zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &
			    mode, &cndnum, dist);

		    s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		    zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			    cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &
			    work[1], &info);

/*                 Check error code from ZLATMS. */

		    if (info != 0) {
			alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
			goto L160;
		    }

/*                 For types 3-6, zero one or more rows and columns of   
                   the matrix to test that INFO is returned correctly. */

		    if (zerot) {
			if (imat == 3) {
			    izero = 1;
			} else if (imat == 4) {
			    izero = n;
			} else {
			    izero = n / 2 + 1;
			}

			if (imat < 6) {

/*                       Set row and column IZERO to zero. */

			    if (iuplo == 1) {
				ioff = (izero - 1) * izero / 2;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
				}
				ioff += izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0., a[i__4].i = 0.;
				    ioff += i__;
/* L30: */
				}
			    } else {
				ioff = izero;
				i__3 = izero - 1;
				for (i__ = 1; i__ <= i__3; ++i__) {
				    i__4 = ioff;
				    a[i__4].r = 0., a[i__4].i = 0.;
				    ioff = ioff + n - i__;
/* L40: */
				}
				ioff -= izero;
				i__3 = n;
				for (i__ = izero; i__ <= i__3; ++i__) {
				    i__4 = ioff + i__;
				    a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
				}
			    }
			} else {
			    if (iuplo == 1) {

/*                          Set the first IZERO rows and columns to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i2 = min(j,izero);
				    i__4 = i2;
				    for (i__ = 1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				    }
				    ioff += j;
/* L70: */
				}
			    } else {

/*                          Set the last IZERO rows and columns to zero. */

				ioff = 0;
				i__3 = n;
				for (j = 1; j <= i__3; ++j) {
				    i1 = max(j,izero);
				    i__4 = n;
				    for (i__ = i1; i__ <= i__4; ++i__) {
					i__5 = ioff + i__;
					a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				    }
				    ioff = ioff + n - j;
/* L90: */
				}
			    }
			}
		    } else {
			izero = 0;
		    }
		} else {

/*                 Use a special block diagonal matrix to test alternate   
                   code for the 2-by-2 blocks. */

		    zlatsp_(uplo, &n, &a[1], iseed);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by ZSPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = zlansp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zsptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			zsptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = zlansp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test ZSPSV  --- */

		    if (ifact == 2) {
			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using ZSPSV. */

			s_copy(srnamc_1.srnamt, "ZSPSV ", (ftnlen)6, (ftnlen)
				6);
			zspsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from ZSPSV . */

			if (info != k) {
			    alaerh_(path, "ZSPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
				, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "ZSPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test ZSPSVX --- */

		    if (ifact == 2 && npp > 0) {
			zlaset_("Full", &npp, &c__1, &c_b61, &c_b61, &afac[1],
				 &npp);
		    }
		    zlaset_("Full", &n, nrhs, &c_b61, &c_b61, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using ZSPSVX. */

		    s_copy(srnamc_1.srnamt, "ZSPSVX", (ftnlen)6, (ftnlen)6);
		    zspsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 
			    1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from ZSPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "ZSPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    zspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zspt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from ZSPSVX with the computed value   
                   in RCONDC. */

		    result[5] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "ZSPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVSP */

} /* zdrvsp_ */