bool AM3DDeadTimeCorrectionAB::values(const AMnDIndex &indexStart, const AMnDIndex &indexEnd, double *outputValues) const { if(indexStart.rank() != 3 || indexEnd.rank() != 3) return false; if(!isValid()) return false; if((unsigned)indexEnd.i() >= (unsigned)axes_.at(0).size || (unsigned)indexStart.i() > (unsigned)indexEnd.i() || (unsigned)indexEnd.j() >= (unsigned)axes_.at(1).size || (unsigned)indexStart.j() > (unsigned)indexEnd.j() || (unsigned)indexEnd.k() >= (unsigned)axes_.at(2).size || (unsigned)indexStart.k() > (unsigned)indexEnd.k()) return false; int totalSize = indexStart.totalPointsTo(indexEnd); QVector<double> data = QVector<double>(totalSize); QVector<double> icr = QVector<double>(totalSize); QVector<double> ocr = QVector<double>(totalSize); spectra_->values(indexStart, indexEnd, data.data()); icr_->values(indexStart, indexEnd, icr.data()); ocr_->values(indexStart, indexEnd, ocr.data()); for (int i = 0, iSize = indexEnd.i()-indexStart.i()+1; i < iSize; i++){ for (int j = 0, jSize = indexEnd.j()-indexStart.j()+1; j < jSize; j++){ for (int k = 0, kSize = indexEnd.k()-indexStart.k()+1; k < kSize; k++){ int index = i + j*iSize + k*iSize*jSize; // If ocr is equal to 0 then that will cause division by zero. Since these are both count rates, they should both be greater than zero. if (icr.at(index) <= 0 || ocr.at(index) <= 0) outputValues[index] = 0; else outputValues[index] = data.at(index)*icr.at(index)/ocr.at(index); } } } return true; }
AMNumber AM3DAdditionAB::value(const AMnDIndex &indexes) const { if(indexes.rank() != 3) return AMNumber(AMNumber::DimensionError); if(!isValid()) return AMNumber(AMNumber::InvalidError); for (int i = 0; i < sources_.size(); i++) if (indexes.i() >= sources_.at(i)->size(0) || indexes.j() >= sources_.at(i)->size(1) || indexes.k() >= sources_.at(i)->size(2)) return AMNumber(AMNumber::OutOfBoundsError); if (cacheUpdateRequired_) computeCachedValues(); return cachedData_.at(indexes.i()*size(1)*size(2)+indexes.j()*size(2)+indexes.k()); }
AMNumber AM3DDeadTimeCorrectionAB::value(const AMnDIndex &indexes) const { if(indexes.rank() != 3) return AMNumber(AMNumber::DimensionError); if(!isValid()) return AMNumber(AMNumber::InvalidError); if (indexes.i() >= spectra_->size(0) || indexes.j() >= spectra_->size(1) || indexes.k() >= spectra_->size(2)) return AMNumber(AMNumber::OutOfBoundsError); if ((int)spectra_->value(indexes) == 0 || double(ocr_->value(indexes)) == 0) return 0; else return double(icr_->value(indexes))/double(ocr_->value(indexes))*(int)spectra_->value(indexes); }
bool AM3DDeadTimeAB::values(const AMnDIndex &indexStart, const AMnDIndex &indexEnd, double *outputValues) const { if(indexStart.rank() != 3 || indexEnd.rank() != 3) return false; if(!isValid()) return false; #ifdef AM_ENABLE_BOUNDS_CHECKING if((unsigned)indexEnd.i() >= (unsigned)axes_.at(0).size || (unsigned)indexStart.i() > (unsigned)indexEnd.i() || (unsigned)indexEnd.j() >= (unsigned)axes_.at(1).size || (unsigned)indexStart.j() > (unsigned)indexEnd.j() || (unsigned)indexEnd.k() >= (unsigned)axes_.at(2).size || (unsigned)indexStart.k() > (unsigned)indexEnd.k()) return false; #endif int totalSize = indexStart.totalPointsTo(indexEnd); AMnDIndex start2D = AMnDIndex(indexStart.i(), indexStart.j()); AMnDIndex end2D = AMnDIndex(indexEnd.i(), indexEnd.j()); int icrOcrTotalSize = start2D.totalPointsTo(end2D); QVector<double> data = QVector<double>(totalSize); QVector<double> icr = QVector<double>(icrOcrTotalSize); QVector<double> ocr = QVector<double>(icrOcrTotalSize); spectra_->values(indexStart, indexEnd, data.data()); icr_->values(start2D, end2D, icr.data()); ocr_->values(start2D, end2D, ocr.data()); for (int i = 0, iSize = indexEnd.i()-indexStart.i()+1; i < iSize; i++){ for (int j = 0, jSize = indexEnd.j()-indexStart.j()+1; j < jSize; j++){ // If ocr is equal to 0 then that will cause division by zero. Since these are both count rates, they should both be greater than zero. if (icr.at(i*jSize+j) <= 0 || ocr.at(i*jSize+j) <= 0){ for (int k = 0, kSize = indexEnd.k()-indexStart.k()+1; k < kSize; k++) outputValues[i*jSize*kSize+j*kSize+k] = 0; } else { double factor = icr.at(i*jSize+j)/ocr.at(i*jSize+j); for (int k = 0, kSize = indexEnd.k()-indexStart.k()+1; k < kSize; k++) outputValues[i*jSize*kSize+j*kSize+k] = data.at(i*jSize*kSize+j*kSize+k)*factor; } } } return true; }
AMNumber AM3DDeadTimeAB::value(const AMnDIndex &indexes) const { if(indexes.rank() != 3) return AMNumber(AMNumber::DimensionError); if(!isValid()) return AMNumber(AMNumber::InvalidError); #ifdef AM_ENABLE_BOUNDS_CHECKING if (indexes.i() >= spectra_->size(0) || indexes.j() >= spectra_->size(1) || indexes.k() >= spectra_->size(2)) return AMNumber(AMNumber::OutOfBoundsError); #endif if ((int)spectra_->value(indexes) == 0 || double(ocr_->value(AMnDIndex(indexes.i(), indexes.j()))) == 0) return 0; else return double(icr_->value(AMnDIndex(indexes.i(), indexes.j())))/double(ocr_->value(AMnDIndex(indexes.i(), indexes.j())))*(int)spectra_->value(indexes); }
/* This base-class implementation simply calls value() repeatedly and should absolutely be re-implemented for better performance. */ bool AMDataSource::values(const AMnDIndex &indexStart, const AMnDIndex &indexEnd, double *outputValues) const { static bool programmerWarningIssued = false; if(!programmerWarningIssued) { AMErrorMon::debug(0, AMDATASOURCE_VALUES_BASE_IMPLEMENTATION_CALLED, QString("AMDataSource: Warning: Data source '%1' is using the base implementation of AMDataSource::values(), which is very inefficient. Re-implement values() to improve performance. (This warning will only be given once.)").arg(name())); programmerWarningIssued = true; // one problem with this warning method: if multiple classes have this problem, it will only be given once, and the subsequent classes will not be named. } int _rank = rank(); if(indexStart.rank() != _rank || indexEnd.rank() != _rank) return false; #ifdef AM_ENABLE_BOUNDS_CHECKING for(int mu=0; mu<_rank; ++mu) { if(indexEnd.at(mu) >= size(mu)) return false; if(indexEnd.at(mu) < indexStart.at(mu)) return false; } #endif switch(_rank) { case 0: *outputValues = double(value(indexStart)); break; case 1: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) *(outputValues++) = double(value(AMnDIndex(i))); break; } case 2: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) for(int j=indexStart.j(); j<=indexEnd.j(); ++j) *(outputValues++) = double(value(AMnDIndex(i,j))); break; } case 3: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) for(int j=indexStart.j(); j<=indexEnd.j(); ++j) for(int k=indexStart.k(); k<=indexEnd.k(); ++k) *(outputValues++) = double(value(AMnDIndex(i,j,k))); break; } case 4: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) for(int j=indexStart.j(); j<=indexEnd.j(); ++j) for(int k=indexStart.k(); k<=indexEnd.k(); ++k) for(int l=indexStart.l(); l<=indexEnd.l(); ++l) *(outputValues++) = double(value(AMnDIndex(i,j,k,l))); break; } default: { valuesImplementationRecursive(indexStart, indexEnd, AMnDIndex(_rank, AMnDIndex::DoNotInit), 0, &outputValues); break; } } return true; }
bool AMnDDeadTimeAB::values(const AMnDIndex &indexStart, const AMnDIndex &indexEnd, double *outputValues) const { if(indexStart.rank() != rank() || indexEnd.rank() != indexStart.rank()) return false; if(!isValid()) return false; #ifdef AM_ENABLE_BOUNDS_CHECKING for (int i = 0, size = axes_.size(); i < size; i++) if (indexEnd.at(i) >= axes_.at(i).size || (unsigned)indexStart.at(i) > (unsigned)indexEnd.at(i)) return false; #endif switch(rank()){ case 0: // Can't happen. break; case 1:{ int totalSize = indexStart.totalPointsTo(indexEnd); double inputCounts = inputCounts_->value(AMnDIndex()); double outputCounts = outputCounts_->value(AMnDIndex()); if (outputCounts == 0){ QVector<double> data = QVector<double>(totalSize, 0); outputValues = data.data(); } else { double scalingFactor = qAbs(inputCounts/outputCounts); QVector<double> data = QVector<double>(totalSize); spectrum_->values(indexStart, indexEnd, data.data()); for (int i = 0, size = data.size(); i < size; i++) outputValues[i] = data.at(i)*scalingFactor; } break; } case 2:{ int totalSize = indexStart.totalPointsTo(indexEnd); int crTotalSize = AMnDIndex(indexStart.i()).totalPointsTo(AMnDIndex(indexEnd.i())); QVector<double> data = QVector<double>(totalSize); QVector<double> inputCounts = QVector<double>(crTotalSize); QVector<double> outputCounts = QVector<double>(crTotalSize); spectrum_->values(indexStart, indexEnd, data.data()); inputCounts_->values(indexStart.i(), indexEnd.i(), inputCounts.data()); outputCounts_->values(indexStart.i(), indexEnd.i(), outputCounts.data()); for (int i = 0, iSize = indexEnd.i() - indexStart.i()+1; i < iSize; i++){ // If outputCounts is equal to 0 then that will cause division by zero. if (outputCounts.at(i) <= 0){ for (int j = 0, jSize = indexEnd.j()-indexStart.j()+1; j < jSize; j++) outputValues[i*jSize+j] = 0; } else { double factor = qAbs(inputCounts.at(i)/outputCounts.at(i)); for (int j = 0, jSize = indexEnd.j()-indexStart.j()+1; j < jSize; j++) outputValues[i*jSize+j] = data.at(i*jSize+j)*factor; } } break; } case 3:{ int totalSize = indexStart.totalPointsTo(indexEnd); AMnDIndex start2D = AMnDIndex(indexStart.i(), indexStart.j()); AMnDIndex end2D = AMnDIndex(indexEnd.i(), indexEnd.j()); int icrOcrTotalSize = start2D.totalPointsTo(end2D); QVector<double> data = QVector<double>(totalSize); QVector<double> inputCounts = QVector<double>(icrOcrTotalSize); QVector<double> outputCounts = QVector<double>(icrOcrTotalSize); spectrum_->values(indexStart, indexEnd, data.data()); inputCounts_->values(start2D, end2D, inputCounts.data()); outputCounts_->values(start2D, end2D, outputCounts.data()); for (int i = 0, iSize = indexEnd.i()-indexStart.i()+1; i < iSize; i++){ for (int j = 0, jSize = indexEnd.j()-indexStart.j()+1; j < jSize; j++){ int scaleFactorIndex = i*jSize+j; // If outputCounts is equal to 0 then that will cause division by zero. if (outputCounts.at(scaleFactorIndex) <= 0){ for (int k = 0, kSize = indexEnd.k()-indexStart.k()+1; k < kSize; k++) outputValues[i*jSize*kSize+j*kSize+k] = 0; } else { double scaleFactor = qAbs(inputCounts.at(scaleFactorIndex)/outputCounts.at(scaleFactorIndex)); for (int k = 0, kSize = indexEnd.k()-indexStart.k()+1; k < kSize; k++){ int spectrumIndex = i*jSize*kSize+j*kSize+k; outputValues[spectrumIndex] = data.at(spectrumIndex)*scaleFactor; } } } } break; } case 4:{ int totalSize = indexStart.totalPointsTo(indexEnd); AMnDIndex start3D = AMnDIndex(indexStart.i(), indexStart.j()); AMnDIndex end3D = AMnDIndex(indexEnd.i(), indexEnd.j()); int icrOcrTotalSize = start3D.totalPointsTo(end3D); QVector<double> data = QVector<double>(totalSize); QVector<double> inputCounts = QVector<double>(icrOcrTotalSize); QVector<double> outputCounts = QVector<double>(icrOcrTotalSize); spectrum_->values(indexStart, indexEnd, data.data()); inputCounts_->values(start3D, end3D, inputCounts.data()); outputCounts_->values(start3D, end3D, outputCounts.data()); for (int i = 0, iSize = indexEnd.i()-indexStart.i()+1; i < iSize; i++){ for (int j = 0, jSize = indexEnd.j()-indexStart.j()+1; j < jSize; j++){ for (int k = 0, kSize = indexEnd.k()-indexStart.k()+1; k < kSize; k++){ int scaleFactorIndex = i*jSize*kSize+j*kSize+k; // If outputCounts is equal to 0 then that will cause division by zero. if (outputCounts.at(scaleFactorIndex) <= 0){ for (int l = 0, lSize = indexEnd.l()-indexStart.l()+1; l < lSize; l++) outputValues[i*jSize*kSize*lSize+j*kSize*lSize+k*lSize+l] = 0; } else { double scaleFactor = qAbs(inputCounts.at(scaleFactorIndex)/outputCounts.at(scaleFactorIndex)); for (int l = 0, lSize = indexEnd.l()-indexStart.l()+1; l < lSize; l++){ int spectrumIndex = i*jSize*kSize*lSize+j*kSize*lSize+k*lSize+l; outputValues[spectrumIndex] = data.at(spectrumIndex)*scaleFactor; } } } } } break; } } return true; }
void AMExternalScanDataSourceAB::copyValues(int dataSourceIndex) { AMDataSource* ds = scan_->dataSourceAt(dataSourceIndex); const AMnDIndex size = ds->size(); switch(ds->rank()) { case 0: values_.clear(); values_ << ds->value(AMnDIndex()); break; case 1: { values_.resize(size.i()); for(int i=0; i<size.i(); i++) values_[i] = ds->value(i); break; } case 2: { values_.resize(size.i()*size.j()); for(int i=0; i<size.i(); i++) for(int j=0; j<size.j(); j++) values_[i*size.j() + j] = ds->value(AMnDIndex(i,j)); break; } case 3: { values_.resize(size.i()*size.j()*size.k()); for(int i=0; i<size.i(); i++) for(int j=0; j<size.j(); j++) for(int k=0; k<size.k(); k++) values_[i*size.j()*size.k() + j*size.k() + k] = ds->value(AMnDIndex(i,j,k)); break; } case 4: { values_.resize(size.i()*size.j()*size.k()*size.l()); for(int i=0; i<size.i(); i++) for(int j=0; j<size.j(); j++) for(int k=0; k<size.k(); k++) for(int l=0; l<size.l(); l++) values_[i*size.j()*size.k()*size.l() + j*size.k()*size.l() + k*size.l() + l] = ds->value(AMnDIndex(i,j,k,l)); break; } case 5: { values_.resize(size.i()*size.j()*size.k()*size.l()*size.m()); for(int i=0; i<size.i(); i++) for(int j=0; j<size.j(); j++) for(int k=0; k<size.k(); k++) for(int l=0; l<size.l(); l++) for(int m=0; m<size.m(); m++) values_[i*size.j()*size.k()*size.l()*size.m() + j*size.k()*size.l()*size.m() + k*size.l()*size.m() + l*size.m() + m] = ds->value(AMnDIndex(i,j,k,l,m)); /// \todo oh god, we really need a block copy or a multi-dimensional iterator for AMDataSource::value()... break; } } }
AMNumber AMExternalScanDataSourceAB::value(const AMnDIndex &indexes) const { if(!isValid()) return AMNumber::InvalidError; if(indexes.rank() != axes_.count()) return AMNumber::DimensionError; switch(axes_.count()) { case 0: return values_.at(0); case 1: #ifdef AM_ENABLE_BOUNDS_CHECKING if((unsigned)indexes.i() >= (unsigned)axes_.at(0).size) return AMNumber::OutOfBoundsError; #endif return values_.at(indexes.i()); case 2: #ifdef AM_ENABLE_BOUNDS_CHECKING if(((unsigned)indexes.i() >= (unsigned)axes_.at(0).size || (unsigned)indexes.j() >= (unsigned)axes_.at(1).size)) return AMNumber::OutOfBoundsError; #endif return values_.at(indexes.i()*axes_.at(1).size + indexes.j()); case 3: { #ifdef AM_ENABLE_BOUNDS_CHECKING if(((unsigned)indexes.i() >= (unsigned)axes_.at(0).size || (unsigned)indexes.j() >= (unsigned)axes_.at(1).size || (unsigned)indexes.k() >= (unsigned)axes_.at(2).size)) return AMNumber::OutOfBoundsError; #endif int flatIndex = indexes.k(); int stride = axes_.at(2).size; flatIndex += indexes.j()*stride; stride *= axes_.at(1).size; flatIndex += indexes.i()*stride; return values_.at(flatIndex); } case 4: { #ifdef AM_ENABLE_BOUNDS_CHECKING if(((unsigned)indexes.i() >= (unsigned)axes_.at(0).size || (unsigned)indexes.j() >= (unsigned)axes_.at(1).size || (unsigned)indexes.k() >= (unsigned)axes_.at(2).size || (unsigned)indexes.l() >= (unsigned)axes_.at(3).size)) return AMNumber::OutOfBoundsError; #endif int flatIndex = indexes.l(); int stride = axes_.at(3).size; flatIndex += indexes.k()*stride; stride *= axes_.at(2).size; flatIndex += indexes.j()*stride; stride *= axes_.at(1).size; flatIndex += indexes.i(); return values_.at(flatIndex); } case 5: { #ifdef AM_ENABLE_BOUNDS_CHECKING if(((unsigned)indexes.i() >= (unsigned)axes_.at(0).size || (unsigned)indexes.j() >= (unsigned)axes_.at(1).size || (unsigned)indexes.k() >= (unsigned)axes_.at(2).size || (unsigned)indexes.l() >= (unsigned)axes_.at(3).size || (unsigned)indexes.m() >= (unsigned)axes_.at(4).size)) return AMNumber::OutOfBoundsError; #endif int flatIndex = indexes.m(); int stride = axes_.at(4).size; flatIndex += indexes.l()*stride; stride *= axes_.at(3).size; flatIndex += indexes.k()*stride; stride *= axes_.at(2).size; flatIndex += indexes.j()*stride; stride *= axes_.at(1).size; flatIndex += indexes.i()*stride; return values_.at(flatIndex); } default: return AMNumber::InvalidError; } }
void AMInMemoryDataStore::measurementValues(const AMIMDSMeasurement& measurement, const AMnDIndex& fullSize, const AMnDIndex& indexStart, const AMnDIndex& indexEnd, double* outputValues) const { /// \todo Use memcpy once we move to a packed 64-bit size for AMNumber storage. switch(indexStart.rank()) { case 0: { outputValues[0] = double(measurement.at(0)); break; } case 1: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) *(outputValues++) = double(measurement.at(i)); break; } case 2: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) { int ic = i*fullSize.j(); for(int j=indexStart.j(); j<=indexEnd.j(); ++j) { *(outputValues++) = double(measurement.at(ic+j)); } } break; } case 3: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) { int ic = i*fullSize.j()*fullSize.k(); for(int j=indexStart.j(); j<=indexEnd.j(); ++j) { int jc = j*fullSize.k(); for(int k=indexStart.k(); k<=indexEnd.k(); ++k) { *(outputValues++) = double(measurement.at(ic+jc+k)); } } } break; } case 4: { for(int i=indexStart.i(); i<=indexEnd.i(); ++i) { int ic = i*fullSize.j()*fullSize.k()*fullSize.l(); for(int j=indexStart.j(); j<=indexEnd.j(); ++j) { int jc = j*fullSize.k()*fullSize.l(); for(int k=indexStart.k(); k<=indexEnd.k(); ++k) { int kc = k*fullSize.l(); for(int l=indexStart.l(); l<=indexEnd.l(); ++l) { *(outputValues++) = double(measurement.at(ic+jc+kc+l)); } } } } break; } default: { // general recursive case: measurementValuesImplementationRecursive(measurement, indexStart, indexEnd, fullSize, &outputValues, 0, 0); break; } } }
bool AMInMemoryDataStore::values(const AMnDIndex &scanIndexStart, const AMnDIndex &scanIndexEnd, int measurementId, const AMnDIndex &measurementIndexStart, const AMnDIndex &measurementIndexEnd, double *outputValues) const { if(scanIndexStart.rank() != axes_.count() || scanIndexEnd.rank() != axes_.count()) return false; if(measurementId >= measurements_.count()) return false; const AMMeasurementInfo& mi = measurements_.at(measurementId); if(measurementIndexStart.rank() != mi.rank() || measurementIndexEnd.rank() != mi.rank()) return false; #ifdef AM_ENABLE_BOUNDS_CHECKING // check bounds for scan axes for(int mu=axes_.count()-1; mu >= 0; --mu) { if(scanIndexEnd.at(mu) < scanIndexStart.at(mu)) return false; if(scanIndexEnd.at(mu) >= axes_.at(mu).size) return false; } // check bounds for measurement axes for(int mu=mi.rank()-1; mu >= 0; --mu) { if(measurementIndexEnd.at(mu) < measurementIndexStart.at(mu)) return false; if(measurementIndexEnd.at(mu) >= mi.size(mu)) return false; } #endif // Determine the full size of the measurement (not necessarily the size of the block that we want to read out). AMnDIndex measurementSize = mi.size(); int flatMeasurementSize = measurementSize.product(); // specific cases of scan rank: switch(scanIndexStart.rank()) { case 0: { // null scan space; just copy in the measurement block if(measurementIndexStart.rank() == 0) { // If measurements are scalar values, can optimize. outputValues[0] = double(scalarScanPoint_.at(measurementId).at(0)); } else { // need to find out how many points one measurement block takes int measurementSpaceSize = measurementIndexStart.totalPointsTo(measurementIndexEnd); if(measurementSpaceSize == flatMeasurementSize) // if asking for the whole measurement, can optimize. measurementValues(scalarScanPoint_.at(measurementId), flatMeasurementSize, outputValues); else measurementValues(scalarScanPoint_.at(measurementId), measurementSize, measurementIndexStart, measurementIndexEnd, outputValues); } break; } case 1:{ if(measurementIndexStart.rank() == 0) { // If measurements are scalar values, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) *(outputValues++) = double(scanPoints_.at(i).at(measurementId).at(0)); } else { // need to find out how many points one measurement block takes int measurementSpaceSize = measurementIndexStart.totalPointsTo(measurementIndexEnd); if(measurementSpaceSize == flatMeasurementSize) // if asking for the whole measurement, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { measurementValues(scanPoints_.at(i).at(measurementId), flatMeasurementSize, outputValues); outputValues += measurementSpaceSize; } else for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { measurementValues(scanPoints_.at(i).at(measurementId), measurementSize, measurementIndexStart, measurementIndexEnd, outputValues); outputValues += measurementSpaceSize; } } break; } case 2:{ if(measurementIndexStart.rank() == 0) { // If measurements are scalar values, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { *(outputValues++) = double(scanPoints_.at(ic+j).at(measurementId).at(0)); } } } else { // need to find out how many points one measurement block takes int measurementSpaceSize = measurementIndexStart.totalPointsTo(measurementIndexEnd); if(measurementSpaceSize == flatMeasurementSize) { // if asking for the whole measurement, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { measurementValues(scanPoints_.at(ic+j).at(measurementId), flatMeasurementSize, outputValues); outputValues += measurementSpaceSize; } } } else { for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { measurementValues(scanPoints_.at(ic+j).at(measurementId), measurementSize, measurementIndexStart, measurementIndexEnd, outputValues); outputValues += measurementSpaceSize; } } } } break; } case 3:{ if(measurementIndexStart.rank() == 0) { // If measurements are scalar values, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j()*scanSize_.k(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { int jc = j*scanSize_.k(); for(int k=scanIndexStart.k(); k<=scanIndexEnd.k(); ++k) { *(outputValues++) = double(scanPoints_.at(ic+jc+k).at(measurementId).at(0)); } } } } else { // need to find out how many points one measurement block takes int measurementSpaceSize = measurementIndexStart.totalPointsTo(measurementIndexEnd); if(measurementSpaceSize == flatMeasurementSize) { // if asking for the whole measurement, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j()*scanSize_.k(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { int jc = j*scanSize_.k(); for(int k=scanIndexStart.k(); k<=scanIndexEnd.k(); ++k) { measurementValues(scanPoints_.at(ic+jc+k).at(measurementId), flatMeasurementSize, outputValues); outputValues += measurementSpaceSize; } } } } else { for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j()*scanSize_.k(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { int jc = j*scanSize_.k(); for(int k=scanIndexStart.k(); k<=scanIndexEnd.k(); ++k) { measurementValues(scanPoints_.at(ic+jc+k).at(measurementId), measurementSize, measurementIndexStart, measurementIndexEnd, outputValues); outputValues += measurementSpaceSize; } } } } } break; } case 4:{ if(measurementIndexStart.rank() == 0) { // If measurements are scalar values, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j()*scanSize_.k()*scanSize_.l(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { int jc = j*scanSize_.k()*scanSize_.l(); for(int k=scanIndexStart.k(); k<=scanIndexEnd.k(); ++k) { int kc = k*scanSize_.l(); for(int l=scanIndexStart.l(); l<=scanIndexEnd.l(); ++l) { *(outputValues++) = double(scanPoints_.at(ic+jc+kc+l).at(measurementId).at(0)); } } } } } else { int measurementSpaceSize = measurementIndexStart.totalPointsTo(measurementIndexEnd); if(measurementSpaceSize == flatMeasurementSize) { // if asking for the whole measurement, can optimize. for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j()*scanSize_.k()*scanSize_.l(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { int jc = j*scanSize_.k()*scanSize_.l(); for(int k=scanIndexStart.k(); k<=scanIndexEnd.k(); ++k) { int kc = k*scanSize_.l(); for(int l=scanIndexStart.l(); l<=scanIndexEnd.l(); ++l) { measurementValues(scanPoints_.at(ic+jc+kc+l).at(measurementId), flatMeasurementSize, outputValues); outputValues += measurementSpaceSize; } } } } } else { for(int i=scanIndexStart.i(); i<=scanIndexEnd.i(); ++i) { int ic = i*scanSize_.j()*scanSize_.k()*scanSize_.l(); for(int j=scanIndexStart.j(); j<=scanIndexEnd.j(); ++j) { int jc = j*scanSize_.k()*scanSize_.l(); for(int k=scanIndexStart.k(); k<=scanIndexEnd.k(); ++k) { int kc = k*scanSize_.l(); for(int l=scanIndexStart.l(); l<=scanIndexEnd.l(); ++l) { measurementValues(scanPoints_.at(ic+jc+kc+l).at(measurementId), measurementSize, measurementIndexStart, measurementIndexEnd, outputValues); outputValues += measurementSpaceSize; } } } } } } break; } default:{ int measurementSpaceSize = measurementIndexStart.totalPointsTo(measurementIndexEnd); valuesImplementationRecursive(scanIndexStart, scanIndexEnd, measurementId, measurementIndexStart, measurementIndexEnd, &outputValues, 0, 0, measurementSize, measurementSpaceSize); return false; break; } } return true; }
bool AM3DAdditionAB::values(const AMnDIndex &indexStart, const AMnDIndex &indexEnd, double *outputValues) const { if(indexStart.rank() != 3 || indexEnd.rank() != 3) return false; if(!isValid()) return false; for (int i = 0; i < sources_.size(); i++) if ((unsigned)indexEnd.i() >= (unsigned)axes_.at(0).size || (unsigned)indexEnd.j() >= (unsigned)axes_.at(1).size || (unsigned)indexEnd.k() >= (unsigned)axes_.at(2).size) return false; if ((unsigned)indexStart.i() > (unsigned)indexEnd.i() || (unsigned)indexStart.j() > (unsigned)indexEnd.j()) return false; if (cacheUpdateRequired_) computeCachedValues(); int totalSize = indexStart.totalPointsTo(indexEnd); memcpy(outputValues, cachedData_.constData()+indexStart.flatIndexInArrayOfSize(size()), totalSize*sizeof(double)); return true; }