void FlipHandsGoalRegion::sample(std::vector<double> &xyz_rpy) { // compute the approach pose so that the gripper is perpendicular to the given direction with a random slant with // respect to the horizontal plane boost::uniform_real<double> dist(-0.5, 0.5) ; Vector3d pos2_offset = Vector3d(planner->x_tol * dist(gen), planner->y_tol * dist(gen), planner->z_tol * dist(gen)) ; // compute the pose of the grasping arm (arm 2) Vector3d pos2 = pos2_offset + p1.translation() ; double d = (p1.translation() - p2.translation()).norm() ; Vector3d pos1 = p2.translation() + pos2_offset + Vector3d(boost::uniform_real<double>(-0.05, 0.05)(gen), boost::uniform_real<double>(-0.05, 0.05)(gen), boost::uniform_real<double>(0, 0.2)(gen)); double roll1, pitch1, yaw1, x1, y1, z1 ; x1 = pos1.x(), y1 = pos1.y(), z1 = pos1.z() ; if ( planner->arm == "r1" ) rpyFromQuat(lookAt(Vector3d(1, 0, 0)), roll1, pitch1, yaw1) ; else rpyFromQuat(lookAt(Vector3d(-1, 0, 0)), roll1, pitch1, yaw1) ; double roll2, pitch2, yaw2, x2, y2, z2 ; x2 = pos2.x() ; y2 = pos2.y() ; z2 = pos2.z() ; rpyFromQuat(Quaterniond(p1.rotation()), roll2, pitch2, yaw2) ; double pitch = boost::uniform_real<double>(planner->pitch_tol_min, planner->pitch_tol_max)(gen) ; double yaw = boost::uniform_real<double>(planner->yaw_tol_min, planner->yaw_tol_max)(gen) ; double roll = boost::uniform_real<double>(planner->roll_tol_min, planner->roll_tol_max)(gen) ; roll1 += roll ; yaw1 += yaw ; pitch1 += pitch ; if ( planner->arm == "r1" ) { xyz_rpy.push_back(x1) ; xyz_rpy.push_back(y1) ; xyz_rpy.push_back(z1) ; xyz_rpy.push_back(roll1) ; xyz_rpy.push_back(pitch1) ; xyz_rpy.push_back(yaw1) ; xyz_rpy.push_back(x2) ; xyz_rpy.push_back(y2) ; xyz_rpy.push_back(z2) ; xyz_rpy.push_back(roll2) ; xyz_rpy.push_back(pitch2) ; xyz_rpy.push_back(yaw2) ; } else { xyz_rpy.push_back(x2) ; xyz_rpy.push_back(y2) ; xyz_rpy.push_back(z2) ; xyz_rpy.push_back(roll2) ; xyz_rpy.push_back(pitch2) ; xyz_rpy.push_back(yaw2) ; xyz_rpy.push_back(x1) ; xyz_rpy.push_back(y1) ; xyz_rpy.push_back(z1) ; xyz_rpy.push_back(roll1) ; xyz_rpy.push_back(pitch1) ; xyz_rpy.push_back(yaw1) ; } }
void update(int value) { frameTimer.start(); // Read the experiment from file, if the file is finished exit suddenly if ( inputStream.eof() ) { exit(0); } if ( isReading ) { // This reads a line (frame) in inputStream readline(inputStream, trialNumber, headCalibration, trialMode, pointMatrix ); headEyeCoords.update(pointMatrix.col(0),pointMatrix.col(1),pointMatrix.col(2)); Affine3d active = headEyeCoords.getRigidStart().getFullTransformation(); eulerAngles.init( headEyeCoords.getRigidStart().getFullTransformation().rotation() ); eyeLeft = headEyeCoords.getLeftEye(); eyeRight= headEyeCoords.getRightEye(); //cerr << eyeRight.transpose() << endl; cyclopeanEye = (eyeLeft+eyeRight)/2.0; if ( trialMode == STIMULUSMODE ) stimulusFrames++; if ( trialMode == FIXATIONMODE ) stimulusFrames=0; // Projection of view normal on the focal plane Vector3d directionOfSight = (active.rotation()*Vector3d(0,0,-1)).normalized(); Eigen::ParametrizedLine<double,3> lineOfSightRight = Eigen::ParametrizedLine<double,3>::Through( eyeRight , eyeRight+directionOfSight ); double lineOfSightRightDistanceToFocalPlane = lineOfSightRight.intersection(focalPlane); //double lenghtOnZ = (active*(center-eyeCalibration )+eyeRight).z(); projPointEyeRight = lineOfSightRightDistanceToFocalPlane *(directionOfSight)+ (eyeRight); // second projection the fixation point computed with z non constant but perfectly parallel to projPointEyeRight lineOfSightRightDistanceToFocalPlane= (( active.rotation()*(center)) - eyeRight).norm(); Vector3d secondProjection = lineOfSightRightDistanceToFocalPlane *(directionOfSight)+ (eyeRight); projPointEyeRight=secondProjection ; // Compute the translation to move the eye in order to avoid share components Vector3d posAlongLineOfSight = (headEyeCoords.getRigidStart().getFullTransformation().rotation())*(eyeRight -eyeCalibration); // GENERATION OF PASSIVE MODE. // HERE WE MOVE THE SCREEN TO FACE THE OBSERVER's EYE if ( passiveMode ) { initProjectionScreen(0, headEyeCoords.getRigidStart().getFullTransformation()*Translation3d(center)); } else initProjectionScreen(focalDistance, Affine3d::Identity()); if ( trialMode == STIMULUSMODE ) { // IMPORTANT Reset the previous status of transformations objectActiveTransformation[0].setIdentity(); objectActiveTransformation[1].setIdentity(); // PLANE 0 Transformation QUELLO CHE STA SOTTO alpha = atan( eyeRight.x()/abs(projPointEyeRight.z()) ); if ( overallTilt ) { instantPlaneSlant = alphaMultiplier*alpha+toRadians(-factors.at("DeltaSlant")-factors.at("StillPlaneSlant")); AngleAxis<double> aa0( instantPlaneSlant,Vector3d::UnitY()); objectActiveTransformation[0]*=aa0; double planesYOffset = factors.at("PlanesCentersYDistance")*(whichPlaneDrawUp ? 1 : -1); objectActiveTransformation[0].translation() = Vector3d(0,planesYOffset,focalDistance); // PLANE 1 Transformation QUELLO CHE STA SOPRA AngleAxis<double> aa1(-toRadians(factors.at("StillPlaneSlant")),Vector3d::UnitY()); objectActiveTransformation[1]*=aa1; objectActiveTransformation[1].translation() = Vector3d(0,-planesYOffset,focalDistance); } else { instantPlaneSlant = alphaMultiplier*alpha+toRadians(factors.at("DeltaSlant")+factors.at("StillPlaneSlant")); AngleAxis<double> aa0( instantPlaneSlant,Vector3d::UnitY()); objectActiveTransformation[0]*=aa0; double planesYOffset = factors.at("PlanesCentersYDistance")*(whichPlaneDrawUp ? 1 : -1); objectActiveTransformation[0].translation() = Vector3d(0,planesYOffset,focalDistance); // PLANE 1 Transformation QUELLO CHE STA SOPRA AngleAxis<double> aa1(toRadians(factors.at("StillPlaneSlant")),Vector3d::UnitY()); objectActiveTransformation[1]*=aa1; objectActiveTransformation[1].translation() = Vector3d(0,-planesYOffset,focalDistance); } objectPassiveTransformation[0] = ( cam.getModelViewMatrix()*objectActiveTransformation[0] ); objectPassiveTransformation[1] = ( cam.getModelViewMatrix()*objectActiveTransformation[1] ); //cout << toDegrees(instantPlaneSlant) << endl; // **************** COMPUTE THE OPTIC FLOWS ************************** // 1) Project the points to screen by computing their coordinates on focalPlane in passive (quite complicate, see the specific method) // *********** FOR THE MOVING PLANE ************* vector<Vector3d> projPointsMovingPlane = stimDrawer[0].projectStimulusPoints(objectActiveTransformation[0],headEyeCoords.getRigidStart().getFullTransformation(),cam,focalDistance, screen, eyeCalibration,passiveMode,false); // 2) Get the angles formed by stimulus and observer // updating with the latest values Vector3d oldAlphaMoving = flowsAnglesAlphaMoving,oldBetaMoving=flowsAnglesBetaMoving; // alpha is the "pitch" angle, beta is the "yaw" angle // Here me must use the points 4,5,8 of the stimulus flowsAnglesAlphaMoving(0) = ( atan2(projPointsMovingPlane[4].x(), abs(focalDistance) ) ); flowsAnglesAlphaMoving(1) = ( atan2(projPointsMovingPlane[5].x(), abs(focalDistance) ) ); flowsAnglesAlphaMoving(2) = ( atan2(projPointsMovingPlane[8].x(), abs(focalDistance) ) ); flowsAnglesBetaMoving(0) = ( atan2(projPointsMovingPlane[4].y(), abs(focalDistance) ) ); flowsAnglesBetaMoving(1) = ( atan2(projPointsMovingPlane[5].y(), abs(focalDistance) ) ); flowsAnglesBetaMoving(2) = ( atan2(projPointsMovingPlane[8].y(), abs(focalDistance) ) ); // 3) Fill the matrix of derivatives MatrixXd angVelocitiesMoving(6,1); angVelocitiesMoving(0) = flowsAnglesAlphaMoving(0)-oldAlphaMoving(0); angVelocitiesMoving(1) = flowsAnglesBetaMoving(0)-oldBetaMoving(0); angVelocitiesMoving(2) = flowsAnglesAlphaMoving(1)-oldAlphaMoving(1); angVelocitiesMoving(3) = flowsAnglesBetaMoving(1)-oldBetaMoving(1); angVelocitiesMoving(4) = flowsAnglesAlphaMoving(2)-oldAlphaMoving(2); angVelocitiesMoving(5) = flowsAnglesBetaMoving(2)-oldBetaMoving(2); angVelocitiesMoving /= ((double)TIMER_MS/(double)1000); // 4) Fill the coefficient matrix, to solve the linear system MatrixXd coeffMatrixMoving(6,6); coeffMatrixMoving << 1, flowsAnglesAlphaMoving(0), flowsAnglesBetaMoving(0), 0, 0, 0, 0, 0, 0, 1,flowsAnglesAlphaMoving(0),flowsAnglesBetaMoving(0), 1, flowsAnglesAlphaMoving(1), flowsAnglesBetaMoving(1), 0, 0, 0, 0, 0, 0, 1,flowsAnglesAlphaMoving(1),flowsAnglesBetaMoving(1), 1, flowsAnglesAlphaMoving(2), flowsAnglesBetaMoving(2), 0, 0, 0, 0, 0, 0, 1,flowsAnglesAlphaMoving(2),flowsAnglesBetaMoving(2) ; // 5) Solve the linear system by robust fullPivHouseholderQR decomposition (see Eigen for details http://eigen.tuxfamily.org/dox/TutorialLinearAlgebra.html ) MatrixXd velocitiesMoving = coeffMatrixMoving.colPivHouseholderQr().solve(angVelocitiesMoving); // 6) Write the output to file flowsFileMoving flowsFileMoving << fixed << trialNumber << "\t" << //1 stimulusFrames << " " << factors.at("DeltaSlant")<< " " << factors.at("StillPlaneSlant") << " " << overallTilt << " " << projPointsMovingPlane[4].transpose() << " " << projPointsMovingPlane[5].transpose() << " " << projPointsMovingPlane[8].transpose() << " " << angVelocitiesMoving.transpose() << " " << velocitiesMoving.transpose() << endl; // ********************* FLOWS FOR THE STILL PLANE ************** // Here we must repeat the same things for the still plane vector<Vector3d> projPointsStillPlane = stimDrawer[1].projectStimulusPoints(objectActiveTransformation[1],headEyeCoords.getRigidStart().getFullTransformation(),cam,focalDistance, screen, eyeCalibration,passiveMode,false); // 2) Get the angles formed by stimulus and observer // updating with the latest values Vector3d oldAlphaStill = flowsAnglesAlphaStill,oldBetaStill=flowsAnglesBetaStill; // alpha is the "pitch" angle, beta is the "yaw" angle // Here me must use the points 4,5,8 of the stimulus flowsAnglesAlphaStill(0) = ( atan2(projPointsStillPlane[4].x(), abs(focalDistance) ) ); flowsAnglesAlphaStill(1) = ( atan2(projPointsStillPlane[5].x(), abs(focalDistance) ) ); flowsAnglesAlphaStill(2) = ( atan2(projPointsStillPlane[8].x(), abs(focalDistance) ) ); flowsAnglesBetaStill(0) = ( atan2(projPointsStillPlane[4].y(), abs(focalDistance) ) ); flowsAnglesBetaStill(1) = ( atan2(projPointsStillPlane[5].y(), abs(focalDistance) ) ); flowsAnglesBetaStill(2) = ( atan2(projPointsStillPlane[8].y(), abs(focalDistance) ) ); // 3) Fill the matrix of derivatives MatrixXd angVelocitiesStill(6,1); angVelocitiesStill(0) = flowsAnglesAlphaStill(0)-oldAlphaStill(0); angVelocitiesStill(1) = flowsAnglesBetaStill(0)-oldBetaStill(0); angVelocitiesStill(2) = flowsAnglesAlphaStill(1)-oldAlphaStill(1); angVelocitiesStill(3) = flowsAnglesBetaStill(1)-oldBetaStill(1); angVelocitiesStill(4) = flowsAnglesAlphaStill(2)-oldAlphaStill(2); angVelocitiesStill(5) = flowsAnglesBetaStill(2)-oldBetaStill(2); angVelocitiesStill /= ((double)TIMER_MS/(double)1000); // 4) Fill the coefficient matrix, to solve the linear system MatrixXd coeffMatrixStill(6,6); coeffMatrixStill << 1, flowsAnglesAlphaStill(0), flowsAnglesBetaStill(0), 0, 0, 0, 0, 0, 0, 1,flowsAnglesAlphaStill(0),flowsAnglesBetaStill(0), 1, flowsAnglesAlphaStill(1), flowsAnglesBetaStill(1), 0, 0, 0, 0, 0, 0, 1,flowsAnglesAlphaStill(1),flowsAnglesBetaStill(1), 1, flowsAnglesAlphaStill(2), flowsAnglesBetaStill(2), 0, 0, 0, 0, 0, 0, 1,flowsAnglesAlphaStill(2),flowsAnglesBetaStill(2) ; // 5) Solve the linear system by robust fullPivHouseholderQR decomposition (see Eigen for details http://eigen.tuxfamily.org/dox/TutorialLinearAlgebra.html ) MatrixXd velocitiesStill = coeffMatrixStill.colPivHouseholderQr().solve(angVelocitiesStill); // 6) Write the output to file flowsFileStill flowsFileStill << fixed << trialNumber << "\t" << // 1 stimulusFrames << " " << // 2 factors.at("DeltaSlant")<< " " << // 3 factors.at("StillPlaneSlant") << " " << // 4 overallTilt << " " << projPointsStillPlane[4].transpose() << " " << // 5,6,7 projPointsStillPlane[5].transpose() << " " << // 8,9,10 projPointsStillPlane[8].transpose() << " " << // 11,12,13 angVelocitiesStill.transpose() << " " << // 14, 15, 16, 17, 18, 19 velocitiesStill.transpose() << endl; // 20, 21, 22, 23, 24, 25 // **************** END OF OPTIC FLOWS COMPUTATION } /* ofstream outputfile; outputfile.open("data.dat"); outputfile << "Subject Name: " << parameters.find("SubjectName") << endl; outputfile << "Passive matrix:" << endl << objectPassiveTransformation.matrix() << endl; outputfile << "Yaw: " << toDegrees(eulerAngles.getYaw()) << endl <<"Pitch: " << toDegrees(eulerAngles.getPitch()) << endl; outputfile << "EyeLeft: " << headEyeCoords.getLeftEye().transpose() << endl; outputfile << "EyeRight: " << headEyeCoords.getRightEye().transpose() << endl << endl; outputfile << "Factors:" << endl; for (map<string,double>::iterator iter=factors.begin(); iter!=factors.end(); ++iter) { outputfile << "\t\t" << iter->first << "= " << iter->second << endl; } */ } if ( trialMode == PROBEMODE ) isReading=false; glutPostRedisplay(); glutTimerFunc(TIMER_MS, update, 0); }
void update(int value) { // Conta i cicli di presentazione dello stimolo if ( (sumOutside > str2num<int>(parameters.find("StimulusCycles")) ) && (trialMode == STIMULUSMODE) ) { sumOutside=0; trialMode++; trialMode=trialMode%4; } if (conditionInside && (sumOutside*2 > str2num<int>(parameters.find("FixationCycles"))) && (trialMode ==FIXATIONMODE ) ) { sumOutside=0; trialMode++; trialMode=trialMode%4; stimulusDuration.start(); } if ( trialMode == STIMULUSMODE ) stimulusFrames++; if ( trialMode == FIXATIONMODE ) stimulusFrames=0; Screen screenPassive; screenPassive.setWidthHeight(SCREEN_WIDE_SIZE, SCREEN_WIDE_SIZE*SCREEN_HEIGHT/SCREEN_WIDTH); screenPassive.setOffset(alignmentX,alignmentY); screenPassive.setFocalDistance(0); screenPassive.transform(headEyeCoords.getRigidStart().getFullTransformation()*Translation3d(center)); camPassive.init(screenPassive); camPassive.setDrySimulation(true); camPassive.setEye(eyeRight); objectPassiveTransformation = ( camPassive.getModelViewMatrix()*objectActiveTransformation ); // Coordinates picker markers = optotrak.getAllPoints(); if ( isVisible(markers[1]) && isVisible(markers[2]) && isVisible(markers[3]) ) headEyeCoords.update(markers[1],markers[2],markers[3]); Affine3d active = headEyeCoords.getRigidStart().getFullTransformation(); eulerAngles.init( headEyeCoords.getRigidStart().getFullTransformation().rotation() ); eyeLeft = headEyeCoords.getLeftEye(); eyeRight = headEyeCoords.getRightEye(); cyclopeanEye = (eyeLeft+eyeRight)/2.0; // Projection of view normal on the focal plane Vector3d directionOfSight = (active.rotation()*Vector3d(0,0,-1)).normalized(); Eigen::ParametrizedLine<double,3> lineOfSightRight = Eigen::ParametrizedLine<double,3>::Through( eyeRight , eyeRight+directionOfSight ); Eigen::ParametrizedLine<double,3> lineOfSightLeft = Eigen::ParametrizedLine<double,3>::Through( eyeLeft, eyeLeft+directionOfSight ); double lineOfSightRightDistanceToFocalPlane = lineOfSightRight.intersection(focalPlane); double lineOfSightLeftDistanceToFocalPlane = lineOfSightLeft.intersection(focalPlane); //double lenghtOnZ = (active*(center-eyeCalibration )+eyeRight).z(); projPointEyeRight = lineOfSightRightDistanceToFocalPlane *(directionOfSight)+ (eyeRight); projPointEyeLeft= lineOfSightLeftDistanceToFocalPlane * (directionOfSight) + (eyeLeft); // second projection the fixation point computed with z non constant but perfectly parallel to projPointEyeRight lineOfSightRightDistanceToFocalPlane= (( active.rotation()*(center)) - eyeRight).norm(); Vector3d secondProjection = lineOfSightRightDistanceToFocalPlane *(directionOfSight)+ (eyeRight); if ( !zOnFocalPlane ) projPointEyeRight=secondProjection ; // Compute the translation to move the eye in order to avoid shear components Vector3d posAlongLineOfSight = (headEyeCoords.getRigidStart().getFullTransformation().rotation())*(eyeRight -eyeCalibration); switch ( (int)factors["Translation"] ) { case -1: case -2: translationFactor.setZero(); if ( trialMode == STIMULUSMODE ) projPointEyeRight=center; break; case 0: translationFactor.setZero(); break; case 1: translationFactor = factors["TranslationConstant"]*Vector3d(posAlongLineOfSight.z(),0,0); break; case 2: translationFactor = factors["TranslationConstant"]*Vector3d(0,posAlongLineOfSight.z(),0); break; } if ( passiveMode ) initProjectionScreen(0,headEyeCoords.getRigidStart().getFullTransformation()*Translation3d(Vector3d(0,0,focalDistance))); else initProjectionScreen(focalDistance,Affine3d::Identity()); checkBounds(); /**** Save to file part ****/ // Markers file save the used markers and time-depending experimental variable to a file // (Make sure that in passive experiment the list of variables has the same order) markersFile << trialNumber << " " << headCalibrationDone << " " << trialMode << " " ; markersFile <<markers[1].transpose() << " " << markers[2].transpose() << " " << markers[3].transpose() << " " << markers[17].transpose() << " " << markers[18].transpose() << " " ; markersFile << factors["Tilt"] << " " << factors["Slant"] << " " << factors["Translation"] << " " << factors["Onset"] << " " << factors["TranslationConstant"] << endl; ofstream outputfile; outputfile.open("data.dat"); outputfile << "Subject Name: " << parameters.find("SubjectName") << endl; outputfile << "Passive matrix:" << endl << objectPassiveTransformation.matrix() << endl; outputfile << "Yaw: " << toDegrees(eulerAngles.getYaw()) << endl <<"Pitch: " << toDegrees(eulerAngles.getPitch()) << endl; outputfile << "EyeLeft: " << headEyeCoords.getLeftEye().transpose() << endl; outputfile << "EyeRight: " << headEyeCoords.getRightEye().transpose() << endl << endl; outputfile << "Slant: " << instantPlaneSlant << endl; outputfile << "(Width,Height) [px]: " << getPlaneDimensions().transpose() << " " << endl; outputfile << "Factors:" << endl; for (map<string,double>::iterator iter=factors.begin(); iter!=factors.end(); ++iter) { outputfile << "\t\t" << iter->first << "= " << iter->second << endl; } outputfile << "Trial remaining: " << trial.getRemainingTrials()+1 << endl; outputfile << "Last response: " << probeAngle << endl; // Here we save plane projected width and height // now rewind the file outputfile.clear(); outputfile.seekp(0,ios::beg); // Write down frame by frame the trajectories and angles of eyes and head if ( trialMode == STIMULUSMODE && headCalibrationDone > 2 ) { trajFile << setw(6) << left << trialNumber << " " << stimulusFrames << " " << eyeRight.transpose() << endl; anglesFile << setw(6) << left << trialNumber << " " << stimulusFrames << " " << toDegrees(eulerAngles.getPitch()) << " " << toDegrees(eulerAngles.getRoll()) << " " << toDegrees(eulerAngles.getYaw()) << " " << instantPlaneSlant << endl; matrixFile << setw(6) << left << trialNumber << " " << stimulusFrames << " " ; for (int i=0; i<3; i++) matrixFile << objectPassiveTransformation.matrix().row(i) << " " ; matrixFile << endl; // Write the 13 special extremal points on stimFile stimFile << setw(6) << left << trialNumber << " " << stimulusFrames << " " ; double winx=0,winy=0,winz=0; for (PointsRandIterator iRand = redDotsPlane.specialPointsRand.begin(); iRand!=redDotsPlane.specialPointsRand.end(); ++iRand) { Point3D *p=(*iRand); Vector3d v = objectActiveTransformation*Vector3d( p->x, p->y, p->z); gluProject(v.x(),v.y(),v.z(), (&cam)->getModelViewMatrix().data(), (&cam)->getProjectiveMatrix().data(), (&cam)->getViewport().data(), &winx,&winy,&winz); stimFile << winx << " " << winy << " " << winz << " "; } stimFile << endl; } glutPostRedisplay(); glutTimerFunc(TIMER_MS, update, 0); }
void update(int value) { // Read the experiment from file, if the file is finished exit suddenly if ( inputStream.eof() ) { cleanup(); exit(0); } if ( isReading ) { // This reads a line (frame) in inputStream readline(inputStream, trialNumber, headCalibration, trialMode, pointMatrix ); headEyeCoords.update(pointMatrix.col(0),pointMatrix.col(1),pointMatrix.col(2)); Affine3d active = headEyeCoords.getRigidStart().getFullTransformation(); eulerAngles.init( headEyeCoords.getRigidStart().getFullTransformation().rotation() ); eyeLeft = headEyeCoords.getLeftEye(); eyeRight= headEyeCoords.getRightEye(); cyclopeanEye = (eyeLeft+eyeRight)/2.0; if ( trialMode == STIMULUSMODE ) stimulusFrames++; if ( trialMode == FIXATIONMODE ) stimulusFrames=0; // Projection of view normal on the focal plane Vector3d directionOfSight = (active.rotation()*Vector3d(0,0,-1)).normalized(); Eigen::ParametrizedLine<double,3> lineOfSightRight = Eigen::ParametrizedLine<double,3>::Through( eyeRight , eyeRight+directionOfSight ); Eigen::ParametrizedLine<double,3> lineOfSightLeft = Eigen::ParametrizedLine<double,3>::Through( eyeLeft, eyeLeft+directionOfSight ); double lineOfSightRightDistanceToFocalPlane = lineOfSightRight.intersection(focalPlane); double lineOfSightLeftDistanceToFocalPlane = lineOfSightLeft.intersection(focalPlane); //double lenghtOnZ = (active*(center-eyeCalibration )+eyeRight).z(); projPointEyeRight = lineOfSightRightDistanceToFocalPlane *(directionOfSight)+ (eyeRight); projPointEyeLeft= lineOfSightLeftDistanceToFocalPlane * (directionOfSight) + (eyeLeft); // second projection the fixation point computed with z non constant but perfectly parallel to projPointEyeRight lineOfSightRightDistanceToFocalPlane= (( active.rotation()*(center)) - eyeRight).norm(); Vector3d secondProjection = lineOfSightRightDistanceToFocalPlane *(directionOfSight)+ (eyeRight); if ( !zOnFocalPlane ) projPointEyeRight=secondProjection ; // Compute the translation to move the eye in order to avoid share components Vector3d posAlongLineOfSight = (headEyeCoords.getRigidStart().getFullTransformation().rotation())*(eyeRight -eyeCalibration); // GENERATION OF PASSIVE MODE. // HERE WE MOVE THE SCREEN TO FACE THE OBSERVER's EYE if ( passiveMode ) { initProjectionScreen(0, headEyeCoords.getRigidStart().getFullTransformation()*Translation3d(center)); } else initProjectionScreen(focalDistance, Affine3d::Identity()); objectPassiveTransformation = ( cam.getModelViewMatrix()*objectActiveTransformation ); ofstream outputfile; outputfile.open("data.dat"); outputfile << "Subject Name: " << parameters.find("SubjectName") << endl; outputfile << "Passive matrix:" << endl << objectPassiveTransformation.matrix() << endl; outputfile << "Yaw: " << toDegrees(eulerAngles.getYaw()) << endl <<"Pitch: " << toDegrees(eulerAngles.getPitch()) << endl; outputfile << "EyeLeft: " << headEyeCoords.getLeftEye().transpose() << endl; outputfile << "EyeRight: " << headEyeCoords.getRightEye().transpose() << endl << endl; outputfile << "Slant: " << instantPlaneSlant << endl; outputfile << "Factors:" << endl; for (map<string,double>::iterator iter=factors.begin(); iter!=factors.end(); ++iter) { outputfile << "\t\t" << iter->first << "= " << iter->second << endl; } } if ( trialMode == PROBEMODE ) isReading=false; glutPostRedisplay(); glutTimerFunc(TIMER_MS, update, 0); }